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Main approaches:
« Experimental

* Rule-based

« Machine learning

Introduction to Al and ML ’ Introduction to Al and ML

= Recommendation engines

= Gaming

= Image & speech recognition

= Anomaly detection

= Natural language processing

= Data mining

rBILL & TED‘

FACE THE MUSIC



Introduction to Al and ML e ' Introduction to Al and ML
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Automated Machine Learning: The
Competitive Edge You Need

From towardsdatascience.com From www.analyticsindiamag.com/data-mining-strategy-development-football/

Introduction to Al and ML

Mathematics

(algorithms) .
Computer science

w (implementation, heuristics) Modern challenges
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= How to increase:
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Huge trove of British biodata is unlocking secrets of
substrate specificity depression, sexual orientation, and more
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1. Alarge number of relevant features;

= From bio-physico-chemical to textual;

= Heterogeneous data (e.g. clinical, imaging, and genomic data);".
2. Complex tasks and large parameter space;
= A single 300-amino-acid-long protein will have 300-19=5700 Basics of ML

single-point variants!

3. Large datasets available and new data are collected.

‘ Ideal ML setup = complex tasks + relevant features + abundant data ‘

Basics of ML: features

= Feature vector: x = (X1, X3, ..., X,) = Unsupervised learning
= All features must be converted to numbers: = only features are available;
= goal: cluster the data or reduce their dimensionality;
1000
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onenat | 0091 Supervised learning
encoding | ¢4 = features and labels are available;
1000
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Basics of ML: unsupervised learning ~ Basics of ML: supervised learning
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From en.wikipedia.org/wiki/K-means_clustering

Basics of ML: supervised learning ~ & Basics of ML: supervised learning

®= We want ML models to be generalizable = good at predicting labels for

Let (x(,y(D) be our data set, where x are feature values,
previously unseen data;

and y are labels;
= |tis essential to split the data into training set and test sets and use the

latter for final evaluation only!

= Any ML predictor is fundamentally a function f(x):
= To fine-tune an algorithm, K-fold cross validation is implemented:

f(feature values) = label
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Usually, a generic group of functions f(x, 8) is chosen,

where f3 is a set of parameters;

Data
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Then we “train” the ML predictor: pick such * that

M Train
V| Train
Ve

f(x®,B7) is as close to y as possible.



pervised learn

f(x) =m-x +b

m=-800 b=-800

Error = 370.77
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Recent applications

Recent applications: neural netwo




Recent applications: ANNs for drug design

= QSAR modeling for ligand binding activity;

= Structure generation; e st
sl molecle o Reactanis

= Synthetic pathway generation;
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| Figare 2. Retrasynthetic reaction prediction task and an example of 2
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Recent applications: AlphaFoldfor protein folding
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Reading

Q Eraslan G et al. 2019 "Deep learning: new computational
modelling techniques for genomics." Nature Reviews Genetics.
(especially pages 2-6)
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Deep learning: new computational
modelling techniques for genomics
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