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Statistical Computing and Graphics 
~ 

The Bagplot: A Bivariate Boxplot 
Peter J. ROUSSEEUW, Ida RUTS, and John W. TUKEY 

We propose the bagplot, a bivariate generalization of the 
univariate boxplot. The key notion is the halfspace location 
depth of a point relative to a bivariate dataset, which extends 
the univariate concept of rank. The “depth median” is the 
deepest location, and it is surrounded by a “bag” containing 
the n/2 observations with largest depth. Magnifying the 
bag by a factor 3 yields the “fence” (which is not plotted). 
Observations between the bag and the fence are marked by 
a light gray loop, whereas observations outside the fence 
are flagged as outliers. The bagplot visualizes the location, 
spread, correlation, skewness, and tails of the data. It is 
equivariant for linear transformations, and not limited to 
elliptical distributions. Software for drawing the bagplot is 
made available for the S-Plus and MATLAB environments. 
The bagplot is illustrated on several datasets-for example, 
in a scatterplot matrix of multivariate data. 
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1. THE UNIVARIATE BOXPLOT 
The univariate boxplot (or box-and-whiskers plot) was 

proposed by Tukey (1977) as a tool for exploratory data 
analysis. Two examples of univariate boxplots are shown 
outside the frame of Figure 1, which displays the car weight 
IC, and engine displacement yi of 60 cars (Chambers and 
Hastie 1993, pages 46-47). Along the z-axis we see a hori- 
zontal boxplot of the I C ~ .  It consists of a box from the lower 
quartile of the xi to their upper quartile, with a crossbar 
at the median of the xi. Outside of the box, the upper 
fence is given by Q2 + 4(Q3 - Q2) and the lower fence 
by Q2 +4(Q1- Q2), where Q j  is the j th  quartile hence Q2 
is the median. (The fences are not drawn.) The whiskers are 
the horizontal lines going from the box to the most extreme 
values inside the fences. For car weight, no xi lies outside 
the fences. 

Along the y-axis we see the vertical boxplot of the engine 
displacements. The four yi lying outside of the fences are 
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flagged as outliers. (Note that the Camaro and the Caprice 
share the same engine displacement, as do the Mustang and 
the Victoria, hence the vertical boxplot shows only two out- 
liers.) 

2. THE BIVARIATE CASE 
The univariate boxplot is based on ranks since the box 

goes from the observation with rank 141 to that with rank 
[%I, and the central bar of the box is drawn at the median. 
A natural generalization of ranks to multivariate data is 
the notion of halfspace depth (Tukey 1975), which we will 
explain in the next section. Using this concept, we propose 
a bivariate version of the boxplot. Its main components are 
a bug that contains 50% of the data points, a fence that 
separates inliers from outliers, and a loop indicating the 
points outside the bag but inside the fence. The resulting 
graph is called a bagplot. 

Consider the scatterplot in Figure 1. The depth median- 
that is, the point with highest halfspace depth-lies in the 
center and is indicated by a cross. The bag is the polygon 
drawn as a full line, with dark gray interior. The observa- 
tions that lie outside of the bag but inside of the fence are 
indicated by a light gray loop. The fence itself is not plotted 
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Figure 1. Car weight and engine displacement of 60 cars. 
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Figure 2. Bagplots of two datasets. 

because it would draw the attention away from the data. We 
also see four observations outside the fence. These outliers 
are indicated by black stars and labeled. We also labeled 
the Nissan Van because it came close to the fence, so it is 
a boundary case. 

Note that the bagplot generalizes the spine of the boxplot: 
For a very “flat” bivariate dataset (e.g., all vz FZ 0) the bag 
becomes a box. The light gray loop plays the same role as 
the two whiskers in one dimension, so we could call Figure 
1 a “bag-and-bolster plot” to stress the analogy with the 
term “box-and-whiskers plot.” 

Like the univariate boxplot, the bagplot also visualizes 
several characteristics of the data: its location (the depth 
median), spread (the size of the bag), correlation (the orien- 
tation of the bag), skewness (the shape of the bag and the 
loop), and tails (the points near the boundary of the loop 
and the outliers). 

To illustrate these characteristics, Figure 2 contains the 
bagplots of two generated datasets, each with 100 points. 
Their medians (indicated by crosses) are far apart. The bags 
are of roughly the same size (area), so the datasets have a 
similar spread. But the bags have a different orientation: the 
left one slopes upward (positive correlation) and the other 
slopes downward. We also see that the first dataset is very 
skewed because the median lies in the lower left part of the 
bag, where the loop is also narrow, whereas the right part 
of the bag is wider and has a much wider loop. By contrast, 
the bagplot of the second dataset is nicely balanced, and its 
form suggests an elliptic distribution. Finally, both datasets 
are medium-tailed, judging from the size of the loop and 
the absence of outliers. 

When showing several (possibly overlapping) datasets in 
one display, it is convenient to plot the bags in different 
colors. For instance, one bag may be plotted in blue with a 
light blue loop and dark blue stars for the outliers, whereas 
the other bag may be red with a light red loop and dark red 
stars. 

3. CONSTRUCTION OF THE BAGPLOT 

The halfspace location depth ldepth(8,Z) of some 
point 8 E R2 relative to a bivariate data cloud 2 = 
{zl ,  z2, . . . , z,} was introduced by Tukey (1975); see also 
Eddy (1985) and Green (1985). It is the smallest number 
of zi contained in any closed halfplane with boundary line 
through 8. A time-efficient algorithm for ldepth(8,Z) was 
provided by Rousseeuw and Ruts (1996). The depth region 
Dk is the set of all 8 with ldepth(8,Z) 2 k ,  and was al- 
gorithmically constructed by Ruts and Rousseeuw (1996). 
The depth regions are convex polygons, and D k + l  c Dk. 

(Note that these regions are different from those generated 
by convex hull peeling, which first removes the vertices of 
the convex hull of the data cloud, then repeats this on the 
remainder of the dataset, and so on.) 

The depth median T* of 2 (Donoho and Gasko 1992) is 
defined as the 8 with highest ldepth(8,Z) if there is only 
one such 8. Otherwise, T* is defined as the center of gravity 
of the deepest region. An algorithm for T* was provided 
by Rousseeuw and Ruts (1998). 

We now construct the bag B as follows. Let #Dk de- 
note the number of data points contained in Dk. One first 
determines the value k for which #Dk 5 Ln/2] < #Dkm1 

and then interpolates linearly between DI, and Dk--l (rela- 
tive to the point T*) to obtain the set B. The bag B is thus 
again a convex polygon. Appendix A of Rousseeuw and 
Ruts (1997) describes the construction of the bag in more 
detail. 

The fence is obtained by inflating B (relative to T*) by a 
factor 3. The choice of the value 3 is based on simulations 
(see Rousseeuw and Ruts 1997, sec. 5) .  The points outside 
the fence are flagged as outliers. The loop contains all the 
data points between the bag and the fence. To be precise, 
its outer boundary is the convex hull of the bag and the 
nonoutliers. 

When the observations zi = ( z i , y i )  are subjected to a 
translation and/or a nonsingular linear transformation (e.g., 
a rotation), their bagplot is transformed accordingly. This 
is because the halfspace depth is invariant under such map- 
pings, and convex polygons are mapped to convex polygons. 
Therefore the points inside the bag remain inside, the out- 
liers remain outliers. and so on. 

4. EXAMPLES 
Figure 3a plots the concentration of plasma triglycerides 

against that of plasma cholesterol for n = 320 patients 
with evidence of narrowing arteries (Hand, Daly, Lunn, Mc- 
Conway, and Ostrowski 1994, p. 221). We see the depth 
median (marked by a cross), the dark gray bag, the light 
gray loop, and five outliers highlighted by black stars. Fig- 
ure 3a illustrates the option of not plotting the points inside 
the bag, for people who prefer to avoid overplotting. (Our 
default is to plot all points.) Looking at this bagplot we 
see much skewness, which suggests taking the logarithm 
of both variables (also because they are both chemical con- 
centrations). The result is shown in Figure 3b. We see that 
four of the five previous outliers are now inside the loop, 
whereas two new outliers arise at the bottom of the figure. 
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Figure 4a plots the abundance of butterflies versus their 
altitudinal range, in a mountain area in the northern Iberian 
peninsula (Gutierrez and Menendez 1995). This figure il- 
lustrates an alternative representation of the bagplot. The 
bag is the polygon drawn as a full line, and now the bound- 
ary of the loop is indicated by a dotted line. In Figure 4a 
we note three outliers. When we plot the logarithm of the 
y-variable in Figure 4b, the outliers disappear. 

3.5' 

5. ALGORITHM AND IMPLEMENTATION OF THE 

The entire display is constructed by the algorithm BAG- 
PLOT, which draws on computational tools developed 
in earlier papers. Two components are the subroutines 
LDEPTH (Rousseeuw and Ruts 1996) which computes the 
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location depth of an arbitrary point in O ( n  log n) time, and 
ISODEPTH (Ruts and Rousseeuw 1996) which constructs 
the vertices of a depth contour in O(n210gn) time. For 
computing the depth median, the O(n2(log n)2)  subroutine 
HALFMED (Rousseeuw and Ruts 1998) is called. Since 
these times increase quickly with n, we currently use an 
approximation when n is larger than 150. In that case we 
compute the depth median and the bag for a random sub- 
sample of size 150, and perform the other computations 
(whose time is linear in n) on the full dataset. In this way 
we can easily deal with datasets of a few thousand points. 

Our S-Plus code for the bagplot is available from 
the website http://win-www.uia.ac.be/u/statis/index.html. 
Several options are available. For instance, the user may 
choose whether or not to plot the observations inside the 
bag. The outliers-that is, the observations outside the 
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fence-are always plotted. Any observation can be iden- 
tified (e.g., labeled) by clicking on it. 

Our MATLAB code for the bagplot is also available from 
the website mentioned earlier. Again several options are 
available-for example, the shading inside the bag may be 
omitted. Figures 3a and 3b illustrate the option of not plot- 
ting the points inside the bag. The user may also choose to 
plot the fence. We prefer the bagplot as in Figures 1 and 
2-that is, with dark gray shading for the bag, light gray 
shading for the loop, no fence, and plotting all the points. 
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Figure 5. Bagplot for linear data 
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Figure 6. Blotched bagplot of PCB concentration and shell thickness 
of 65 pelican eggs. The white blotch inside the bag is a 95% confidence 
region for the depth median of the population. 

By showing all the points we preserve the advantages of the 
scatterplot, because we can still see the local structure and 
note phenomena like a grid-like appearance (involvement 
of counts), curvature, clustering, holes in the data, and so 
on. 

For large datasets the computation time can be kept down 
in several ways. Recently, Johnson, Kwok, and Ng (1998) 
constructed a fast exact algorithm for depth contours which 
outperforms ISODEPTH as soon as n 2 500. Work is un- 
derway to construct algorithms for depth contours and the 
depth median with lower time complexity (Ileana Streinu, 
personal communication), but these are not yet available. 

For small datasets, Rousseeuw and Ruts (1997, sec. 5 )  
found that the variability of the fence is too large to reliably 
detect outliers (this is unavoidable for the outlier detection 
problem in two dimensions). Therefore, when n < 15 we 
draw only the depth median T* and line segments between 
T* and the data points. 

If the dataset is linear, the bagplot reduces to a univariate 
boxplot. In that case our software draws it with a rectan- 
gular box, as in Figure 5. In a univariate boxplot the upper 
fence is given by Q2 + 4(Q3 - Q z )  and the lower fence by 
QZ +4(Q1 - Q 2 ) ,  where Qj  is the j th  quartile. (This version 
is well-suited for both symmetric and asymmetric distribu- 
tions.) Note that the factor 4 in the univariate boxplot differs 
from the factor 3 used in the bivariate bagplot. Both values 
were obtained by simulations and experience, so the dif- 
ference is not accidental but due to the dimensionality of 
the plots. (In Figure 5, using the factor 3 or 4 makes no 
difference because this example contains no points outside 
the fence by either definition.) 

6. BLOTCHED BAGPLOTS 
It is possible to incorporate a confidence region for the 

depth median into the bagplot. In this way we can extend 
one idea of notches (McGill, Tukey, and Larsen 1978) to 
the bivariate case. Consider the example of Figure 6. For 
65 Anacapa pelican eggs, the concentration in parts per mil- 
lion of PCB (polychlorinated biphenyl, an industrial pollu- 
tant) was measured, along with the thickness of the egg 
shell (Hand et al. 1994, p. 131). All the observations have 
been plotted, and no outliers are flagged. Around the depth 
median we have drawn the blotch, which is a 95% con- 
fidence region for the depth median of the population. It 
was obtained by means of formula (2) in Rousseeuw, Van 
Aelst and Hubert (1999). This formula allows us to find the 
largest value k for which P(ldepth(8, X,) 2 k )  2 .95 when 
X ,  comes from a distribution with population median 6. We 
then use the algorithm ISODEPTH to construct the corre- 
sponding depth region DI, = (0 E Rz;  ldepth(0,Z) 2 k }  
which we call the blotch. For the pelican data we obtained 
k = 21 yielding the white blotch in Figure 6. 

7. OTHER BIVARIATE DISPLAYS 
Another type of bivariate boxplot was proposed by Beck- 

etti and Gould (1987). They consider the univariate boxplot 
of I(: (as in Figure 1) from which they keep the median, 
the quartiles, and the endpoints of both whiskers. They do 
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Figure 7. Bagplot matrix of the three-dimensional aquifer data with 85 data points. 

the same for the y-variable, and then use these numbers to 
draw vertical and horizontal lines on the scatterplot, thereby 
forming a cross and a rectangle. Lenth (1988) modified this 
plot to put more emphasis on the univariate quartiles. How- 
ever, neither version reflects the bivariate shape and corre- 
lation of the data. 

Goldberg and Iglewicz (1992) proposed two generaliza- 
tions of the boxplot which are truly bivariate. When the 
data can be assumed to be elliptically symmetric, they con- 
struct a robust elliptic plot (relplot). Here the “box” is an 
ellipse, obtained by a robust method such as the minimum 
volume ellipsoid estimator proposed by Rousseeuw (1984). 
For asymmetric data Goldberg and Iglewicz (1992) con- 
structed a quarter elliptic plot (quelplot) where the “box” 

consists of four quarter ellipses, computed by a kind of 
M-estimator. 

The bagplot differs from the relplot and the quelplot in 
that its shape is more general. Whereas the relplot/quelplot 
approach estimates parameters of (nearly) elliptical mod- 
els, the bagplot is model-free because the halfspace depth 
is. Other variants of the bagplot have recently been con- 
structed by Romanazzi (1997) and Liu, Parelius, and Singh 
(in press). Zani, Riani, and Corbellini (1998) applied con- 
vex hull peeling (see, e.g., Green 1985), which is somewhat 
less robust than halfspace depth, as shown by Donoho and 
Gasko ( I  992). 

Recently, Hyndman (1996) constructed a plot of high- 
est density regions (HDR’s). First the bivariate density of 
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the data is estimated-for example, using a kernel method. 
Then the 50% HDR is given by the density contour that 
encompasses 50% of the mass. Typically, the 50% HDR 
and the 99% HDR are superimposed on the scatterplot of 
the data. Note that a HDR need not be convex, or even 
connected. This makes the HDR plot particularly useful to 
display multimodal distributions, because it focuses on lo- 
cal properties. The HDR plot is not a generalization of the 
univariate boxplot; for instance, its one-dimensional version 
may contain several “boxes.” The basic notion of the HDR 
plot is data density, whereas the bagplot is based on ranking. 
Both approaches are appealing in different ways. The HDR 
approach is well-suited for multiple modes, but depends on 
the choice of a density estimator and a bandwidth. On the 
other hand, the bagplot is equivariant for linear transfor- 
mations, needs fewer data points, and extends the familiar 
univariate boxplot. Note that both approaches have different 
(but equally important) views of what constitutes an outlier: 
for the HDR plot it is a point lying in an empty area (this 
could be called a “thinlier”), whereas for the bagplot it is a 
point lying far away from the bulk of the data. It should be 
noted that the depth median T* and the bag B are robust, 
which makes the bagplot particularly suited for detecting 
(the latter type of) outliers. 

8. MORE THAN TWO VARIABLES 
The halfspace depth and the depth median exist in any di- 

mension, so the bag can still be defined. For instance, there 
is now a fast approximate algorithm for the multivariate 
depth median (Struyf and Rousseeuw in press). This algo- 
rithm takes three minutes for 1,000 points in five dimen- 
sions. Currently, algorithms for depth contours in three or 
more dimensions are not yet available. In three dimensions 
the bag is a convex polyhedron, which in more dimensions 
becomes hard to visualize. 

However, in any dimension one can draw the bagplot 
matrix which contains the bagplot of each pair of variables, 
as in Figure 7. This figure shows the aquifer data (Hand 
et al. 1994, p. 215-216) in which we changed the first two 
5 2  values to create outliers. (The variables z1 and z2 are 
coordinates measured in miles, and the water level x3 is 
measured in feet above sea level.) Each diagonal cell is the 
bagplot of a variable against itself, where all the points lie 
on the 45” line. By construction such a bagplot reduces to a 
univariate boxplot, as explained in Section 5. Here we have 
drawn these boxplots with their usual factor 4 (instead of 
the factor 3 used in the bivariate bagplots). 

An advantage of having all the data points in a bagplot 
matrix like Figure 7 is that we can still interactively color 
and brush as in the usual scatterplot matrices. The light 
gray zones of the bagplots should not detract from this, but 
rather aid the interpretation. 
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