Synthesis of molecular phosphonates of group III elements

Libor Tanzinger, Zdeněk Moravec, Jiří Pinkas

Masaryk University, Department of Chemistry, Brno, Czech Republic

The general procedures for preparation of transition metal phosphonates involve hydrothermal synthesis. Common traits shared by hydrothermally prepared metal phosphonates are layered 2D structures and a low solubility in a wide range of solvents. On the other hand, phosphonates produced by a simple salt metathesis in aprotic organic solvents, such as pyridine, can form products with very different molecular cluster geometries. A series of reactions of ScCl₃, YCl₃ and LaCl₃ with *tert*-butyl, phenyl and vinyl phosphonic acids have been performed in dry pyridine. Obtained products have been studied by ³¹P NMR spectroscopy and by single-crystal XRD analysis. Three products have been isolated and structurally characterized using SCXRD. From the the reactions of *tert*-butyl phosphonic acid with yttrium(III) and La(III) it is $[\mu_3$ -^tBuP(O)₃]₄(YClpy₂)₂(YCl₂pyH)₂ in pseudo-cubane geometry with [Hpy]₃[YCl₆]·2py as a byproduct and La₄[μ_6 -^tBuP(O)₃]₂[μ_4 -^tBuPO₂(OH)]₂(μ_2 -Cl)₂Cl₈(Hpy)₆ with bridged-square geometry. Moreover, such molecular products still exhibit reasonable solubility in organic solvents, such as pyridine and DMSO.