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In this article, a novel approach using ensemble of semi-supervised classifiers is proposed
for change detection in remotely sensed images. Unlike the other traditional methodolo-
gies for detection of changes in land-cover, the present work uses a multiple classifier sys-
tem in semi-supervised (leaning) framework instead of using a single weak classifier.
Iterative learning of base classifiers is continued using the selected unlabeled patterns
along with a few labeled patterns. Ensemble agreement is utilized for choosing the unla-
beled patterns for the next training step. Finally, each of the unlabeled patterns is assigned
to a specific class by fusing the outcome of base classifiers using some combination rule.
For the present investigation, multilayer perceptron (MLP), elliptical basis function neural
network (EBFNN) and fuzzy k-nearest neighbor (k-nn) techniques are used as base classi-
fiers. Experiments are carried out on multi-temporal and multi-spectral images and the
results are compared with the change detection techniques using MLP, EBFNN, fuzzy k-
nn, unsupervised modified self-organizing feature map and semi-supervised MLP. Results
show that the proposed work has an edge over the other state-of-the-art techniques for
change detection.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Change detection is a process of detecting temporal effects of multi-temporal images [1,2]. This process is used for finding
out changes in land covers over time by analyzing remotely sensed images of a geographical area captured at different time
instants. Changes can occur due to natural hazards (e.g., disaster, earthquake), urban growth, deforestation, etc. [1–5].
Change detection is one of the most challenging tasks in the field of pattern recognition and machine learning [6].

Change detection can be viewed as an image segmentation problem, where two groups of pixels are to be formed, one for
the changed class and the other for the unchanged one. Process of change detection can be broadly classified into two
categories: supervised [7–9] and unsupervised [10–17]. Supervised techniques have certain advantages like they can explic-
itly recognize the kind of changes occurred and are robust to different atmospheric and light conditions of acquisition dates.
Various methodologies exist in the literature to carry out supervised change detection, e.g., post classification [1,8,18], direct
multi-date classification [1], kernel based methods [9], etc. Having several advantages, applicability of supervised methods
in change detection is poor due to mandatory requirement of sufficient amount of ground truth information, collection of
which is expensive, hard and monotonous too. On the contrary, in unsupervised approach [10–17], there is no need of
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additional information like ground truth. Due to depletion of labeled patterns, unsupervised techniques seem to be compul-
sory for change detection. Unsupervised change detection process can be of two types: context insensitive (spectral based)
[1,12] and context sensitive (spatial based) [10,11,13–16,19].

In change detection, it may so happen that the category information of a few labeled patterns could be collected easily by
experts [20]. However, if the number of these labeled patterns is small, then this information may not be sufficient for devel-
oping any supervised method. In such a scenario, knowledge of labeled patterns, though not much in amount, may be com-
pletely unutilized if unsupervised approach is carried out. Under this circumstance, semi-supervised approach [21,22] can be
opted instead of unsupervised or supervised ones. Semi-supervision uses a small amount of labeled patterns with abundant
unlabeled ones for learning, and integrates the merits of both supervised and unsupervised strategies to make full utilization
of the collected patterns. Semi-supervision has been used successfully for improving the performance of clustering and clas-
sification [23–26] when sufficient amount of labeled data are not present.

Semi-supervised approaches were explored for the use of multiple classifier system (MCS) [27–30]. Many applications in
real life domains, i.e., change detection, medical image analysis, face recognition suffer from the problem of unavailability of
labeled information. Therefore, semi-supervised MCS are required and have been studied in past [27–30] (see Table 1). As to
the knowledge of the authors, no such applications exists in change detection domain using semi-supervised MCS. This
motivated us to explore the capacity of ensemble classifier embedded with semi-supervision framework to improve the per-
formance of change detection process when a few labeled patterns are available.

In the proposed method, merits of both semi-supervised learning and ensemble learning are integrated in a single plat-
form for detecting changes from remotely sensed images. The traditional algorithms [1,8,9,18,31] for change detection is
mainly relaying on a single classifier in either supervised or semi-supervised framework. Unlike this, in the present work,
a set of semi-supervised classifiers is used for change detection. In the present investigation, multilayer perceptron (MLP)
[32], elliptical basis function neural network (EBFNN) [32–34] and fuzzy k-nearest neighbor techniques (k-nn) [35] are used
as the base classifiers.

To assess the effectiveness of the proposed method, experiments are carried out on two multi-temporal and multi-spec-
tral images of Mexico area and Island of Sardinia. The present study concludes that the proposed semi-supervised MCS is
better suited for the task of change detection than the other state-of-the-art techniques.

The rest of the article is organized into four sections. Section 2 describes the proposed methodology. Description of the
data sets used to carry out the investigation is provided in Section 3. In Section 4, implementation details and experimental
results are discussed. Conclusion is drawn in Section 5.
2. The proposed algorithm

In the present work, an ensemble of semi-supervised classifiers is proposed for change detection. The contribution of the
present work is twofold: at first an algorithm is designed to integrate semi-supervised learning and ensemble learning in a
single platform and then the proposed algorithm is used for the betterment of change detection process when a few labeled
patterns are available. Unlike the other state-of-the-art techniques in the literature of semi-supervised multiple classifier
system (i.e. co-training [29], tri-training [30], co-forest [44]), the proposed algorithm during the iterative learning process
utilizes the agreement between all the networks in the ensemble for collecting the most confident labeled patterns.
Table 1
Tabular representation for state-of-art techniques.

Application area Technique and tools

Water quality prediction Greedy ensemble selection family of algorithms for ensembles of regression models was used for searching the
best subset of regressors by taking some local greedy decisions [36]

Image recognition A hybrid approach was used by combining type-2 fuzzy logic, modular neural networks and the Sugeno
integral [37]

Sentiment classification A detailed comparative study for sentiment classification using ensemble techniques was carried out. Here,
ensemble of classifiers were designed in three different level of combination, i.e., classification level, feature
level and combination level [38]

Prediction of chaotic time series Ensemble of adaptive network based fuzzy inference system was used. Average and weighted average
combination rules were applied for final decision [39]

Cardiac arrhythmia Classification fuzzy K-Nearest Neighbors, Multi Layer Perceptron with Gradient Descent and momentum Backpropagation,
and Multi Layer Perceptron with Scaled Conjugate Gradient Backpropagation were used as base classifiers.
Finally, a Mamdani type fuzzy inference system was used as a combiner [40]

Hyperspectral image classification Combination of two discriminative classifiers: sparse multinomial logistic regression and quadratic
discriminant analysis were used. Initially, both the classifiers were trained using a few labeled samples. Then,
the set of unlabeled samples was collected for next training step by combining the estimation obtained by both
classifiers [41]

Classification of multi-annual
remote sensing data

Ensemble of classifiers (i.e., random forests) was trained on a multi-spectral image captured from an
agricultural region. It was adapted to classify the image from another year in semi-supervised framework [42]

Remotely sensed image
segmentation

Co-training strategy was used under variational Bayesian framework. There were two disjoint feature sets and
each of them was used by a Gaussian mixture model. Co-training strategy in a bootstrap mode was utilized for
estimation of parameters [43]
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As already mentioned, multilayer perceptron (MLP) [32], elliptical basis function neural network (EBFNN) [32–34] and
fuzzy k-nearest neighbor techniques (k-nn) [35] are used as the base classifiers. Here, a few labeled patterns are required
for semi-supervised learning. These labeled patterns can be collected in many ways. In the proposed method, for experimen-
tal purpose, an equal amount of labeled patterns, from both the classes (changed and unchanged), are picked up randomly
from the ground truth. For the labeled patterns, the target values, support values and the membership values are assigned to
either ½1;0� or ½0;1� depending on their class labels. Detailed description of the proposed change detection technique is
presented in subsequent sections.

2.1. Generation of input pattern

The difference image DI ¼ flmn;1 6 m 6 p;1 6 n 6 qg is produced by the Change vector analysis technique [1] from two
co-registered and radiometrically corrected c-spectral band images Y1 and Y2, each of size p� q, of the same geographical
area captured at different times T1 and T2. Here, gray value of the difference image DI at spatial position ðm;nÞ, denoted
as lmn, is calculated as,
lmn ¼ ðintÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXc

i¼1
limnðY1Þ � li

mnðY2Þ
� �2

r
; ð1Þ
where li
mnðY1Þ and li

mnðY2Þ are the gray values of the pixels at the spatial position ðm;nÞ in the ith band of the images Y1 and
Y2, respectively.

From the difference image DI, the input pattern for a particular pixel position is generated by considering the gray value of
the said pixel as well as those of its neighboring ones to exploit (spatial) contextual information from neighbors. In the pres-
ent methodology, 2nd order neighborhood system [31] is used. Here, each input pattern consists of two features: (i) gray va-
lue of its own and (ii) average of the gray values of its neighboring pixels including its own value.

The y-dimensional input pattern of the (m,n)th pixel position of DI is denoted by Xmn
��! ¼ ½xmn;1; xmn;2; . . . ; xmn;y�. Here, a map-

ping algorithm is used to normalize the feature values of the input pattern in [0, 1]. The ith feature value (i ¼ 1;2; . . . ; y) of
the y-dimensional input pattern, Xmn

��!
, is normalized as
xmn;i ¼
xmn;i � cmin

cmax � cmin
; ð2Þ
where, cmax and cmin, respectively, are the maximum and the minimum gray values of the DI.

2.2. Support value estimation using EBFNN

Elliptical basis function neural network [34] uses the full covariance matrix to improve the performance of conventional
radial basis function network with a few basis functions. The network consists of three layers: one input layer, one hidden
layer and one output layer. The center of each basis function is initialized by the mean value of the labeled patterns from the
corresponding class and the center are kept fixed for each training step. There are as many neurons in the hidden layer as the
number of basis functions and no weighted connection is present between the neurons in the input layer and the hidden
layer. In the present work, only two basis functions are used corresponding to both the changed and unchanged classes.
The network is trained by updating the weights using the Least Mean Square algorithm (LMS) [32] to minimize the error
between the target value (or soft class label) and the predicted output value of input patterns. Initially, the network is trained
by a few labeled patterns only.

After convergence of the training of the network, each of the unlabeled patterns is passed through the EBFNN (trained) to
predict the output values for both the classes. Let, lrðm;nÞ ¼ ½lr1ðm;nÞ;lr2ðm;nÞ� be the two degrees of support, estimated
by the EBFNN classifier, where lr1ðm;nÞ and lr2ðm;nÞ are the support values of the (m,n)th pattern in the unchanged and
changed classes, respectively. The output value of the ðm;nÞth unlabeled pattern for the ith class (here, i ¼ 1 or 2), yriðm;nÞ is
assigned to lriðm;nÞ. The unlabeled pattern is more likely to belong to the class for which its support value is higher.

2.3. Support value estimation using MLP

MLP [31,32] has one input layer, one output layer and one or more hidden layers. MLP is trained by updating the weight
using backpropagation algorithm [32] to minimize the error between the target value and the predicted output value of the
patterns. Let a be the number of layers in the network and the jth neuron in the rth layer (r P 1) receives total input of the
form vmr

j ðm;nÞ from ðr � 1Þth layer. Then, the jth neuron in the rth layer (r P 1) produces an output of the for

ymr
j ðm;nÞ ¼ 1

ð1þexpð�vmr
j
ðm;nÞÞ. Initially, the connection weight is updated by using the labeled patterns only.

After convergence, each of the unlabeled patterns is tested by the trained MLP to predict the output values for both the
changed and the unchanged classes. Let, lmðm;nÞ ¼ ½lm1ðm;nÞ;lm2ðm;nÞ� be the two degrees of support, estimated by the
network, where lm1ðm;nÞ and lm2ðm;nÞ are the support values of the ðm;nÞth pattern in the unchanged and changed clas-
ses, respectively. The output value of the ðm;nÞth unlabeled pattern for the ith class (here, i ¼ 1 or 2), ymða�1Þ

i ðm;nÞ is assigned
to lmiðm;nÞ.
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2.4. Support value estimation using fuzzy k-nn

Fuzzy k-nn classifier assigns membership values in both the classes for each of the unlabeled patterns. Here, these mem-
bership values are treated as the predicted support values. Let, lkðm;nÞ ¼ ½lk1ðm;nÞ;lk2ðm;nÞ� be the two degrees of sup-
port of the ðm;nÞth unlabeled pattern, where lk1ðm;nÞ and lk2ðm;nÞ are the membership values, which are estimated by the
classifier for the unchanged and changed classes, respectively. For each unlabeled pattern, its k nearest labeled patterns are
determined. To search for the k number of nearest neighbors, instead of using all the labeled patterns, we considered only
those which lie within a neighborhood (window) around that unlabeled pattern. This reduces time requirement for search-
ing. Let W be the set of k nearest labeled patterns of the ðm;nÞth unlabeled pattern. The membership value lkiðm;nÞ of the
ðm;nÞth unlabeled pattern in the ith class (here, i ¼ 1 or 2) is calculated as
lkiðm;nÞ ¼

P
Xef
�!

2W
lkiðe; f Þð1=kXmn

��!� Xef
�!k2=ðfm�1ÞÞ

P
Xef
�!

2W
ð1=kXmn

��!� Xef
�!k2=ðfm�1ÞÞ

; ð3Þ
where fm is a parameter, called fuzzifier, which determines the weighting factor of the distance to control the neighbor’s
contribution to the membership value.

2.5. Estimation of soft class label using ‘maximum’ combination rule

First, the support values (or, output values) for each of the unlabeled patterns are obtained with the base classifiers using
only a few labeled patterns (same labeled patterns for all the base classifiers). Here, the two degrees of support for a partic-
ular pattern ðm;nÞ using the three base classifiers are organized into a matrix, called decision profile (DPðm;nÞ) [45]. The ma-
trix DPðm;nÞ is represented as follows:
DPðm;nÞ ¼
d11ðm;nÞ d12ðm; nÞ
d21ðm;nÞ d22ðm; nÞ
d31ðm;nÞ d32ðm; nÞ

0
B@

1
CA ¼

lr1ðm;nÞ lr2ðm;nÞ
lm1ðm;nÞ lm2ðm;nÞ
lk1ðm;nÞ lk2ðm;nÞ

0
B@

1
CA: ð4Þ
Now, the soft class labels (or, target value) for each of the unlabeled patterns are calculated using ‘maximum’ combination
rule [46] on these support values. The soft class label is assigned to the unlabeled patterns because we do not want to com-
mit about the class label at this moment. The target value of the ðm;nÞth unlabeled pattern in the ith class (targetiðm;nÞ) is
calculated as follows:
targetiðm;nÞ ¼ maxfd1iðm; nÞ; d2iðm;nÞ;d3iðm;nÞg: ð5Þ
Here, the estimated target value in the ith class for the ðm;nÞth unlabeled pattern is normalized as
targetiðm;nÞ ¼ targetiðm;nÞ=

P2
i¼1targetiðm;nÞ to make the summed up target values in the two classes to 1.

2.6. Selection of unlabeled patterns for the next training step

After this, most confident unlabeled patterns are selected for the next training step. Here a method has been suggested to
obtain a set of most confident unlabeled patterns (denoted as, U). The ðm;nÞth unlabeled pattern is selected as the most con-
fident pattern for the ith class (here, i ¼ 1 or 2) and placed into the set U, if it satisfies all the following conditions:

(i) the computed support value in the ith class is always larger than those which are obtained for other classes for the
pattern in case of all the base classifiers;

(ii) the support value in the ith class is always greater than ai for the said pattern for all the base classifiers; and
(iii) the absolute difference between the estimated target values of the pattern in both the classes is greater than bi.

By conditions (i) and (ii), high agreement between all the base classifiers has been taken into consideration. Condition (iii)
is used to avoid selection of confusing unlabeled patterns.

To increase diversity of the base classifiers, three mutually exclusive sets (of the same size) for the unlabeled patterns
(denoted as, UR;UM and UK) for (iterative) training of each of the base classifiers are generated by randomly selecting the
most confident unlabeled patterns from the set of U.

2.7. Semi-automatic computation of the parameters ai and bi

After estimating soft class label values for unlabeled patterns, the most confident unlabeled patterns for the ith class are
collected using two important parameters, i.e. ai and bi. In the present work, a technique has been suggested for (semi)-auto-
matic estimation of these parameters. For computing both the parameters, at the onset, a set of unlabeled patterns are se-
lected for which the estimated soft class label value is maximum in ith class.
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Then, for calculating the value of ai, average, minimum and maximum (denoted by avgti;minti and maxti, respectively) of
the estimated soft class label in ith class for the selected unlabeled patterns are computed. Now, if the average value is nearer
to the minimum value then it implies that the estimated soft class label value for most of the unlabeled patterns in the ith
class are closer to the minimum value. In this case, if the alphai is assigned higher value than the average, then there is a high
chance of selection of a few number of most-confident unlabeled patterns. In this situation, the value of alphai is fixed at an
average value. On the other hand, to avoid too much selection, if the average value is nearer to maximum value, then alphai is
kept fixed at ðavgti þmaxtiÞ=2 to set a higher value than the average.

In case of obtaining the bi, the difference between the estimation soft class label value in both the classes is computed for
each of the selected unlabeled patterns in ith class. Now bi is fixed at average of the computed difference value for ith class.

2.8. Iterative learning of ensemble classifiers until convergence

After the selection of most confident unlabeled patterns, learning of EBFNN and MLP are then carried out again using the
labeled patterns along with the unlabeled patterns (from the UR and UM, respectively). For the next training step, the centers,
co-variance matrices and smoothness parameters of all the basis functions for EBFNN are also updated using the unlabeled
patterns (in the set UR) along with a few labeled patterns.

Now, the support values of all the unlabeled patterns in both the classes are re-estimated using EBENN, MLP and fuzzy k-
nn classifier.

In case of fuzzy k-nn classifier, the membership values in both the classes for all the unlabeled patterns are estimated
again considering the labeled patterns as well as the unlabeled patterns from the set UK. Here, the membership values
for the selected unlabeled patterns in both the classes are assigned using the estimated target values of the unlabeled pat-
terns in the previous training step. In the present investigation, it has been noticed that the membership values of the se-
lected unlabeled patterns participate to estimate the membership values of the other unlabeled patterns, as well as, at
the same time its own membership values are also estimated using the other selected unlabeled patterns along with the la-
beled patterns. Therefore, the membership values for the selected unlabeled patterns are updated after calculating the mem-
bership values for all the unlabeled patterns.

At the end of each training step, itr, the sum of square error (nitr) between the estimated target values at itrth and
ðitr � 1Þth training steps is calculated as,
Table 2
Algorith

Step
Step

Step

Step

Step

Step

Step
Step
nitr ¼
Xp;q

m¼1;n¼1

X2

i¼1

tfinalitr
i ðm;nÞ � tfinalðitr�1Þ

i ðm; nÞ
� �2

; ð6Þ
where the estimated target value of the ðm;nÞth pattern in ith class at the itrth training step, targetiðm;nÞ is stored in
tfinalitr

i ðm; nÞ.
Iterative learning of the ensemble classifier, re-estimation of the target values of the unlabeled patterns, updating the va-

lue of ai and bi for the ith class, selection of the unlabeled patterns are continued until the difference between nitr and nðitrþ1Þ
of two consecutive training steps becomes less than � (where � is a small positive quantity) or the number of training steps
exceeds a prespecified value. After convergence, the hard class labels are assigned to the unlabeled patterns depending on
their target values. The algorithmic representation of the proposed methodology is given in Table 2.

3. Description of data sets

To establish the effectiveness of the proposed methodology, experiments are carried out on two multi-temporal remotely
sensed images corresponding to the geographical areas of Mexico and Sardinia Island of Italy.
mic representation of the proposed work.

1: Pick up a few labeled patterns from the reference map
2: Estimate the support values (or, output values) in both the classes for each of the

unlabeled patterns by the three base classifiers using a few labeled patterns only
3: Estimate soft class label (or, target value) for the unlabeled pattern by applying

‘maximum’ combination rule on the support values in both the classes, obtained by
the three base classifiers

4: Compute the parameters ai and bi used for collecting the most confident
unlabeled patterns in ith class

5: For the next training step, select the most confident unlabeled patterns using
ensemble agreement of all the base classifiers

6: Estimate the support values in both the classes for the unlabeled patterns by the
three base classifiers using the labeled patterns as well as the selected unlabeled
patterns

7: Repeat Steps 3, 4, 5 and 6 until convergence. At convergence, goto Step 8
8: Assign a hard class label to each of the unlabeled patterns



Fig. 1. Images of Mexico area. (a) Band 4 image acquired in April 2000, (b) band 4 image acquired in May 2002, (c) corresponding difference image
generated by CVA technique, and (d) a reference map of the changed area.

Fig. 2. Images of Sardinia Island, Italy. (a) Band 4 image acquired in September 1995, (b) band 4 image acquired in July 1996, (c) difference image generated
by CVA technique using bands 1, 2, 4, and 5, and (d) a reference map of the changed area.
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3.1. Data set related to Mexico area

This data set consists of two multi-spectral images of the Landsat-7 satellite captured by the Landsat Enhanced Thematic
Mapper Plus (ETM+) sensor over an area of Mexico acquired on 18th April, 2000 and 20th May, 2002. From the entire



Table 3
Results on Mexico data set.

Techniques used Training patterns (%) Avg. MA Avg. FA Avg. OE Avg. micro F1 Avg. macro F1 Avg. Kappa

Supervised 0.1 1532.8823 2393.9608 3926.8431 0.9581 0.9585 0.9163
EBFNN 0.2 1388.2549 2328.1961 3716.4510 0.9604 0.9607 0.9209

0.3 1325.2941 2085.9216 3411.2157 0.9636 0.9638 0.9272

Supervised 0.1 1696.3725 1328.0588 3024.4314 0.9670 0.9671 0.9340
MLP 0.2 1415.2941 1420.1372 2835.4314 0.9693 0.9694 0.9386

0.3 1333.1176 1430.0588 2763.1765 0.9701 0.9702 0.9403

Supervised 0.1 2874.6667 831.5294 3706.1961 0.9583 0.9590 0.9166
fuzzy 0.2 2224.6470 960.5882 3185.2353 0.9647 0.9649 0.9294
k-nn 0.3 2292.9216 895.3921 3188.3137 0.9646 0.9649 0.9300

Semi- 0.1 1561.8627 1136.5294 2698.3922 0.9705 0.9706 0.9411
supervised 0.2 1385.8823 1178.2157 2564.0980 0.9721 0.9722 0.9443
MLP 0.3 1296.8823 1200.8627 2497.7451 0.9729 0.9729 0.9458

Unsupervised MSOFM – 1366.7619 1623.6190 2990.3810 0.9679 0.9678 0.9356

Proposed semi- 0.1 1430.5294 1186.4706 2617.0000 0.97153 0.9716 0.9431
supervised 0.2 1212.8431 1230.8039 2443.6471 0.9735 0.9736 0.9471
MCS 0.3 1183.8431 1177.9412 2361.7843 0.9744 0.9744 0.9489

Table 4
Results on Sardinia data set.

Techniques used Training patterns (%) Avg. MA Avg. FA Avg. OE Avg. micro F1 Avg. macro F1 Avg. Kappa

Supervised 0.1 1659.0588 488.4314 2147.4902 0.9157 0.9193 0.8315
EBFNN 0.2 1201.5294 581.4314 1782.9608 0.9338 0.9348 0.8676

0.3 1088.4706 628.0784 1716.5490 0.9370 0.9377 0.8741

Supervised 0.1 1165.8431 576.0000 1741.8431 0.9354 0.9365 0.8709
MLP 0.2 1072.2353 649.1765 1721.4118 0.9369 0.9377 0.8739

0.3 1051.1961 651.6863 1702.8823 0.9378 0.9384 0.8756

Supervised 0.1 2256.8431 248.3333 2505.1765 0.8937 0.9025 0.7881
fuzzy 0.2 1572.6470 326.8431 1899.4902 0.9259 0.9286 0.8519
k-nn 0.3 1153.2353 358.7843 1512.0196 0.9431 0.9441 0.8861

Semi- 0.1 1290.7843 422.7451 1713.5294 0.9351 0.9367 0.8703
supervised 0.2 1268.3137 399.2549 1667.5686 0.9370 0.9384 0.8741
MLP 0.3 1255.5098 391.3333 1646.8431 0.9379 0.9391 0.8758

Unsupervised MSOFM – 1070.3810 578.4762 1648.8571 0.9398 0.9395 0.8790

Proposed semi- 0.1 925.5490 217.2157 1142.7647 0.9573 0.9582 0.9146
supervised 0.2 864.6471 242.1961 1106.8431 0.9589 0.9596 0.9178
MCS 0.3 837.5098 246.1569 1083.6667 0.9599 0.9605 0.9198
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available Landsat scene, a section of 512� 512 pixels are selected as test site. A fire destroyed a large portion of the vege-
tation in the considered region between two acquisition dates. Fig. 1(a) and (b), respectively show the band 4 images of April,
2000 and May, 2002. The difference image (Fig. 1(c)) created by spectral band 4 using CVA technique is only used for further
analysis. To evaluate the performance of the algorithms, a reference map (Fig. 1(d)) is used. The reference map contains
25,599 changed and 236,545 unchanged pixels.

3.2. Data set related to Sardinia Island, Italy

Two multi-spectral images are acquired in September, 1995 and July, 1996 by the Landsat Thematic Mapper (TM) sensor
of the Landsat-5 satellite. The test site of 412� 300 pixels of a scene includes the lake Mulargia on the Sardinia Island, Italy.
The water level of the lake increased between two acquisition dates (lower central part of the image reflects the same).
Fig. 2(a) and (b), respectively, show the 1995 and 1996 images of band 4. CVA technique has been applied on spectral bands
1, 2, 4, and 5 of these two images to obtain the difference image (Fig. 2(c)). 7480 changed and 116,120 unchanged pixels are
present in the reference map (Fig. 2(d)).

4. Results and analysis

As mentioned in Section 1, to evaluate the effectiveness of the proposed method, experiments are conducted on two mul-
ti-temporal remotely sensed images. Performance of the proposed technique is compared with those of some supervised



Fig. 3. Bar charts for Mexico data set. (a) with 0:1% training patterns, (b) with 0:2% training patterns, and (c) with 0:3% training patterns.
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methods based on MLP [32], EBFNN [32–34] and fuzzy k-nn [35], an unsupervised method based on MSOFM [11] and a
semi-supervised method based on MLP [31]. For experimentation, three different percentages of training patterns (0.1%,
0.2%, and 0.3%) are considered and 51 simulations are conducted in each case. Due to computing resource limitation we have
conducted 51 simulations.

Here, ensemble of three models is used instead of considering two of them. There is a clear intuitive reason behind this,
which also corroborates our experimental findings during the present investigation. If we consider two models, it may so



Fig. 4. Bar charts for Sardinia data set. (a) with 0:1% training patterns, (b) with 0:2% training patterns, and (c) with 0:3% training patterns.
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happen that they make contradictory decisions about a pixel and it becomes very hard to make any final decision using the
combination rules. For this reason, most of the ensemble architectures consider odd number of models. In ensemble archi-
tecture, if the number of (diverse) classifiers is increased, then the final decision becomes more robust and errorfree, but it
will also increase the complexity of the methodology. Under the implementation point of view, it may be better to fix the
number within a limit. Under this circumstance, in the present investigation, we considered three models, MLP, EBFNN
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and fuzzy k-nn. Here, the base classifiers, which provide graded response for each pattern in both the classes (changed and
unchanged) are preferred. It is also noticed that if we consider any two of them then the performance (in terms of all the
measuring indices) of the proposed methodology is noticeably degraded.

To find out the k nearest neighbors for each unlabeled pattern, it has been experimentally observed that the required win-
dow size should decrease with increase in the percentage of labeled patterns. For Mexico data set, window size was taken as
251� 251;201� 201 and 151� 151 using 0.1%, 0.2% and 0.3% labeled patterns, respectively. For Sardinia data set, the same
was taken 91� 91;71� 71 and 61� 61 using 0:1%;0:2% and 0:3% labeled patterns, respectively. The value of k was fixed to
9 and 5 for Mexico and Sardinia data set, respectively. The fm was fixed to 2 for all the data sets. In the present work, since
local window based fuzzy k-nn approach is considered, a situation might occur when sufficient (here, k) number of labeled
patterns are not present within the window around an unlabeled pattern. In this scenario, for the unlabeled pattern, the
membership values in both the classes are assigned to 0. In the present investigation, experiments are carried out with dif-
ferent combiners, i.e. ‘average’, ‘product’, ‘minimum’ and ‘maximum’. Among the four combiners, the ‘maximum’ combina-
tion rule is selected as the best one for the proposed methodology and it is used for typical illustration.

To assess the effectiveness of the proposed methodology, various performance measuring indices are considered in our
investigation and these are as follows: number of missed alarms (MA), number of false alarms (FA), number of overall error
(OE), micro-averaged F1 measure (MicroF1) [47], macro averaged F1 measure (MacroF1) [47] and Kappa measure (Kappa)
[48]. The average values (over 51 simulations) of all the performance measuring indices are considered for comparative anal-
ysis. Results for Mexico and Sardinia data sets are put in Tables 3 and 4, respectively. The bar charts of average overall error
Fig. 5. Change detection maps obtained for Mexico data set by: (a) supervised EBFNN, (b) supervised MLP, (c) supervised fuzzy k-nn, (d) semi-supervised
MLP, (e) the proposed semi-supervised MCS (with 0:1% training pattern), (f) unsupervised MSOFM, and (g) the reference map.
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for Mexico and Sardinia data sets with different percentage of training patterns are also depicted in Figs. 3 and 4, respec-
tively. In the charts, abbreviated names of the techniques are depicted along x-axis and the corresponding values of average
overall error are depicted along y-axis. Here the average overall errors are obtained using EBFNN, MLP, fuzzy k-nn classifier
are put in the bar charts. Ensemble of these three base classifiers (MCS) applying maximum combination rule with a few
labeled patterns are displayed in the charts. The average overall error for each of the base classifiers and the proposed
semi-supervised MCS, after the convergence of iterative (semi-supervised) learning are also plotted in the bar charts.

From Table 3, it has been noticed for Mexico data set that the proposed method (with three different percentage of train-
ing patterns used) outperforms the corresponding methods using EBFNN [32–34] and MLP [32] for all the six measuring indi-
ces. It has also been clearly observed from the table that the number of missed alarms which are obtained using EBFNN and
MLP with 0.2% and 0.3% training patterns, are similar with those obtained using the semi-supervised MCS with 0.1% and 0.2%
training patterns. It has also been observed that the results obtained using the proposed technique are significantly better
than those found out using fuzzy k-nn classifier [35] and the semi-supervised method based on MLP [31] in almost all
the cases except the case of false alarms. In comparison to semi-supervised MLP, the betterment is more prominent with
increase in percentage of training patterns. Among all six performance measuring indices with three different percentages
of training patterns used, it has been noticed that the results obtained using the proposed technique are better than those
obtained using the unsupervised method based MSOFM [11] in most of the cases except the case of missed alarms with 0.1%
training patterns.

By analyzing the results depicted in Table 4, it has been seen for Sardinia data set that the proposed methodology (in
terms of all the measuring indices) outperforms all the five approaches used for comparison in the present investigation.
It has been observed that the number of overall error (i.e. 1083) obtained using 0.3% training patterns (the amount is very
less) is a great achievement from the viewpoint of change detection.

From Figs. 3 and 4, it has been observed for Mexico and Sardinia data sets that the proposed method has an edge over the
conventional ensemble classifier. For the Mexico data set, it has been noticed that the performance of all the individual base
classifiers are improved with the semi-supervised leaning; and the performance of semi-supervised ensemble classifier is
significantly better than those of the individual base classifiers after convergence. But this scenario is not true for all the data
sets. It has been observed in Fig. 4 that the performance of the proposed semi-supervised ensemble classifier for Sardinia
Fig. 6. Change detection maps obtained for Sardinia data set by: (a) supervised EBFNN, (b) supervised MLP, (c) supervised fuzzy k-nn, (d) semi-supervised
MLP, (e) the proposed semi-supervised MCS (with 0:1% training pattern), (f) unsupervised MSOFM, and (g) the reference map.
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data set is significantly better than those of the supervised methods and the ensemble classifier with a few labeled patterns.
After the convergence of iterative (semi-supervised) learning, it has been noticed that the performance of one (i.e., fuzzy k-
nn) of the base classifiers is improved more than that of the corresponding MCS. Therefore, the improvement in the perfor-
mance of the individual base classifiers after convergence of semi-supervised learning using the selected unlabeled patterns
cannot be predicted beforehand.

For visual illustration, the change detection maps are displayed in figures, generated by considering majority voting on
the change detection maps, obtained over 51 different simulations, using EBFNN, MLP, fuzzy k-nn, semi-supervised MLP,
unsupervised MSOFM, and the proposed semi-supervised MCS. Here, majority voting principle assigns a pattern to a partic-
ular class if it was assigned to the said class in maximum number of simulations. The change detection maps obtained using
these six approaches for Mexico and Sardinia data sets are shown, correspondingly, in Figs. 5 and 6. From Fig. 5, it has been
observed that the changed region present in upper left corner of the reference map (in Fig. 5(g)) is wrongly identified as the
unchanged one (i.e. missed alarms) in the map obtained using fuzzy k-nn technique (in Fig. 5(c)); whereas the region is cor-
rectly identified in the map obtained using the proposed method (in Fig. 5(e)). It has been also noticed that small changed
regions are scattered all over the maps (in Fig. 5(a) and (b)) obtained using EBFNN and MLP, which are basically wrongly
identified ones (see the reference map in Fig. 5(g)). These scattered and wrongly identified changed regions (i.e. false alarms)
are comparatively less in the change detection maps obtained using the proposed method (in Fig. 5(e)). It has been also no-
ticed for Sardinia data set that the scattered and wrongly identified changed regions are significantly less (i.e. false alarms) in
the map (in Fig. 6(e)) obtained using the proposed method than those obtained using the other five approaches (in Fig. 6(a)–
(d) and (f)). From Fig. 6, it has also been found that the edge of the changed region present in lower right corner in the ref-
erence map (in Fig. 6(g)) is totally absent (i.e. missed alarms) in the maps obtained using the fuzzy k-nn technique (in
Fig. 6(c)); whereas this changed region is partially identified in the map obtained using the proposed approach (in
Fig. 6(e)). From these observations, it has been concluded that the change detection maps obtained using the proposed
semi-supervised MCS more accurately resemble the reference map.
5. Conclusion

In the present work, a novel technique for change detection is proposed using semi-supervised multiple classifier system
(MCS). Here, instead of using a single weak learner (classifier under inadequacy of labeled patterns), a set of classifiers is used
and they are trained in semi-supervised learning framework by exploiting the unlabeled patterns along with a few labeled
patterns. For collecting the unlabeled patterns, ensemble agreement between all the participating base classifiers is utilized.
In the present investigation, multilayer perceptron, elliptical basis function neural network and fuzzy k-nearest neighbor
techniques are used as the base classifiers.

Experiments are carried out on multi-temporal and multi-spectral data sets to confirm the effectiveness of the proposed
technique. From the results, it has been found that the proposed semi-supervised ensemble approach is better suited for
change detection than the other state-of-the-art techniques when a small amount of labeled patterns is available. In future
we will perform a detailed study about the dependency of the performance of the proposed approach on the selection of the
parameters and the type of scene used for application.

Acknowledgments

The authors like to thank the reviewers for their thorough and constructive comments which helped to enhance the qual-
ity of the article. The authors are also grateful to the Department of Science and Technology (DST), Government of India and
University of Trento, Italy, the sponsors of the ITPAR program and Prof. L. Bruzzone for providing the data. Moumita Roy is
grateful to Council of Scientific & Industrial Research (CSIR), India for providing her a Senior Research Fellowship [No. 09/
096(0684)2k11-EMR-I].

References

[1] A. Singh, Digital change detection techniques using remotely-sensed data, Int. J. Remote Sens. 10 (6) (1989) 989–1003.
[2] M.J. Canty, Image Analysis, Classification and Change Detection in Remote Sensing: with Algorithms for ENVI/IDL, CRC Press, Taylor & Francis Group,

Boca Raton, 2007.
[3] Q. Zhang, J. Wang, X. Peng, P. Gong, P. Shi, Urban built-up land change detection with road density and spectral information from multi-temporal

Landsat TM data, Int. J. Remote Sens. 23 (15) (2002) 3057–3078.
[4] K.R. Merril, L. Jiajun, A comparison of four algorithms for change detection in an urban environment, Remote Sens. Environ. 63 (2) (1998) 95–100.
[5] L. Bruzzone, D.F. Prieto, An adaptive parcel-based technique for unsupervised change detection, Int. J. Remote Sens. 21 (4) (2000) 817–822.
[6] C.M. Bishop, Pattern Recognition and Machine Learning, Springer, New York, USA, 2006.
[7] F. Yuan, K.E. Sawaya, B.C. Loeffelholz, M.E. Bauer, Land cover classification and change analysis of Twin cities (Minnesota) Metropolitan Area by

multitemporal Landsat remote sensing, Remote Sens. Environ. 98 (2005) 317–328.
[8] G.M. Foody, Monitoring the magnitude of land-cover change around the southern limits of the Sahara, Photogramm. Eng. Remote Sens. 67 (2001) 841–

847.
[9] G. Camps-Valls, L. Gómez-Chova, J. Muñoz-Mari, J.L. Rojo-Álvarez, M. Martinez-Ramón, Kernel-based framework for multitemporal and multisource

remote sensing data classification and change detection, IEEE Trans. Geosci. Remote Sens. 46 (6) (2008) 1822–-1835.
[10] S. Ghosh, L. Bruzzone, S. Patra, F. Bovolo, A. Ghosh, A context-sensitive technique for unsupervised change detection based on Hopfield-type neural

networks, IEEE Trans. Geosci. Remote Sens. 45 (3) (2007) 778–789.

http://refhub.elsevier.com/S0020-0255(14)00073-5/h0030
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0035
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0035
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0035
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0040
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0040
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0045
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0050
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0055
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0055
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0060
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0060
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0065
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0065
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0070
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0070
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0075
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0075


M. Roy et al. / Information Sciences 269 (2014) 35–47 47
[11] S. Ghosh, S. Patra, A. Ghosh, An unsupervised context-sensitive change detection technique based on modified self-organizing feature map neural
network, Int. J. Approx. Reason. 50 (1) (2009) 37–50.

[12] F. Melgani, G. Moser, S.B. Serpico, Unsupervised change detection methods for remote sensing images, Opt. Eng. 41 (12) (2002) 3288–3297.
[13] D. Liu, K. Song, J.R.G. Townshend, P. Gong, Using local transition probability models in Markov random fields for forest change detection, Remote Sens.

Environ. 112 (5) (2008) 2222–2231.
[14] T. Kasetkasem, P.K. Varshney, An image change detection algorithm based on Markov random field models, IEEE Trans. Geosci. Remote Sens. 40 (8)

(2002) 1815–-1823.
[15] X. Liu, R.G. Lathrop Jr., Urban change detection based on an artificial neural network, Int. J. Remote Sens. 23 (12) (2002) 2513–2518.
[16] A. Ghosh, N.S. Mishra, S. Ghosh, Fuzzy clustering algorithms for unsupervised change detection in remote sensing images, Inf. Sci. 181 (4) (2011) 699–-

715.
[17] G. Pajares, A Hopfield neural network for image change detection, IEEE Trans. Neural Networks 17 (5) (2006) 1250–1264.
[18] J.R. Jensen, Introductory Digital Image Processing: A Remote Sensing Perspective, Prentice Hall, New Jersey, 2005.
[19] N.S. Mishra, S. Ghosh, A. Ghosh, Fuzzy clustering algorithms incorporating local information for change detection in remotely sensed images, Appl. Soft

Comput. 12 (2012) 2683–-2692.
[20] S. Ghosh, M. Roy, Modified self-Organizing feature map neural network with semi-supervision for change detection in remotely sensed images, in: S.O.

Kuznetsov, D.P. Mandal, M.K. Kundu, S.K. Pal (Eds.), In the Proceedings of Pattern Recognition and Machine Intelligence – 4th International Conference,
P R eM I 2011, Moscow, Russia, June 27–July 1, 2011, Lecture Notes in Computer Science, vol. 6744, Springer, Heidelberg, 2011, pp. 98–103.

[21] X. Zhu, Semi-supervised Learning Literature Survey, Computer Sciences TR1530, University of Wisconsin, Madison, 2008.
[22] O. Chapelle, B. Schölkopf, A. Zien, Semi-supervised Learning, MIT Press, Cambridge, 2006.
[23] S. Basu, M. Bilenko, R.J. Mooney, Comparing and unifying search-based and similarity-based approaches to semi-supervised clustering, in: Proceedings

of the ICML-2003 Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining Systems, Washington, DC, USA,
2003, pp. 42–49.

[24] K. Wagstaff, C. Cardie, S. Rogers, S. Schroedl, Constrained K-means clustering with background knowledge, in: C.E. Brodley, A.P. Danyluk (Eds.),
Proceedings 18th International Conference on Machine Learning (ICML-2001), Williams College/Morgan Kaufmann Publishers Inc., Williamstown, MA,
USA/San Fransisco, USA, 2001, pp. 577–584.

[25] D.-Y. Yeung, H. Chang, A kernel approach for semisupervised metric learning, IEEE Trans. Neural Networks 18 (1) (2007) 141–149.
[26] C. Hou, F. Nie, F. Wang, C. Zhang, Y. Wu, Semisupervised learning using negative labels, IEEE Trans. Neural Networks 22 (3) (2011) 420–432.
[27] F. Roli, Semi-supervised multiple classifier systems: background and research directions, in: N.C. Oza, R. Polikar, J. Kittler, F. Roli (Eds.), Proceedings

Multiple Classifier Systems, 6th International Workshop, MCS 2005, Lecture Notes in Computer Science, vol. 3541, Springer, Seaside, CA, USA, 2005, pp.
1–11.

[28] Z.-H. Zhou, When semi-supervised learning meets ensemble learning, in: J.A. Benediktsson, J. Kittler, F. Roli (Eds.), Proceedings Multiple Classifier
Systems, 8th International Workshop, MCS 2009, Lecture Notes in Computer Science, vol. 5519, Springer, Reykjavik, Iceland, 2009, pp. 529–538.

[29] A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: P.L. Bartlett, Y. Mansour (Eds.), Proceedings of the 11th Annual
Conference on Computational Learning Theory, COLT 1998, Springer, Madison, Wisconsin, USA, 1998, pp. 92–-100.

[30] Z.-H. Zhou, M. Li, Tri-training: exploiting unlabeled data using three classifiers, IEEE Trans. Knowl. Data Eng. 17 (11) (2005) 1529–1541.
[31] S. Patra, S. Ghosh, A. Ghosh, Change detection of remote sensing images with semi-supervised multilayer perceptron, Fundam. Inform. 84 (2008) 429–

442.
[32] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall of India, New Delhi, 2007.
[33] R. Liu, Y. Shi, A RBF classifier with supervised center selection and weighted norm, in: Workshops Proceedings of the 6th IEEE International Conference

on Data Mining (ICDM 2006), IEEE Computer Society, Hong Kong, China, 2006, pp. 868–872.
[34] M.-W. Mak, S.-Y. Kung, Estimation of elliptical basis function parameters by the EM Algorithm with application to speaker verification, IEEE Trans.

Neural Networks 11 (4) (2000) 961–969.
[35] J.M. Keller, M.R. Gray, J.A. Givens, A fuzzy K-nearest neighbor algorithm, IEEE Trans. Syst. Man Cybern. SMC-15 (4) (1985) 580–585.
[36] I. Partalas, G. Tsoumakas, E.V. Hatzikos, I. Vlahavas, Greedy regression ensemble selection: theory and an application to water quality prediction, Inf.

Sci. 178 (20) (2008) 3867–3879.
[37] O. Mendoza, P. Melin, G. Licea, A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno

integral, Inf. Sci. 179 (13) (2009) 2078–2101.
[38] R. Xia, C. Zong, S. Li, Ensemble of feature sets and classification algorithms for sentiment classification, Inf. Sci. 181 (6) (2011) 1138–1152.
[39] P. Melin, J. Soto, O. Castillo, J. Soria, A new approach for time series prediction using ensembles of ANFIS models, Expert Syst. Appl. 39 (3) (2012) 3494–

3506.
[40] O. Castillo, P. Melin, E. Ramírez, J. Soria, Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural

networks combined with a fuzzy system, Expert Syst. Appl. 39 (3) (2012) 2947–2955.
[41] J. Li, P.R. Marpu, A. Plaza, J.M.B. Dias, J.A. Benediktsson, A new multiple classifier system for semi-supervised analysis of hyperspectral images., in: The

Proceedings of International Conference on Pattern Recognition Applications and Methods (ICPRAM 2012), SciTePress, 2012, pp. 406–411.
[42] B. Waske, J.A. Benediktsson, Semi-supervised classifier ensembles for classifying remote sensing data, in: IEEE International Geoscience and Remote

Sensing Symposium, 2008 (IGARSS 2008), vol. 2, 2008, pp. II–105–II–108.
[43] K. Chen, Z. Li, J. Cheng, Z. Zhou, H. Lu, A variational co-training framework for remote sensing image segmentation, in: IEEE International Geoscience

and Remote Sensing Symposium, 2009 (IGARSS 2009), vol. 4, 2009, pp. IV–113–IV–116.
[44] M. Li, Z.-H. Zhou, Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples, IEEE Trans. Syst. Man Cybern. –

Part A: Syst. Humans 37 (6) (2007) 1088–-1098.
[45] L.I. Kuncheva, J.C. Bezdek, R.P. Duin, Decision templates for multiple classifier fusion: an experimental comparison, Pattern Recognit. 34 (2) (2001)

299–314.
[46] L.I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, John Wiley & Sons Inc., Hoboken, New Jersey, 2004.
[47] A. Halder, A. Ghosh, S. Ghosh, Aggregation pheromone density based pattern classification, Fundam. Inform. 92 (4) (2009) 345–362.
[48] R.G. Congalton, K. Green, Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed., CRC Press, Taylor & Francis Group, Boca

Raton, 2009.

http://refhub.elsevier.com/S0020-0255(14)00073-5/h0080
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0080
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0085
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0090
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0090
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0095
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0095
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0100
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0105
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0105
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0110
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0115
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0115
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0120
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0120
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0125
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0125
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0125
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0125
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0125
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0125
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0125
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0125
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0130
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0130
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0135
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0135
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0135
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0135
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0135
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0135
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0140
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0145
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0150
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0150
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0150
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0150
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0150
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0150
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0150
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0150
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0155
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0155
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0155
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0155
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0155
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0155
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0160
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0160
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0160
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0160
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0160
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0165
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0170
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0170
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0175
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0175
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0180
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0180
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0180
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0185
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0185
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0190
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0195
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0195
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0200
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0200
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0205
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0210
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0210
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0215
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0215
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0220
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0220
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0225
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0225
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0230
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0230
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0235
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0240
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0240
http://refhub.elsevier.com/S0020-0255(14)00073-5/h0240

	A novel approach for change detection of remotely sensed  images using semi-supervised multiple classifier system
	1 Introduction
	2 The proposed algorithm
	2.1 Generation of input pattern
	2.2 Support value estimation using EBFNN
	2.3 Support value estimation using MLP
	2.4 Support value estimation using fuzzy k-nn
	2.5 Estimation of soft class label using ‘maximum’ combination rule
	2.6 Selection of unlabeled patterns for the next training step
	2.7 Semi-automatic computation of the parameters ? and ? 
	2.8 Iterative learning of ensemble classifiers until convergence

	3 Description of data sets
	3.1 Data set related to Mexico area
	3.2 Data set related to Sardinia Island, Italy

	4 Results and analysis
	5 Conclusion
	Acknowledgments
	References


