

Enemy-Victim MOCES

"Populační ekologie živočichů"

Stano Pekár

Predator-prey system

Cheyletus

Acarus

Predator-prey model

▶ continuous model of Lotka & Volterra (1925-1928) used to explain decrease in prey fish and increase in predatory fish after World War I

- ▶ assumptions
- continuous predation (high population density)
- populations are well mixed
- closed populations (no immigration or emigration)
- no stochastic events
- predators are specialised on one prey species
- populations are unstructured
- reproduction immediately follows feeding

H .. density of prey*r* .. intrinsic rate of prey population*a* .. predation rate

P .. density of predators*m* .. predator mortality rate*b* .. reproduction rate of predators

• in the absence of predator, prey grows exponentially $\rightarrow \frac{dH}{dt} = rH$

• in the absence of prey, predator dies exponentially $\rightarrow \frac{\mathrm{d}P}{\mathrm{d}t} = -mP$

predation rate is linear function
 of the number of prey .. *aHP*

• each prey contributes identically to the growth of predator .. *bHP*

$$\frac{dH}{dt} = rH - aHP$$
$$\frac{dP}{dt} = bHP - mP$$

Analysis of the model

Zero isoclines:

for prey population:

 $\frac{\mathrm{d}H}{\mathrm{d}t} = 0 \qquad 0 = rH - aHP$

$$P = \frac{r}{a}$$

for predator population:

 $\frac{\mathrm{d}P}{\mathrm{d}t} = 0 \qquad 0 = bHP - mP$

$$H = \frac{m}{b}$$

→ do not converge, has no asymptotic stability (trajectories are closed lines)
 → neutral stability

• unstable system, amplitude of the cycles is determined by initial numbers

prey isoclinepredator isocline

Addition of density-dependence

• in the absence of the predator prey population reaches carrying capacity K

$$\frac{dH}{dt} = rH\left(1 - \frac{H}{K}\right) - aHP$$
$$\frac{dP}{dt} = bHP - mP$$

• for given parameter values: r = 3, m = 2, a = 0.1, b = 0.3, K = 10

$$\frac{\mathrm{d}H}{\mathrm{d}t} = 3H\left(1 - \frac{H}{10}\right) - 0.1HP$$

$$\frac{\mathrm{d}P}{\mathrm{d}t} = 0.3HP - 2P$$

<u>Zero isoclines:</u> • for <u>prey population</u>: $\frac{dH}{dt} = 0$ $0 = 3H\left(1 - \frac{H}{10}\right) - 0.1HP$

if
$$H = 0$$
 (trivial solution) or if $0 = 3\left(1 - \frac{H}{10}\right) - 0.1P$

$$P=30-3H$$

• for <u>predator</u> population: $\frac{dP}{dt} =$

$$= 0 \qquad 0.3HP - 2P = 0$$

-->

if P = 0 (trivial solution) or if 0.3H - 2 = 0

gradient of prey isocline is negative

 has single positive asymptotically stable equilibrium defined by crossing of isoclines

converges to the stable equilibrium

Addition of functional response of Type II

functional response Type II:

$$H_a = \frac{aHT}{1 + aHT_h}$$

rate of consumption by all predators:

 $\frac{H_a P}{T} = \frac{aHP}{1 + aHT_h}$

$$\frac{\mathrm{d}H}{\mathrm{d}t} = r_H H \left(1 - \frac{H}{K} \right) - \frac{aHP}{1 + aHT_h} \qquad \frac{\mathrm{d}P}{\mathrm{d}t} = bHP - mP$$

• for parameters: $r_H = 3$, a = 0.1, $T_h = 2$, K = 10

$$\frac{dH}{dt} = 0 \qquad 0 = 3H\left(1 - \frac{H}{10}\right) - \frac{0.1HP}{1 + 0.1H2}$$

prey isocline: $P = 30 + 6H - 0.6H^2$ predator isocline:

$$H = constant$$

 $H = \frac{m}{h}$

predator exploits prey close to K
isocline: H = 9

predator exploits
prey close to K/2
isocline: H = 5

predator exploits
prey at low density
isocline: H = 2

Rosenzweig & MacArthur (1963)

Addition of predator's carrying capacity

logistic model with carrying capacity proportional to *H k* .. parameter of carrying capacity of the predator
 r_p = *bH* - *m*

$$\frac{\mathrm{d}P}{\mathrm{d}t} = bHP - mP$$

$$\frac{\mathrm{d}P}{\mathrm{d}t} = r_P P\left(1 - \frac{P}{kH}\right) \qquad \frac{\mathrm{d}H}{\mathrm{d}t} = r_H H\left(1 - \frac{H}{K}\right) - \frac{aHP}{1 + aHT_h}$$

• for parameters: $r_P = 2, k = 0.2$

$$\frac{\mathrm{d}P}{\mathrm{d}t} = 0 \qquad 0 = 2P \left(1 - \frac{P}{0.2H}\right)$$

predator isocline:

prey isocline:

$$0.2H)$$

$$H = 5P$$

$$P = 30 + 6H - 0.6H^{2}$$

quick approach to stable equilibrium

Host-parasitoid system

Zatypota

Theridion

Host-parasitoid model

- discrete model of Nicholson & Bailey (1935)
- discrete generations
- attack happens at reproduction
- 1, .., several, or less than 1 host
- random host search and functional response Type III
- lay eggs in aggregation

 H_t = number of hosts in time t H_a = number of attacked hosts λ = finite rate of increase of the host

$$H_{t+1} = \lambda (H_t - H_a)$$
$$P_{t+1} = cH_a = H_a$$

 P_t = number of parasitoids c = conversion rate, no. of parasitoids for 1 host

Incorporation of random search

- parasitoid searches randomly
- encounters (x) are random (Poisson distribution)

$$p_x = \frac{\mu^x e^{-\mu}}{x!}$$
 $x = 0, 1, 2, ...$ $p_0 = e^{-\mu}$

 p_0 = proportion of not encountered, μ .. mean number of encounters

 E_t = total number of encounters a = searching efficiency

$$E_t = a H_t P_t \longrightarrow \frac{E_t}{H_t} = a P_t = \mu \longrightarrow p_0 = e^{-aP_t}$$

▶ proportion of encounters (1 or more times): $p = (1-p_0)$

$$p=(1-e^{-aP_t})$$

$$H_a = H_t \left(1 - e^{-aP_t} \right)$$

highly unstable model for all parameter values:
 equilibrium is possible but the slightest disturbance leads to divergent oscillations (extinction of parasitoid)

Addition of density-dependence

exponential growth of hosts is replaced by logistic equation

$$H_{t+1} = \lambda H_t e^{\left(1 - \frac{H_t}{K}\right) - aP_t}$$
$$P_{t+1} = H_t \left(1 - e^{-aP_t}\right)$$

$$q = \frac{H^*}{K}$$

 H^* .. new host carrying capacity

- depends on parasitoids' efficiency
- when *a* is low then $q \rightarrow 1$
- when *a* is high then $q \rightarrow 0$

density-dependence have
 stabilising effect for moderate r and q

Beddington et al. (1975)

Addition of the refuge

▶ if hosts are distributed non-randomly in the space

<u>Fixed number in refuge</u>: H_0 hosts are always protected

$$H_{t+1} = \lambda H_0 + \lambda (H_t - H_0) e^{-aP_t}$$
$$P_{t+1} = (H_t - H_0) (1 - e^{-aP_t})$$

▶ have strong stabilising effect even for large r

Hassell & May (1973)

Addition of aggregated distribution

▶ distribution of encounters is not random but aggregated (negative binomial distribution)
 − proportion of hosts not encountered (p₀): p₀ = (1+ aP_t/k)^{-k}

where k = degree of aggregation

$$H_{t+1} = \lambda H_t e^{\left(1 - \frac{H_t}{K}\right)\left(1 + \frac{aP_t}{k}\right)^{-k}}$$
$$P_{t+1} = H_t \left(1 - \left(1 + \frac{aP_t}{k}\right)^{-k}\right)$$

• very stable model system if $k \le 1$

Stability boundaries: a) $k=\infty$, b) k=2, c) k=1, d) k=0

Hassell (1978)