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Motivation
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Introduction to Al and ML




Introduction to Al and ML

= Recommendation engines
= Gaming

" |mage & speech recognition s
‘WhaT WE mw‘ g

= Anomaly detection SOFAR

Our Favorite Time Our Burning "Stranger
Travelers Are Back Things" Questions 'Mulan’
'Bill & Ted Face the Music' S 3 Spoilers Ahead! Teaser Trailer

»= Natural language processing .

= Data mining




Introduction to Al and ML

m Non- Transactional Activities

- Challenges - View balance « Add new user

- Device - View history « Change limits

- Cookie « Updated address - Set up batch

- IP Address - Update email - Set up template
- Time of day - Update password - Add payees

- Network

Transactio

« ACH

« Wire

- Bill Pay

« Loan Draw




Introduction to Al and ML

NEW YORK NEWS

Avticles fov you

From towardsdatascience.com



Introduction to Al and ML

DataRobot PLATFORM SOLUTIONS SUCCESS RESOURCES PARTNERS WE'RE HIRING [£TE) CONTACT US

Automated Machine Learning: The Optimize Rlayer Perfoanarice

Competitive Edge You Need Predict — and Prevent — Injuries
Professional sports is a cutthroat industry, on and off the Project Prospect Improvement

playing field. The smallest of competitive advantages can
< Consolidate Valuable Data

Increase Profit Potential

Improve Operational Efficiency

From www.analyticsindiamag.com/data-mining-strategy-development-football/



Introduction to Al and ML

Mathematics
(algorithms)

Computer science
implementation, heuristics)
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Modern challenges

in Bioengineering




Modern Challenges

Effusion

Fibrosis Consolidation
Atelectasns Pneumothorax

M«

From ai.google/healthcare/




Modern Challenges

free drug free target bound drug-target
ligand protein co-complex
Chemical Space Protein Space

20244 human proteins

Ao ,
~6,200 3D structures

From C4X Discovery



Modern Challenges

= How to annotate:

= protein structure
= protein function

= protein interactions

= How to increase:

= enzymatic activity

= stability & solubility

0.2 ns

= substrate specificity

= enantioselectivity



Modern Challenges

March 2000 October 2015 July 2017 March 2019
Expert panel proposes cohort Imaging data Genotyping  Exome data on 50,000 Engine of productivity
study of 500,000 adults. available for 5000. data on to be released. ] ) ,
April 2002 March 2012 May 2015 500.000 2020 Published papers based on the UK Biobank's bounty of
Wellcome Trust and U.K. UK Biobank Genotyping dataon  released. All exome health and genetics data are p”,mg up fast, in part
L because the data are freely available.
government announce initial resource 150,000 released. data released.

funding of £45 million. launches. ‘
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UK Biobank Principal Investigator Rory Collins stands amid stored biospecimens from the project's half-million
participants. NIGEL HILIER

Huge trove of British biodata is unlocking secrets of
depression, sexual orientation, and more

By Jocelyn Kaiser, Ann Gibbons | Jan. 3, 2019, 1:20 PM

From sciencemag.org




Modern Challenges

1. A large number of relevant features;

= From bio-physico-chemical to textual;

= Heterogeneous data (e.g. clinical, imaging, and genomic data);\v

2. Complex tasks and large parameter space;

= Asingle 300-amino-acid-long protein will have 300-19=5700

single-point variants!

3. Large datasets available and new data are collected.

Ideal ML setup = complex tasks + relevant features + abundant data
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Basics of ML: features

= Feature vector: x = (x1,X>, ..., X;,)

= All features must be converted to numbers:

ves =1, n0o=0
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Basics of ML: types

= Unsupervised learning
= only features are available;

= goal: cluster the data or reduce their dimensionality;

= Supervised learning
= features and labels are available;

= goal: learn to predict the label based on the features;

= Reinforcement learning, feature learning, anomaly

detection, etc...



Basics of ML: unsupervised learning

Hierarchical Clustering Dendrogram
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From en.wikipedia.org/wiki/K-means_clustering



Basics of ML: supervised learning

Feature 1

positive
A negative

Feature 2




Basics of ML: supervised learning

= We want ML models to be generalizable = good at predicting labels for
previously unseen data;

= |tis essential to split the data into training set and test sets and use the
latter for final evaluation only!

= To fine-tune an algorithm, K-fold cross validation is implemented:

1>

Train - Test Validation
Split Split

) -

-

5-Fold
Cross Validation

Train

Data

>4

Test



Basics of ML: supervised learning

= Let (x(V, V) be our data set, where x are feature values,

and y are labels;
= Any ML predictor is fundamentally a function f(x):
f(feature values) = label

= Usually, a generic group of functions f(x, 8) is chosen,

where [ is a set of parameters;

* Then we “train” the ML predictor: pick such £* that

f(x®, B*) is as close to yV) as possible.



Basics of ML: supervised learning

f(x) =m-x +b

Error = 370.77 15 ? BREE L. = -3-001_ b = -8.00 ? ‘ :

-2.0 =13 -1.0 =0.5 0.0 0.5 1.0 15 2.0




Recent applications




Recent applications: decision tree

Gene Expression Shared Shared Genomic
Pair Interact? correlation localization? function? distance
A-B Yes 0.77 Yes No 1 kb
A-C Yes 0.91 Yes Yes 10 kb
C-D No 0.1 No No 1 Mb

Expression
correlation > 0.9?

N -~ \Y
0 es
< a
Shared cellular Shared
localization? functlon’?
7
No \Yes Yes

NO
¥
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distance < 5 kb A-C
C-D 7\
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Figure 1 A hypothetical example of how a decision tree might predict protein-protein interactions.

Kingsford, Carl, and Steven L. Salzberg. "What are decision trees?." Nature biotechnology 26.9 (2008): 1011.
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= QSAR modeling for ligand binding activity;

= Structure generation; Reaction type

Target molecule — Reactants

IO OH
F Oxidation _ '
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= Synthetic pathway generation;

c\c=c(/c)C
(=0)0CCA=
CC=CC=CA
« =« 1 Figure 2. Retrosynthetic reaction prediction task and an example of a
SMILES 2D Drawing “Grid” Image Deep Neural Network Prediction  possible retrosynthetic disconnection for a target molecule.

Figure 2: Illustration of the Chemception framework. After a SMILES to structure conversion,

the 2D mmages are mapped onto an 80 x 80 image that serves as the input image data for training |
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a deep neural network to predict toxicity, activity, and solvation properties.
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Goh et al. 2017 Chemception: a deep neural network with minimal chemistry knowledge matches the performance of expert-developed QSAR/QSPR models

Segler et al. 2018 Planning chemical syntheses with deep neural networks and symbolic Al. Nature
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https://deepmind.com/blog/article/alphafold

https://dzone.com/articles/a-summary-of-deepminds-protein-folding-upset-at-ca



Recent applications: MuStARD for genome annogaticn
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© 2012 Pearson Education, Inc.

http://www.mun.ca/biology/desmid/brian/BIOL2060/BIOL2060-21/CB21.html

Georgakilas, GK et al. "MuStARD: a Deep Learning method for intra-and inter-species scanning identification of small RNA molecules." bioRxiv (2019)



Eraslan G

modelling techniques for genomics."

et al.

(especially pages 2-6)
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2019 "Deep learning: new computational

Nature Reviews Genetics.
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Number of parameter updates

rDeep learning: hew computational
modelling techniques for genomics

Gékcen Eraslan( -5, Ziga Avsec®s, Julien Gagneurs* and Fabian J. Theisg'24*

Abstract | As a data-driven science, genomics largely utilizes machine learning to capture
dependenciesin data and derive novel biological hypotheses. However, the ability to extract new
insights from the exponentially increasing volume of genomics data requires more expressive
machine learning models. By effectively leveraging large data sets, deep learning has transformed
fields such as computer vision and natural language processing. Now, it is becoming the method
of choice for many genomics modelling tasks, including predicting the impact of genetic variation

on gene requlatory mechanisms such as DNA accessibility and splicing.



