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Wepresent a newbinary (two-class) supervised non-parametric classification approach that is based on iterative
partitioning of multidimensional feature space into variably-sized and nested hyper-cubes (partitions). The
proposed method contains elements of active learning and includes classifier to analyst queries. The spectral
transition zone between two thematic classes (i.e., where training labels of different classes overlap in feature
space) is targeted through iterative training derivation. Three partition categories are defined: pure, indivisible
and unlabeled. Pure partitions contain training labels from only one class, indivisible partitions contain training
data from different classes, and unlabeled partitions do not contain training data. A minimum spectral tolerance
threshold defines the smallest partition volume to avoid over-fitting. In this way the transition zones between
class distributions are minimized, thereby maximizing both the spectral volume of pure partitions in the feature
space and the number of pure pixels in the classified image. The classification results are displayed to show each
classified pixel's partition category (pure, unlabeled and indivisible). Mapping pixels belonging to unlabeled parti-
tions serves as a query from the classifier to the analyst, targeting spectral regions absent of training data. The
classification process is repeated until significant improvement of the classification is no longer realized or
when no classification errors and unlabeled pixels are left. Variably-sized partitions lead to intensive training
data derivation in the spectral transition zones between the target classes. The methodology is demonstrated
for surface water and permanent snow and ice classifications using 30 m conterminous United States Landsat
7 Enhanced Thematic Mapper Plus (ETM+) data time series from 2006 to 2010. The surface water result was
compared with Shuttle Radar Topography Mission (SRTM) water body and National Land Cover Database
(NLCD) open water classes with an overall agreement greater than 99% and Kappa coefficient greater than 0.9
in both of cases. In addition, the surface water result was compared with a classification generated using the
same input data and a standard bagged Classification and Regression Tree (CART) classifier. The nested segmen-
tation and CART-generated products had an overall agreement of 99.9 and Kappa coefficient of 0.99.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Classification is regarded as a fundamental process in remote sens-
ing used to relate pixel values to land cover or sometimes land use clas-
ses that are present at the corresponding location on the Earth's surface
(Mather, 2004). Conventionally, pixel class assignment is determined
by the spectral properties (signatures) of a given class or theme. Each
spectral feature, for example red, near-infrared or shortwave infrared
reflectance, is taken as an explanatory or independent variable. The the-
oretical n-dimensional space where n axes correspond to n raster bands
in multispectral imagery, or n band transformations extracted from
single images or time series, is often termed the feature space. Classifiers
assign labels to pixels based on partitioning of feature space values
using either unsupervised or training-based supervised methods.
. This is an open access article under
Supervised classification methods have a long history since the
development of techniques such as linear discriminant analysis (LDA)
to classify two or more sub-populations (Fisher, 1936). Numerous
classification algorithms have been developed and those applied to re-
motely sensed data include: k-nearest neighbor (kNN) (Fix & Hodges,
1951), multilayer perceptron (MLP) (Rosenblatt, 1957, 1958), maxi-
mum likelihood (ML) (Savage, 1976), Kohonen's self organized map
(SOM) (Kohonen, 1982; Kohonen & Honkela, 2007), classification and
regression trees (CART) (Breiman, Friedman, Olshen, & Stone, 1984),
support vector machine (SVM) (Cortes & Vapnik, 1995), and random
forests (RF) (Breiman, 2001). In supervised classification methods,
training data of accurately labeled examples are taken as the dependent
variable and associated to a set of independent variables. For land cover
mapping using earth observation imagery, training data may be gath-
ered on the basis of image interpretation, ground measurements or
any other trusted source of information. In general, collecting training
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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data requires considerable time and effort. Supervised classification ap-
proaches are dependent on the experience of the remote sensing
analyst in collecting training data and on the quality of the imagery.
Supervised methods require a priori knowledge of the feature of inves-
tigation (e.g., the land cover type) in order to derive appropriate train-
ing data. Generating a training data set that accounts for all relevant
spectral heterogeneity within and between classes is challenging and
no systematic approach exists for training data collection. For example,
training data selected by an analyst in the field may not be sufficiently
representative of the conditions encountered in the image. Quality
training data are required to achieve accurate supervised classification
results.

Semi-automatic training set derivation has the goal of producing
a parsimonious but sufficient set of training labels for supervised classi-
fication. Usually the acquisition of labeled data is difficult, time-
consuming, or expensive to obtain. For these reasons a training set
should be kept small while ensuring adequate classification perfor-
mance. Several studies have shown however that classification accuracy
increases with training set size (Lippitt, Rogan, Li, Eastman, & Jones,
2008; Rogan et al., 2008; Yan & Roy, 2015), although the optimal train-
ing size and distribution are usually unknown (Arora & Foody, 1997;
Foody & Mathur, 2004b; Foody, McCulloch, & Yates, 1995; Pal &
Mather, 2003; Zhuang, Engel, Lozanogarcia, Fernandez, & Johannsen,
1994). Many studies have emphasized the positioning of training data
within the feature space, particularly the importance of collecting both
pure (only one class in the pixel) and mixed pixel (more than one
class in the pixel) training data. For example, Foody and Mathur
(2004a,b, 2006) showed that the acquisition of training samples near
feature space class boundaries may help reduce the training data set
size without a loss of SVM classification accuracy. Similarly, Yu and Chi
(2008) showed that a small training data set collected along class spec-
tral boundaries provided comparable SVM classification accuracy to
using training data consisting of a large number of pure pixels. Tuia,
Pacifici, Kanevski, and Emery (2009) likewise employed a SVM and
active learning to generate training data in classifying a series of single
images. Other studies have shown similar results using mixed pixel
training with aNN (Bernard, Wilkinson, & Kanellopoulos, 1997; Foody,
1999) and CART (Hansen, 2012) classifiers. Thus, a training set should
be kept small, when training data collection is expensive, and should
include both pure and mixed training data with particular emphasis
on training data collection at the feature space class boundaries.

Semi-automatic training set derivation has been referred to as
“active learning” in themachine learning literature and as “query learn-
ing” or “optimal experimental design” in the statistics literature (Settles,
2009). Active learning focuses on the interaction between the analyst
(or someother information source) and the classifier. Themodel returns
to the analyst the pixels whose classification outcome is themost uncer-
tain. After accurate labeling by the analyst, pixels are added to the train-
ing set in order to reinforce the model. In this way, the model is
optimized onwell-chosen difficult examples, maximizing its generaliza-
tion capabilities (Tuia, Volpi, Copa, Kanevski, & Munoz-Mari, 2011).
Semi-automatic learning can be of great practical value in many real-
word problems where unlabeled data are abundant or easily obtained,
but the acquisition of labeled data is difficult, time-consuming, or expen-
sive to obtain (Lippitt et al., 2008; Settles, 2009). Active learning algo-
rithms have been studied in many real world problems, such as
classifying handwritten characters (Lang & Baum, 1992), part-of-
speech tagging (Dagan & Engelson, 1995), sensor scheduling
(Krishnamurthy, 2002), learning ranking functions for information
retrieval (Yu, 2005), word sense disambiguation (Fujii, Tokunaga, Inui,
& Tanaka, 1998), text classification (Hoi, Jin, & Lyu, 2006; Lewis &
Catlett, 1994; McCallum & Nigam, 1998; Tong & Koller, 2000), informa-
tion extraction (Settles & Craven, 2008; Thompson, Califf, & Mooney,
1999), video classification and retrieval (Hauptmann, Lin, Yan, Yang, &
Chen, 2006; Yan, Yang, & Hauptmann, 2003), speech recognition (Tür
et al., 2005), and cancer diagnosis (Liu, 2004). Active learning is also
suitable for remote sensing applications, where the number of pixels
among which the search is performed is large and manual definition is
redundant and time consuming. However, only a relatively few studies
have been dedicated to remote sensing data classification using active
learning (e.g. Jackson & Landgrebe, 2001; Jun & Ghosh, 2008; Li,
Bioucas-Dias, & Plaza, 2010; Licciardi et al., 2009; Tuia et al., 2009, 2011).

This study builds on previous research by presenting a semi-
automatic active learning classification approach called nested segmen-
tation. Nested segmentation identifies areas in need of labeling followed
by manual assignment by an analyst. The resulting systematic feature
space partitioning defines the classification rules, i.e., unlike other active
learning classification approaches (Tuia et al., 2009) an extant classifica-
tion algorithm is not used. The approach is iterated until either a preset
classification accuracy is acquired or there are no unlabeled classified
pixels. Instead of relying simply on the size of the training data set
to produce a quality classification, we focus on two other training set
properties, representativeness and concentration. Training data that suffi-
ciently cover the intra-class spectral variation per land cover type are
representative. Training data that are densely located along spectral
class boundaries are concentrated. Training data representativeness is
achieved by identifying and adding training data in regions of the fea-
ture space that lack training samples. Training data concentration is
achieved by identifying regions of the feature space where different
classes overlap, targeting the addition of training data and recursively
sub-dividing the particular spectral region. This allows the analyst's ef-
forts to be focused on deriving training where more intensive sampling
is needed. The method provides a new way of iteratively collecting
training data for a binary classification that allows an analyst to collect
a compact and sufficient training data set.

Thenested segmentation approach is designed to be fast in its imple-
mentation and appropriate for large area mapping tasks at national to
global scales that normally require large training data sets. Mapping at
such scales presents a challenge for training data set derivation due to
the variety of intra- and interclass spectral variation present. For exam-
ple, at national scales, surface water can range from clearly identifiable
low turbidity lakes to more challenging water bodies, including turbu-
lent coastal surface waters and briny inland lakes of endorheic basins.
Land covers such as dark conifer forests or central business districts
featuring tall buildings can be confused with open water bodies.
The presented method is meant to target all such variations in a rapid,
iterative fashion. The methodology is first described and then demon-
strated by application to 5 years of 30 m conterminous United States
Landsat 7 Enhanced Thematic Mapper Plus (ETM+) Web Enabled
Landsat (WELD) data (Roy et al., 2010) to generate open surface
water (SW) and permanent snow and ice (SI) classifications. The
SW classification is compared quantitatively with water masks from
the Shuttle Radar Topography Mission (SRTM) water body data set
(Rabus, Eineder, Roth, & Balmer, 2003) and the National Land Cover
Database (NLCD2006) open water class (Fry et al., 2011). In addition,
the WELD nested segmentation SW classification is compared with a
SW classification generated from the same training and Landsat data
but using a standard bagged CART classifier. This is followed by a brief
discussion of the methodology and implications for future research.

2. Data and pre-processing

2.1. Landsat data

The Landsat satellite series, operated by the U.S. Department of
Interior/U.S. Geological Survey (USGS) Landsat project, with satellite
development and launches engineered by the National Aeronautics
and Space Administration (NASA), represent the longest dedicated
land remote sensing data record (Roy, Wulder, et al., 2014). Landsat
data provide a balance between requirements for localized moderate
spatial resolution studies and global monitoring (Goward, Masek,
Williams, Irons, & Thompson, 2001). Free of charge radiometrically
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and terrain corrected Landsat data, available through the USGS Center
for Earth Resources Observation and Science (EROS) (Woodcock et al.,
2008), are the choice of many performing land cover mapping at re-
gional, continental and global scales (Hansen & Loveland, 2012). For
example, Landsat data have been used to generate the 21 class 30 m
National Land Cover Dataset for the conterminous United States
(CONUS) Alaska and Hawaii for 1992, 2001 and 2006 (Fry et al., 2011;
Vogelmann et al., 2001). The PRODES Project (Projeto deMonitoramento
do Desflorestamento na Amazonia Legal), conducted by Brazil's National
Institute for Space Research (INPE), has been using Landsat data to
monitor deforestation rates across the Brazilian Amazon annually since
1988 (INPE, 2013). The U.S. Department of Agricultural (USDA) uses
Landsat and Landsat-like satellite data to monitor cropping systems
domestically and abroad and produces an annual CONUS Cropland
Data Layer (CDL) that defines over 100 land cover and crop type classes
at 30 m (Johnson & Mueller, 2010).

Weekly CONUS Landsat data provided by theWeb-Enabled Landsat
Data (WELD) were used for this study (http://e4ftl01.cr.usgs.gov/
WELD/). The CONUS WELD Version 1.5 data were generated using
every Landsat 7 Enhanced Thematic Mapper Plus (ETM+) Level 1T
acquisition with cloud cover ≤80% available from the U.S. Landsat
archive (Roy et al., 2010). Version 1.5WELDdata have been used to gen-
erate 30 m CONUS annual land cover (Hansen et al., 2011) and 5-year
land cover change (Hansen et al., 2014) classifications.

TheVersion1.5WELDweekly products forweeks 16 to 46 (April 15 to
November 17) were used to capture the main CONUS growing season,
and to avoid weeks that are typically more cloud contaminated at the
time of Landsat 7 overpass (Ju & Roy, 2008). Five years of products
from2006 to 2010were used, providing a total of 155weeks. Eachweek-
ly product contains 14 30m bands—top of atmosphere (TOA) reflectance
for blue (0.45–0.52 μm), green (0.53–0.61 μm), red (0.63–0.69 μm), near-
infrared (0.78–0.90 μm), mid-infrared (1.55–1.75 μmand 2.09–2.35 μm),
and low and high gain brightness temperature (10.40–12.50 μm), TOA
normalized difference vegetation index (NDVI), the date of each acquisi-
tion, the per-band radiometric saturation status and two cloud mask
values. The CONUS products are defined in 501 tiles of 5000 × 5000
30 m pixels in the Albers equal area projection.

2.2. Classification metrics

Temporal metrics have been shown to be a viable transformation of
time-series data to provide feature space variables for land cover and
land cover change classification using both coarse resolution (DeFries
et al., 1995; Hansen et al., 2008; Reed et al., 1994) andmoderate resolu-
tion Landsat time-series (Broich et al., 2011; Hansen et al., 2013;
Potapov et al., 2012).Metrics are selected to capture seasonal class spec-
tral variations in a way that is robust to missing data and to reduce
residual cloud, shadow and atmospheric contamination (Broich et al.,
2011; DeFries et al., 1995; Hansen et al., 2011, 2014). In this study, me-
dian 5 year metrics, specifically the median value from the 155 weeks
at each pixel location, were derived for bands 3 (0.63–0.69 μm), 4
(0.78–0.90 μm), 5 (1.55–1.75 μm), and 7 (2.09–2.35 μm). The blue
(0.45–0.52 μm) and green bands (0.53–0.61 μm) were not used due to
their sensitivity to atmospheric effects (Roy, Qin, et al., 2014). In this
way only four metrics were used. In addition, for post-classification
processing purposes, the median Landsat high gain brightness temper-
ature (10.40–12.50 μm) over 155 weeks at each pixel location was also
derived. Pixels with no data, due to the scan line corrector issue, and
pixels flagged as cloudy, were excluded from metrics generation.

3. Methods

A new supervised active learning classification approach is present-
ed. The method is developed specifically for the classification of two
classes and allows an analyst to build a representative and concentrated
training data set. The process requires a conventional initial training
data set that is sampled from the most obvious and indisputable areas,
similar to the approach of Tuia et al. (2009); for example, for the open
SW classification initial water training pixels were selected from the
centers of deep lakes and rivers with no sediment or weeds and the
non-water training pixels were selected from deserts, forests, and bare
rocks.

After initial training data collection, an iterative procedure is follow-
ed. The feature space is divided automatically into nested variably-sized
hyper-cube partitions that have dimensions no smaller than a pre-
definedminimum spectral tolerance threshold. This partitioning results
in a set of rules to be applied to the metrics for the image data. Classifi-
cation results are displayed to show the association of each pixel to the
category of the partition towhich it belongs. The partition categorymay
be pure (all training pixels in the partition belong to the same class),
indivisible (training pixels in the partition belong to both classes), or
unlabeled (there are no training pixels in the partition). The analyst
refines the training data and the classification process is iteratively re-
peated. The process can be stopped either when no classification errors
and unlabeled pixels are left, orwhen the desired classification accuracy
is reached. The number of iterations of this process is determined by
the analyst; after several iterations, the classification quality stabilizes
and iteration is no longer pursued. These steps are described below in
Sections 3.1–3.3.

3.1. Classification model generation by automated nested feature space
partitioning

The feature space is automatically and recursively divided into
nested hyper-cube partitions by examination of the training data, as
illustrated in Fig. 1. The WELD reflectance data are stored with a
10,000 scaling factor; nominally the reflectance is defined in dimension-
less units in the range 0 to 1 and so the data are storedwith values from
0 to 10,000. The partitioning algorithm successively splits the feature
space into equal halves along each metric; therefore it is most conve-
nient to consider the feature space ranging in value from 0 to 214

(16,384). In this way, the spectral spacemay be divided into equal inte-
ger multiples of two with a minimum partition size of 20.

The initial partition (Fig. 1a) is a single hyper-cube defined for the
four metric bands (i.e., the 5-year median values of Landsat ETM+
bands 3, 4, 5 and 7 respectively) with feature space side length coordi-
nates from 0 to 16,384. The hyper-cube is then split in half along each
metric (for a two dimensional feature space this means splitting the
entire feature space into four quarters) (Fig. 1b). The equal splitting
procedure is repeated many times, as illustrated in Fig. 1c to e for the
mixed partitions that contain training pixels of both classes. The recur-
sive procedure is stopped when there are either no mixed partitions,
or allmixed partitions have side lengths equal to the minimum spectral
tolerance threshold. Mixed partitions that have side lengths equal to
the minimum spectral tolerance threshold are termed indivisible parti-
tions (dark magenta, Fig. 1f). This recursive process effectively results
(e.g., Fig. 1f) in partitions of varying size and with partition boundaries
where the two classes in the feature space overlap or are closely adja-
cent. The partition boundaries define the classification rules. Any pixel
falling within a pure partition in the feature space is assigned to the
corresponding class. Pixels that fall within an unlabeled partition are
not classified. Pixels that fall within indivisible partitions are categorized
as indivisible. The minimum spectral tolerance threshold is the only a
priori defined parameter used in the automated nested feature space
partitioning process. In this research, different minimum spectral toler-
ance thresholdswere used for the open surface water (SW) and perma-
nent snow and ice (SI) classifications as these classes have different
reflectance values in Landsat ETM+ bands 3, 4, 5 and 7. The Landsat-7
ETM+ sensor radiometric calibration uncertainties are estimated as
5% for all the reflective wavelength bands (Markham & Helder, 2012).
Consequently, highly reflective surfaces, such as snow and ice, have
higher greater absolute reflectance uncertainty than low reflectance

http://e4ftl01.cr.usgs.gov/WELD/
http://e4ftl01.cr.usgs.gov/WELD/


a) the initial partition b) 1st split

c) 2nd split

e) 4th split f) 5th split

d) 3rd split

Fig. 1. Feature space illustration of the classification model generated by automated nested partitioning. For illustrative clarity only a two dimensional feature space is shown using syn-
thetic (not real) data. The training data are shown as dots (class A is gray circles and class B is blue triangles) and the partitions are shown as squares.
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surfaces such as water. Minimum spectral tolerance thresholds of 32
and 128 (which correspond to 0.0032 and 0.0128 defined in reflectance
units with a 10,000 scaling factor) were used for the SW and SI classifi-
cations respectively.

3.2. Classification and result inspection

The classification rules defined by the automated nested feature
space partitioning (as shown in Fig. 1f) are applied to the metrics for
the image data. The resulting classification is displayed with four colors
that show the association of each classified pixel to the class and catego-
ry of the partition inwhich it fell, i.e., pure class A, pure class B, unlabeled,
or indivisible (could be either class A or B). The median band 5, median
band 4 and median band 3 metrics are also displayed as a false color
composite to provide spatial context (Fig. 2); other metrics combina-
tions could also be displayed as desired by the analyst. The analyst
refines the training data by examination of the displayed results
(Fig. 2). This is described in Section 3.3.

3.3. Refined training data collection

If the initial training data collectionwas insufficiently representative,
the classification results can be poor and more training data must be
added. The analyst adds training data by examination of the classifica-
tion results (Section 3.2) at pixel locations belonging to unlabeled parti-
tions (yellow pixels in Fig. 2 left) and also where the classification is
judged visually to be incorrect. For convenience we term these training
data collection steps as gap-filling and error-fixing respectively.

The analyst does not examine the feature space when refining
the training data collection. However, it is helpful to consider the
partitioning of the feature space before and after new training data are
collected to understand the nested segmentation algorithm. This is



Fig. 3. Partitioning of the feature space before (a) and after (b) new training pixels are added
by the analyst (the partitions in a are the same as in Fig. 1f). New training data are shown as
outlined dots (green outlines show gap-filling and dark magenta ones show error-fixing cor-
rections). The black dashed arrows show four specific scenarios (see text for details).

Fig. 2. Left: classification results shown using the coloring scheme illustrated in Fig. 1(f). Right: 5-year median metrics (bands 5, 4, 3 as RGB).
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illustrated in Fig. 3 which shows the feature space partitioning before
(a) and after (b) new training data (shown as outlined dots) are
added. The result of applying the automated nested feature space
partitioning after the new training data are added is clearly apparent
when comparing Fig. 3(a) and (b). There aremore partitions, particular-
ly in the spectral transition zone between the two thematic classes, and
there are fewer unlabeled partitions. Four illustrative cases annotated in
Fig. 3 are described below.

Case 1—Gap-filling correction. In the previous classification iteration
(Fig. 3a), this partitionwasunlabeled as therewere no training pixels
within it. Pixels from the classified image falling into this partition
were categorized as unlabeled in the classified map (e.g., yellow col-
ored pixels in Fig. 2a). Consequently, a newClass A training pixelwas
added to the partition. After the application of the automated nested
feature space partitioning the partition was classified as pure class A
(Fig. 3b). Consequently, all pixels in the new classified image that fell
within this partition were classified as pure class A.
Case 2—gap-filling correction. In the previous classification iteration
(Fig. 3a), this partitionwasunlabeled as therewere no training pixels
within it. Additional training data resulted in new training pixels of
both classes being added to the partition. After automated nested
feature space partitioning the partition still contained training data
of both classes (Fig. 3b) and was therefore categorized as indivisible.
Consequently, all pixels in the classified image that fell within this
partition were labeled as indivisible (i.e. could be either class A or B).
Case 3—error-fixing correction. The analyst found a classification
error via image interpretation whereby pixels classified as pure
class A were judged to be class B. The analyst added new training
data for class B labels; for simplicity only one class B training pixel
is shown (Fig. 3b). The impact of adding this new training pixel led
to multiple splitting of the feature space until theminimum spectral
tolerance threshold was met. The partition with the new training
pixel was split into sub-partitions (pure class A, pure class B, and two
unlabeled partitions). In addition, some surrounding feature space
was split into pure class A partitions and also some new unlabeled
partitions were introduced into nearby regions of the feature space
where training pixels were sparse.
Case 4—error-fixing correction. This case is similar to case 3 but the
addition of a class B training pixel resulted in a small indivisible
partition because the minimum spectral tolerance threshold was
met. The pixels falling in this new partition were categorized as
indivisible.
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3.4. Final classification post-processing

In this study open surface water (SW) and permanent snow and
ice (SI) training pixels across the CONUS were collected and the nested
segmentation approach applied. The resulting SW classification had
four classes: SW, not SW, indivisible and unlabeled. The SW and not
SW classes were derived from pure feature space partitions. Similarly,
the SI classification had four classes: SI, not SI, indivisible, and unlabeled.
In addition, class probabilities were stored that are similar to the per
pixel class probabilities provide by CART classifiers. Conventional
CART algorithms recursively partition training data into more homoge-
neous subsets referred to as nodes (Breiman, 2001). The probability of
class membership for each node is defined as the portion of training
pixels of the class in the node, and the probability of class membership
for each classified pixel is assigned by the node probability (Breiman,
2001). Each CART node is equivalent to a nested segmentation feature
space partition (e.g., a hypercube shown in Fig. 3b). It is reasonable
therefore to compute the probability of class membership in the same
way. Thus, the probability of SW was computed for each partition as
the number of training pixels of class SW divided by the total number
of training pixels in the partition. The probability of SI was computed
for each partition in the same manner. For convenience, the probability
values were multiplied by 100 to give percentages rounded to the
nearest integer. In this way, the pixels classified as SW and SI had
100% probability, the pixels classified as not SW and not SI had 0% prob-
ability, the pixels classified as indivisible had class probabilities in the
range 1% to 99%.

Some post-classification heuristics were applied to reduce commis-
sion errors. The 0.0002777° National Elevation Data (NED) (Gesch,
2007) first derivative slope product was reprojected to 30 m and all
pixels where slopes were N4° were reclassified as not SW. This was
based on the assumption that water would not be present on slopes
(Bwangoy, Hansen, Roy, De Grandi, & Justice, 2010). The median
5-year high gain brightness temperature (10.40–12.50 μm) was
used to identify locations likely to be too warm for persistent snow
and ice accumulation. An empirical examination found that locations
with a median 5-year high gain brightness temperature of 20 °C pro-
vided a conservative threshold and all pixels in the SI classification
with brightness temperature above this threshold were reclassified
as not SI.
Fig. 4.Open surfacewater classification superimposed over 5-yearmedianmetrics (Landsat ban
pixels are shown as SW (blue color).
4. Results

4.1. Training data selection

To create an initial training data set, 124 and 54 unambiguous train-
ing pixels for SW and SI characterizations, respectively, were collected
across the CONUS by examination of the WELD weekly data. Care was
taken to select only pure class training pixels. Subsequently, in the iter-
ative nested segmentation approach for the SW classification, pixels
containing no water were considered as training class not SW (this cor-
responds to class A on pictures 1, 2 and 3) and pixels containing any
portion of water (N0%) were taken as class SW (i.e., class B on pictures
1, 2 and 3). Similarly, for the SI classification, pixels containing no
snow or ice were considered as training class not SI and pixels fully or
partially covered by snow (N0%)were taken as class SI. To ensure repre-
sentative class variation, training pixels were purposefully collected
across the CONUS. Only cloud and shadow free training data were se-
lected. The training data class labels were checked visually using the
“Open in Google Earth” tool (http://gis-lab.info/qa/open-in-google-en.
html) which allowed a comparison with high spatial resolution near-
contemporaneous GoogleEarth™ airborne imagery. After several itera-
tions of the supervised active learning nested segmentation process, a
total of 296,363 and 93,496 training pixels for the SW and SI character-
izations, respectively, were collected.
4.2. CONUS classification

Browse images of the final open surface water (SW) and permanent
snow and ice (SI) classification results are shown in Figs. 4 and 5 respec-
tively. The classification results are shown superimposed on a false color
image of the 5-yearmedianmetrics Landsat bands 5, 4, and 3, to provide
geographic context. The transparent areas correspond to the pixel
locations classified as not SW and not SI. For both data sets a total of
9,976,500,374 30m pixels were classified. As it is not possible to visual-
ize all of the CONUS at 30 m resolution in a single image (Roy et al.,
2010) thebrowse classification imageswere generated by labelling a re-
duced resolution browse image pixel as SW or SI if any of the underlying
30mpixelswere classified as these classes. This necessarily overempha-
sizes the spatial distribution of the SW and SI classes.
ds 5, 4, 3 shown as red, green, blue), Albers equal area projection. Indivisible and unlabeled

http://gis-lab.info/qa/open-in-google-en.html
http://gis-lab.info/qa/open-in-google-en.html
Image of Fig. 4


Fig. 5. Permanent snow and ice classification superimposed over 5-year median metrics (Landsat bands 5, 4, 3 shown as red, green, blue), Albers equal area projection. Indivisible and
unlabeled pixels are shown as SI (red color).
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SW commission errors were often found in mountainous areas. For
example, deep shadows on north-facing slopes have very low reflec-
tance and are often classified as water. However, applying the post-
classification slope heuristic removed the majority of these errors. For
the SI classification, the post-classification temperature heuristic re-
moved highly reflective salt pans that are spectrally similar to SI in the
reflective wavelengths. Known omission errors in SW classification are
related to the date of NED data set derivation, which varies across
CONUS from 1923 to 2013 (Stoker, Heidemann, Evans, & Greenlee,
2013). For the SI classification, omission errors occur along the edges
of some of the snow covered areas, likely because the thermal band
data are sensed at 60 m and not at the 30 m resolution defining the re-
flective wavelength bands.

Table 1 summarizes the percentage of the CONUS 30m pixels classi-
fied into the different classes for the two classifications. The percentage
of pixels belonging to the indivisible category is insignificant (0.129%
and 0.007% for the SWand SI classifications respectively). The indivisible
pixels in the SW classification included pixels with shadows occurring
more than 50% of the time in the weekly WELD data, typically on
urban and impervious surfaces. Other indivisible land cover types con-
founding water discrimination included volcanic rocks and exposed
soil surfaces such as Belknap crater, OR, and Sunset crater, AZ. The
majority of indivisible pixels in the SI classification were located on salt
pans with high visible and infrared reflectance. The percentage of pixels
belonging to the unlabeled category was even smaller (0.042% and
0.001% for the SW and SI classifications) and is indicative of the efficacy
of the nested segmentation classification approach.
Table 1
Percentage of the number of CONUS pixels (out of a total of 9,976,500,374 30 m pixels
considered) that were classified into the different classes (SW = open surface water,
not SW=not open surface water, SI= permanent snow and ice, not SI= not permanent
snow and ice).

CONUS open surface water classification percentages

SW Not SW Indivisible Unlabeled

9.807 90.021 0.129 0.042

CONUS permanent snow and ice classification percentages

SI Not SI Indivisible Unlabeled

0.060 99.932 0.007 0.001
A total of 9.8% of the CONUS pixels were classified as SW (Table 1).
The spatial distribution of the SW class (Fig. 4) appear generally coherent
with the major lakes, rivers, inland water bodies, and near shore oceans.
Only 0.06% of the CONUSpixelswere classified as SI (Table 1). The SI class
(Fig. 5) occurs only in high altitude snow prone areas and principally de-
picts the extent of glaciers within CONUS (Barnes & Roy, 2010; Krimmel,
Key, Fagre, & Menicke, 2002). The SI classification was derived using
5-year median metrics defined from the growing season, specifically
week 16 to week 46 or the median spectral signature from April 15th
to November 17th. This signature represents close to minimum snow
and ice coverage for the growing season, mainly that of glaciers.

4.3. Open surface water classification comparison

To estimate the quality of the WELD SW classification, a pixel by
pixel comparison with two recent, similar national scale products was
undertaken: the vector Shuttle Radar Topography Mission (SRTM)
water body data set (SWBD, 2005) and the 30 m National Land Cover
Database (NLCD 2006) Open Water class (Fry et al., 2011). To our
knowledge, the SRTM water body data have not been formally validat-
ed, while the NLCD water class has a 93% map accuracy (Wickham
et al., 2013). The SWBDwas reprojected to the WELD Albers projection
and rasterized to a 30 m pixel size in the WELD pixel grid. Class 11
(Open Water) of the NLCD 2006 land cover product was considered as
open surface water (SW) and the other classes were considered as not
open surface water (not SW).

The WELD CONUS open surface water map was compared with the
SWBDandNLCDdata to generate two-way confusionmatrices. Conven-
tional accuracy statistics (Cohen's Kappa, user's, producer's and overall
accuracies) were then derived from the confusion matrices (Foody,
2002). In this analysis pixels belonging to the indivisible and unlabeled
Table 2
Confusion matrix comparison of WELD open surface water (SW) 30 m classification
(Fig. 4) with SRTM Water Body data (SWBD). SW = open surface water, not SW = not
open surface water. Overall accuracy: 99.4; Cohen's Kappa: 0.966.

WELD not SW WELD SW User's accuracy

SWBD not SW 8959628989 38378857 99.6
SWBD SW 21357582 957134946 97.8
Producer's accuracy 99.8 96.1



Table 3
Confusion matrix comparison of WELD open surface water (SW) 30 m classification
(Fig. 4)with NLCD openwatermap. SW=open surfacewater, not SW=not open surface
water. Overall accuracy: 99.4; Cohen's Kappa: 0.935.

WELD not SW WELD SW User's accuracy

NLCD not SW 8489643813 23405746 99.7
NLCD SW 32922440 427686146 92.9
Producer's accuracy 99.6 94.8
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categories were considered to be SW as they usually occur at the edge of
water bodies (this is illustrated for example in Fig. 2 left) and their inclu-
sion as SW is deemed negligible as b0.17% of the CONUSwere indivisible
or unlabeled (Table 1).

Tables 2 and 3 illustrate the high level of agreement between
the SW classification and the SWBD and NLCD data respectively. All
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Fig. 6. Spectral scatterplots of thefinal partitioning of the feature space for the open surfacewat
(blue), pure not SW (gray), and indivisible partitions (magenta) are illustrated.
9,976,500,374 classified WELD pixels were compared with the SWBD
product; 8,973,658,145 classified WELD pixels were compared with
the NLCD 2006 data as NLCD covers a smaller area than the WELD
data. The Cohen's Kappa (Cohen, 1960) coefficient was 0.97 and 0.94
for SW vs. SWBD and SW vs. NLCD respectively; the overall percent
correct classification accuracy in both of cases was greater than 99%.
The user's accuracies for the SW class were 97.82% (SW vs. SWBD)
and 92.86% (SW vs. NLCD) and the producer's accuracies were 96.14%
and 94.81% respectively, reflecting the high level of agreement between
the maps.

4.4. Nested feature space partitioning analysis

Fig. 6 illustrates the final open surface water (SW) feature space
partitioning, i.e. the SW classifier. A total of four metrics, the median
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Table 7
Final permanent snow and ice (SI) classification feature space number (#) and percentage
(%) of partitions of different sizes and the percentage volume of feature space occupied.

Edge Partitions, # Partitions, % Volume, %

8192 14 0.049 87.500
4096 25 0.087 9.766
2048 89 0.310 2.173
1024 286 0.997 0.436
512 946 3.298 0.090
256 4425 15.428 0.026
128 22896 79.830 0.009

Table 4
Final SWmodel and distribution by category (pure, indivisible and unlabeled) of feature
space partitions, feature space volume and CONUS classified pixels, expressed in absolute
numbers (#) and percentage (%).

Category Partitions, # Partitions, % Volume, % Pixels, # Pixels, %

Pure 67538 45.003 10.59751 9959408985 99.829
Indivisible 16262 10.836 0.00003 12896672 0.129
Unlabeled 66276 44.162 89.40246 4194717 0.042
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5 year reflectance derived for bands 3 (0.63-0.69 μm), 4 (0.78-0.90 μm),
5 (1.55-1.75 μm), and 7 (2.09-2.35 μm), were classified. As it is not
possible to visualize a four dimensional feature space, the six possible
combinations of two dimensional feature spaces are shown. Due to
visualization complexity only the indivisible (magenta) and pure (SW
in blue, not SW in gray) partitions are illustrated. This illustration over-
emphasizes the extent of indivisible partitions, although in the four-
dimensional feature space they covered only a small fraction of the
feature space volume (Table 4).

Tables 4 and 5 summarize the number (#) and percentage (%) of
the feature space partitions of different categories (pure, indivisible, or
unlabeled) and also the percentage volume of feature space they occupy
for the open surface water (SW) and permanent snow and ice (SI) clas-
sifications respectively. In addition, the last two columns of these tables
summarize the number and percentage of classified pixels of the three
different categories. The number of unlabeled partitions and associated
feature space volume occupied is considerable for both classifications,
but these partitions occupy a “sparse” or “empty” volume of the feature
space, where only isolated pixels are located. More than 99% of pixels in
the SW and SI classification were pure and only 0.042% and 0.001% of
pixels in the SW and SI classifications respectively were unlabeled. The
indivisible partitions covered only a very small portion of the feature
space: 0.00035% (SW) and 0.002% (SI) with only a minor percentage
of pixels categorized as indivisible in classified images: 0.129% (SW)
and 0.007% (SI).

Tables 6 and 7 summarize by partition size (partition side length
in units of reflectance × 10,000) the number, percentage and volume
occupied by the partitions for the final SW and SI classifications respec-
tively. The respective 32 and 128 (which correspond to 0.0032 and
0.0128 defined in reflectance units with a 10,000 scaling factor) mini-
mum spectral tolerance thresholds employed resulted in nine splits
for the SW and seven splits for the SI models, respectively. The hyper-
Table 6
Final open surfacewater (SW) classification feature space number (#) and percentage (%)
of partitions of different sizes and the percentage volume of feature space occupied.

Edge Partitions, # Partitions, % Volume, %

8192 15 0.010 93.7500
4096 14 0.009 5.4688
2048 27 0.018 0.6592
1024 57 0.038 0.0870
512 263 0.175 0.0251
256 1219 0.812 0.0073
128 5427 3.616 0.0020
64 23726 15.809 0.0006
32 119328 79.512 0.0002

Table 5
Final SI model and distribution by category (pure, indivisible and unlabeled) of feature
space partitions, feature space volume and CONUS classified pixels, expressed in absolute
numbers (#) and percentage (%).

Category Partitions, # Partitions, % Volume, % Pixels, # Pixels, %

Pure 13550 47.244 24.185 9975718866 99.992
Indivisible 4721 16.460 0.002 696067 0.007
Unlabeled 10410 36.296 75.813 85441 0.001
volumes, occupied by partitions of different sizes, are very unequal;
for example, only 29 partitions had side lengths of 8192 and 4096 scaled
reflectance in the SW classification (Table 6). However, these partitions
cover 99.2% of the feature space volume. Conversely, less than 0.0002%
of the feature space volume is occupied by partitions with side lengths
of 32 (the minimum spectral tolerance threshold). Similar results
were found for the SI classification (Table 7).
4.5. Nested segmentation and CART classifiers comparison

To provide confidence in the nested segmentation algorithm the
training data used to generate the final SW classification were used
again to generate a SW classification but with a standard bagged CART
classifier (Breiman et al., 1984;Hansen, 2012). Twenty-five bagged clas-
sification trees were generated; each time 10% of the training data were
sampled at random with replacement and used to generate a tree. Tree
growth was terminated when additional splits decreased model devi-
ance by less than 0.001 of the root node deviance. Each pixel was classi-
fied 25 times using 25 bagged classification trees. All per pixel results
were ranked over the 25 trees and themedian water class membership
probability was taken as the final result. Pixels with probability ≥50 %
and b50% were considered to be the open surface water (WS) and the
not open surface water (nonWS) classes, respectively. The final classifi-
cation post-processing (Section 3.4) was applied to the CART classifica-
tion tomake it comparable with the nested segmentation classification.

Table 8 shows the CONUS confusion matrix summarizing the two
SW classifications, assuming that the CART SW classification is “truth”.
These results indicate a high overall classification correspondence
(Cohen's Kappa coefficient 0.99, overall percent correct 99.9%) with
user's and producer's accuracies of 92.36% and 94.59% respectively.

Fig. 7 shows detailed examples comparing the SW classifications
provided by the nested segmentation (left column), the CART classifica-
tion (middle column) and themedian of Landsat bands 5, 4 and 3 (right
column) shown to provide geographic context. The top two rows
illustrate examples where the two classification results are in evident
agreement for extensive open water bodies (Louisiana) and more spa-
tially complex prairie pot hole lakes (South Dakota). The bottom row
shows an example where the two SW classifications disagreemarkedly.
Examination of this classification difference (by inspection of Google
Earth high spatial resolution data) indicates that it is due to CART com-
mission errors occurring over an extensive area ofmining deposits close
Table 8
Confusion matrix comparison of two open surface water (SW) 30 m classifications using
the same training data sets, the same set of metrics and two different classifiers—25
bagged trees (CART) and nested segmentation (NS). SW = open surface water, not
SW = not open surface water. Overall accuracy: 99.9; Cohen's Kappa: 0.99.

NS not SW NS SW User's accuracy

CART not SW 8974620567 4084024 99.95
CART SW 6366004 991429779 92.36
Producer's accuracy 99.93 94.59



a) Nested segmentation b) CART (25 bagged trees) c) 543

d) Nested segmentation e) CART (25 bagged trees) f) 543 

g) Nested segmentation h) CART (25 bagged trees) i) 543

Fig. 7.A detailed 400× 400 30m pixel comparison of nested segmentation classification results (left column) and bagged CART (25 tree) classification (middle column) derived using the
same Landsatmetrics and the same training data derived by application of the nested segmentation guidance procedure. The right column shows the 5-yearmedian of bands 5, 4, 3 as RGB
for geographic reference. Top row: Louisiana, 29°26'49.24"N, 91°18'8.01"W, Middle row: South Dakota, 45°38'36.10"N, 97°30'25.01"W, Bottom row: Minnesota, 47°34'14.00"N,
92°38'39.15"W.
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to Mountain Iron, Minnesota. These results provide confidence that the
image-interpreted nested segmentation approach is quite robust.

5. Discussion

5.1. Analyst interpretation workload

Achieving a reliable classification is a function of the analyst's inter-
pretation skills and the ability to recognize when diminishing returns
indicate a fundamental limitation in improving the map characteriza-
tion. The only preset parameter is the minimum spectral tolerance
threshold value, which if set too low can result in interminable interpre-
tation of partitions. Each pure partition and each indivisible partition is
defined by at least one and two training pixels respectively. The more
partitions, the more detailed training and the more labor-intensive the
task becomes. Conversely, increasing the minimum spectral tolerance
threshold leads to an exponential reduction of manual work, but also
to a possible loss of quality in the map output by retaining a relatively
larger transition zone in the final product. A balance is sought between
the amounts of labor performed in interpreting/iterating the product
versus final map quality/accuracy.

Fig. 8 demonstrates how varying the minimum spectral tolerance
threshold affects the classification quality. With a large threshold
(8192 and 4096, Fig. 7b), no classification is possible—all classified
pixels are categorized as indivisible. Using a threshold of 256 (Fig. 7f)
enables only core areas of water and land to be identified. Employing
a minimum spectral tolerance threshold of 32 leads to almost a clear
open surface water characterization with an insignificant number of
unlabeled and indivisible pixels in the final result (Fig. 7i).

The nested segmentation algorithm reduces overall effort during
training data set creation. As result, the training data volume used in
nested segmentation is relatively small. For example, in our previ-
ous CONUS research using the CART classifier, training data set
consisted of 112,489,590 pixels for open surface water classification,
10,912,417 pixels for percent Tree Cover, 151,025,252 pixels for
percent of Bare Ground (Hansen et al., 2011), 1,515,582 pixels for Forest
Cover Loss and 12,589,299 pixels for Bare Ground Gain (Hansen et al.,
2014). The size of the training set used to build the nested segmentation



a) median metrics b) threshold = 8192 or 4096 c) threshold = 2048

d) threshold = 1024 e) threshold = 512 f) threshold = 256

g) threshold = 128 h) threshold = 64 i) threshold = 32

Fig. 8. Example product sequence illustrating the effect ofminimumspectral tolerance threshold from a SWexample. The same training set and the same set of imagemetricswere used in
all examples. Only the minimum spectral tolerance threshold was changed. For the image reference in (a), 5-year median metrics are shown (Landsat bands 5, 4, 3 as red, green, blue).
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model for SW consisted of only 296,363 training pixels; for SI, 93,496
training pixels. Nested segmentation results in a targeted and com-
paratively small training data requirement compared to traditional
approaches.

5.2. Known issues and limitations

The nested segmentation algorithm has some limitations. First, due
to the equilateral shape of the partitions, the input data should be nor-
malized, i.e. have similar dynamic ranges across input variables. WELD
weekly mosaics are normalized to top of atmosphere reflectance with
a valid range from 0 to 10,000 for all bands with some allowance due
to known uncertainties (Markham & Helder, 2012). Converting WELD
weekly data into median metrics does not change the range of valid
values. However, adding an ancillary layer of another physical variable,
for example NED-derived slope, varying from 0° to 90°, would not con-
form to the spectral splitting rule used in this classification.

Another disadvantage of the approach is the challenge of processing
a large number of metrics. Each split divides k mixed parent partitions
into k*2n child partitions (where n is a number of metrics). Increasing
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the dimensionality of the feature space leads to an exponential increase
in the amount of training data required to cover all partitions, an effect
commonly referred to as the curse of dimensionality (Bellman, 1954;
Hughes, 1968). In this research only four metrics were sufficient to
achieve nearly complete separation of the two classes. Formore compli-
cated thematic targets (e.g., forests or croplands), more metrics would
likely be needed to achieve a viable classification accuracy. A modifica-
tion of the partitioning process would be required in order to use this
method with a larger number of metrics.

Finally themethod has a high sensitivity to errors in the trainingdata
set. A mislabeled training pixel may launch multiple unnecessary splits
of a pure partition, which should not be split. This leads to the further
appearance of unlabeled partitions and multiple unlabeled pixels in a
classified image. However, using a relatively small training data set,
mislabeled pixels are easily discovered as they will in effect behave as
outliers and result in spurious partitions of the feature space.

5.3. Advantages and future modifications of the method

A random sampling approach at the stage of training data set collec-
tion does not ensure the creation of a viable training data set, as it does
not target the spectral frontier along class boundaries. The nested seg-
mentation partitioning algorithm identifies areaswhich already contain
training data (pure and indivisible pixels and partitions), avoiding need-
less training duplication, extra work and computation. By facilitating
the direct identification and minimization of the transition zone be-
tween two classes, the nested segmentation algorithm maximizes the
spectral volume occupied by pure partitions. Conversely, unlabeled
pixels and partitions serve as a query from classifier to analyst, explicitly
highlighting untrained spectral volumes. These regions are coded and
mapped, enabling their subsequent investigation and interpretation
(gap-filling correction as in Fig. 3). Most modern classifiers adapted to
remote sensing problems do not provide any information about areas
that lack training data. The parallelepiped classifier (Richards, 1999) is
one that does provide information on spectral regions not labeled by
training data.

Future modification of the classifier will focus in three directions:
1) a modification of the partitioning process to allow for the use of
more features, 2) testing models with other land cover themes, in
other regions and in other time frames, and 3) an automatic calculation
ofminimumspectral tolerance for different types of land cover. Progress
on these three aspects will enable testing the advanced nested segmen-
tation with land cover types requiring a richer feature space, for exam-
ple forest cover. Future model implementations will be tested with
WELD data across all Landsat 5/7 epochs (since 1985), providing a
means to document change over time using the nested segmentation
approach.

Though the nested segmentation algorithmhas been developedonly
for binary classification, there are no technical limits to building an
algorithm for the partitioning of a feature space for three or more pre-
defined classes. Multiclass classification can be implemented for both
a) combined use of multiple binary classifiers and b) single model for
multiple classes, where a probability of each class can be assigned to
each partition. The potential challenge concerns the curse of dimension-
ality (Bellman, 1954; Hughes, 1968) for complicated thematic classes
(e.g., vegetation), where the exponential growth of training samples
can be expected. This topic will be the focus of forthcoming research
on the nested segmentation approach.

6. Conclusions

We developed and applied a novel active learning classifier, which
we call nested segmentation, to CONUSmulti-temporal Landsat data. Ac-
tive learning as implemented in our approach enables guided iterations
of the map product through 1) identifying spectral regions that lack
training data, 2) identifying transition zones between the two classes
of interest, and 3) reducing the transition zone to maximize the identi-
fication of spectral regions consisting of a single land cover class.

The result is a training data set that is 1) representative of relevant
intraclass spectral variation. In other words, the full extent of each
class's spectral signature in hyper-dimensional space is targeted for
training. The training data set is also 2) concentrated in the regions
of spectral confusion between the classes, or the transition zones. By
placingmore effort in refining the spectral boundaries through concen-
trated training data derivation, the region of indivisible pixels is reduced
bymaximizing the delineation of pure spectral space belonging to a sin-
gle class. Nested segmentation is best suited to situations where labels
are scarce and very difficult, time-consuming, or expensive to obtain.
Given a competent image analyst, high fidelity land cover maps should
be easily realized using nested segmentation.

The products described here are part of the WELD land cover data
sets for the CONUS for the 2006–2010 Landsat 7 epoch and are available
for free download from a United States Geological Survey (USGS) server
(http://e4ftl01.cr.usgs.gov/WELD/LCLUC/).
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