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continuous model of Lotka & Volterra (1925-1928) used to explain 

decrease in prey fish and increase in predatory fish after World War I 

 

assumptions 

- continuous predation (high population density) 

- populations are well mixed 

- closed populations (no immigration or emigration) 

- no stochastic events 

- predators are specialised on one prey species 

- populations are unstructured 

- reproduction immediately follows feeding 



H .. density of prey   P .. density of predators 

r .. intrinsic rate of prey population  m .. predator mortality rate  

a .. predation rate    b .. reproduction rate of predators  

 

 in the absence of predator, prey grows exponentially  

    

 

 in the absence of prey, predator dies exponentially  
 

 

 predation rate is linear function  

of the number of prey .. aHP 

 

 each prey contributes identically  

to the growth of predator .. bHP 
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do not converge, has no asymptotic 

stability (trajectories are closed lines)  

 neutral stability  

 

 unstable system, amplitude of the cycles 

is determined by initial numbers  

Zero isoclines: 

 for prey population: 
 

 
 

 

 for predator population: 
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Analysis of the model 
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 in the absence of the predator prey population reaches 

carrying capacity K 

Addition of density-dependence 

 for given parameter values:  r = 3, m = 2, a = 0.1, b = 0.3, K = 10 
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Zero isoclines: 

 for prey population: 
 

 

 

if H = 0 (trivial solution) or if 

     
 

 for predator population:  0.3HP - 2P = 0  

 

if P = 0 (trivial solution)  

or if 0.3H - 2 = 0  

 

 

 

 gradient of prey isocline is negative 
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H = 6.667 
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 has single positive asymptotically stable equilibrium 

defined by crossing of isoclines 

converges to the stable equilibrium 



functional response Type II: 

 

 

 

 rate of consumption by all predators: 

Addition of functional response of Type II 

 for parameters:  rH = 3, a = 0.1, Th = 2, K = 10 

 

 

 

 

prey isocline:    predator isocline: 
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.. damped oscillations 

 predator exploits prey 

close to K  

- isocline: H = 9 
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 predator exploits 

prey close to K/2  

- isocline: H = 5 

 predator exploits 

prey at low density 

- isocline: H = 2 

Rosenzweig & MacArthur (1963) 
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 logistic model with carrying capacity proportional to H  

 k .. parameter of carrying capacity of the predator 

 rP = bH - m 

Addition of predator’s carrying capacity 

 for parameters:  rP = 2, k = 0.2 

 

 

 

predator isocline: 

 

prey isocline:  
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quick approach to stable equilibrium 



Zatypota Theridion 



 discrete model of Nicholson & Bailey (1935) 

- discrete generations 

- attack happens at reproduction 

- 1, .., several, or less than 1 host 

- random host search and functional response Type III 

- lay eggs in aggregation 

 

Ht = number of hosts in time t 

Ha = number of attacked hosts 

  = finite rate of increase of the host 

 

Pt = number of parasitoids 

c = conversion rate, no. of parasitoids for 1 host 

)(1 att HHH  

aat HcHP 1



 parasitoid searches randomly 

 encounters (x) are random (Poisson distribution) 

 

 

 

p0 = proportion of not encountered,  .. mean number of encounters 

 

Et = total number of encounters 

a = searching efficiency 

 

Et = a Ht Pt   

 

 proportion of encounters (1 or more times): p = (1– p0) 

Incorporation of random search 

x = 0, 1, 2, ... 
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 highly unstable model for all parameter values: 

- equilibrium is possible but the slightest disturbance leads to divergent 

oscillations (extinction of parasitoid) 
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 exponential growth of hosts is replaced by logistic equation 

 

 

 

 

 

 

 

 

H*.. new host carrying capacity 

 depends on parasitoids’ efficiency 

- when a is low then q  1 

- when a is high then q  0 

 

 density-dependence have  

stabilising effect for moderate r and q   

Stability boundaries 

Addition of density-dependence 

Beddington et al. (1975) 
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Addition of the refuge 

 if hosts are distributed non-randomly in the space 

 

Fixed number in refuge: H0  hosts are always protected 

 

 

 

 

 

 

 have strong stabilising effect  

even for large r 

Hassell & May (1973) 
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 distribution of encounters is not random but aggregated (negative 

binomial distribution) 

- proportion of hosts not encountered  (p0):   
   

where k = degree of aggregation 

 

 

 

 

 

 

 

 

 very stable model system if k  1 

Stability boundaries:  

a) k=, b) k=2, c) k=1, d) k=0 

Addition of aggregated distribution 

Hassell (1978) 
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