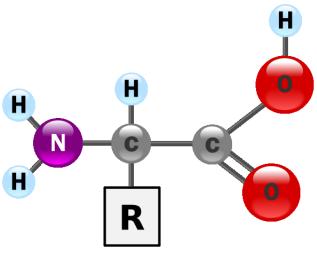
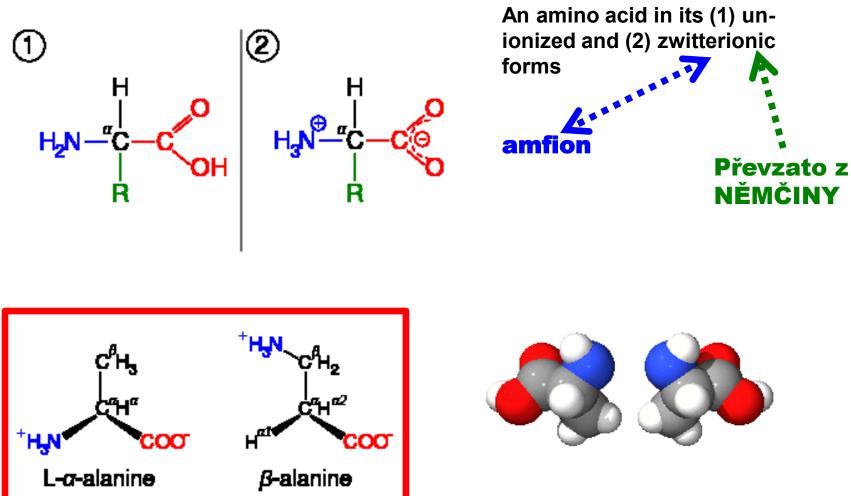
NATURAL POLYMERS PROTEINS I

NATURAL POLYMERS MU SCI 8 2018

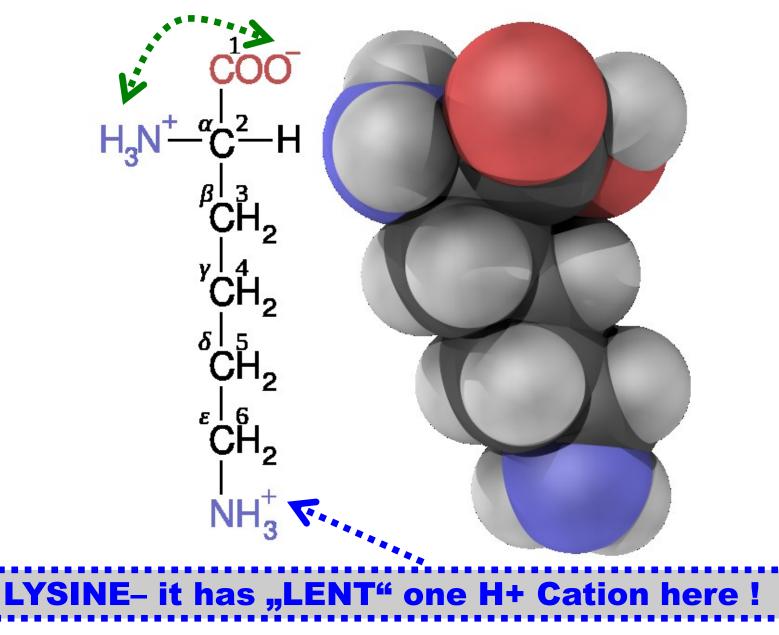

January 8/2018


Time schedule

LECTURE	SUBJECT		
1	Introduction to the subject – Structure & Terminology of nature polymers, literature		
2	Derivatives of acids – natural resins, drying oils, shellac		
3	Waxes		
4	Plant (vegetable) gums, Polyterpene – natural rubber (extracting, processing and modification), Taraxacum_kok-saghyz		
5	Polyphenol – lignin, humic acids		
6	Polysaccharides I – starch		
7	Polysaccharides II – celullose		
8	Protein fibres I		
9	Protein fibres II		
10	Casein, whey, protein of eggs		
	Identification of natural polymers		
11	Laboratory methods of natural polymers' evaluation		

2. Supermolecular Structure of Peptides and Proteins

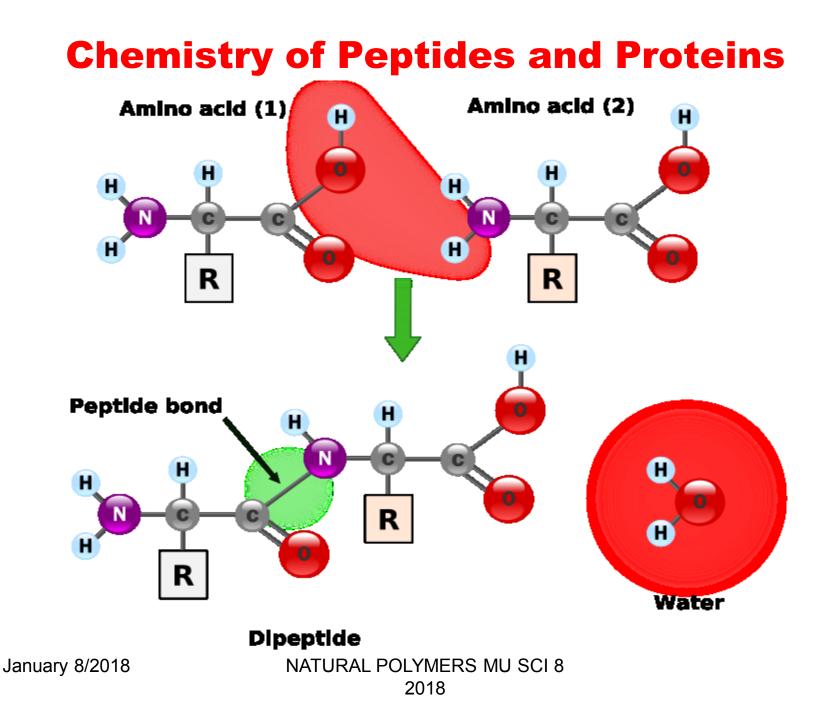
In the structure **shown BELLOW the SLIDE**, **R** represents a <u>side chain</u> specific to each amino acid. The <u>carbon</u> atom next to the <u>carboxyl group</u> (which is therefore numbered 2 in the <u>carbon chain</u> starting from that functional group) is called the <u> α -</u> <u>carbon</u>. Amino acids containing an <u>amino group</u> bonded directly to the alpha carbon are referred to as *alpha amino acids*. These include amino acids such as **PROLINE** which contain <u>secondary amines</u>, which used to be often referred to as "imino acids".

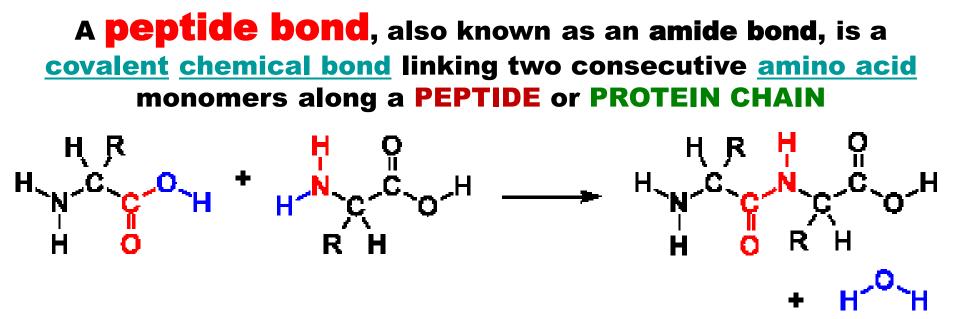


 β -alanine and its α -alanine isomer

January 8/2018

NATURAL POLYMERS MU SCI 8 2018

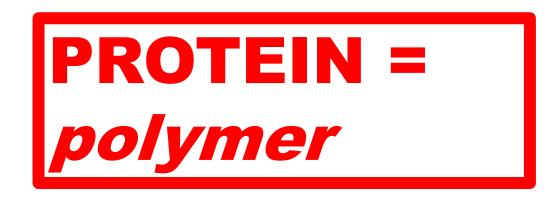

6


Amino acids are the structural units (monomers) that make up proteins. They join together to form short <u>polymer</u> chains called <u>peptides</u> or longer chains called either <u>polypeptides</u> or <u>proteins</u>. These polymers are linear and unbranched, with each amino acid within the chain attached to two neighboring amino acids.

Twenty-two amino acids are naturally incorporated into polypeptides and are called <u>proteinogenic</u> or natural amino acids.

Proteinogenic amino acids are <u>amino acids</u> that are incorporated biosynthetically into <u>proteins</u> during <u>translation</u>. The word "proteinogenic" means "protein creating". Throughout known <u>life</u>, there are 22 genetically encoded (proteinogenic) amino acids, 20 in the standard <u>genetic code</u> and an additional 2 that can be incorporated by special translation mechanisms

A **peptide bond**, also known as an **amide bond**, is a <u>covalent chemical bond</u> linking two consecutive <u>amino acid</u> monomers along a <u>peptide</u> or protein chain. The **peptide bond** is synthesized when the <u>carboxyl group</u> of one amino acid molecule reacts with the <u>amino group</u> of the other amino acid molecule, causing the release of a molecule of <u>water</u> (H₂O), hence the process is a <u>dehydration synthesis</u> reaction (also known as a <u>condensation reaction</u>).


PEPTIDES are short chains of <u>amino acid monomers</u> linked by <u>peptide</u> (<u>amide</u>) bonds.

PROTEINS are large <u>biomolecules</u>, or <u>macromolecules</u>, consisting of one or more long chains of <u>amino acid residues</u>. A linear chain of amino acid residues is called a <u>polypeptide</u>. A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, and are commonly called <u>peptides</u>, or sometimes <u>oligopeptides</u>.

Chemistry of Peptides and Proteins HIERARCHI

AMINOACID = *monomer*

PEPTID = *oligomer*

January 8/2018

NATURAL POLYMERS MU SCI 8 2018

AminoACIDS with aliphatic Side chain

<u>Glycin</u>e **Gly** (G) <u>Alanin</u>e **Ala** (A) <u>Valin</u>e **Val** (V) <u>Leucin</u>e **Leu** (L) <u>Isoleucin</u>e **Ile** (I)

AminoACIDS with Carboxyl or Amide Group in the Side chain (Acid Groups)

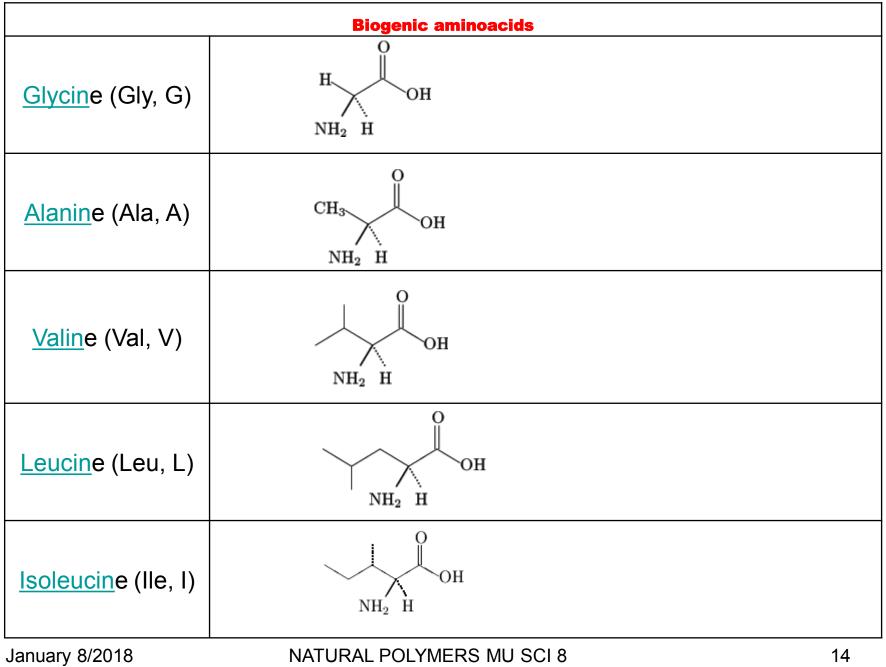
Asparagic Acid Asp (D) Asparagine Asn (N) Glutamic Acid Glu (E) Glutamine Gln (Q)

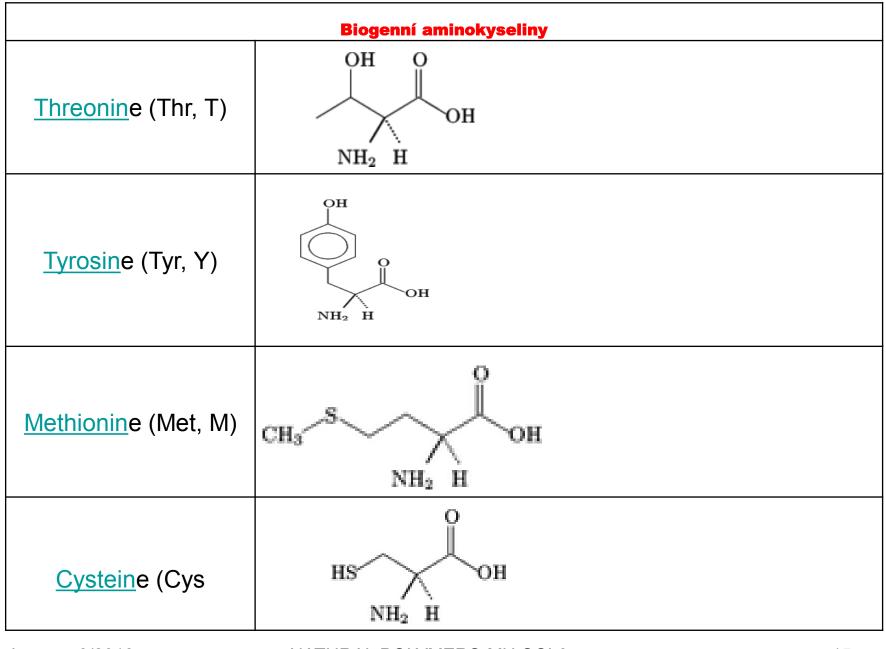
AminoACIDS with Amine Group in the Side chain (Basic Groups)

Arginine Arg (R) Lysine Lys (K) **AminoACIDS with Aromatic nucleus (ring) or Hydroxyl Group in the Side chain** <u>Histidine His (H)</u> <u>Phenylalanine Phe (F)</u> <u>Serine Ser (S)</u> <u>Threonin Thr (T)</u> <u>Tyrozine Tyr (Y)</u>

<u>Tryptophan</u>e **Trp** (W)

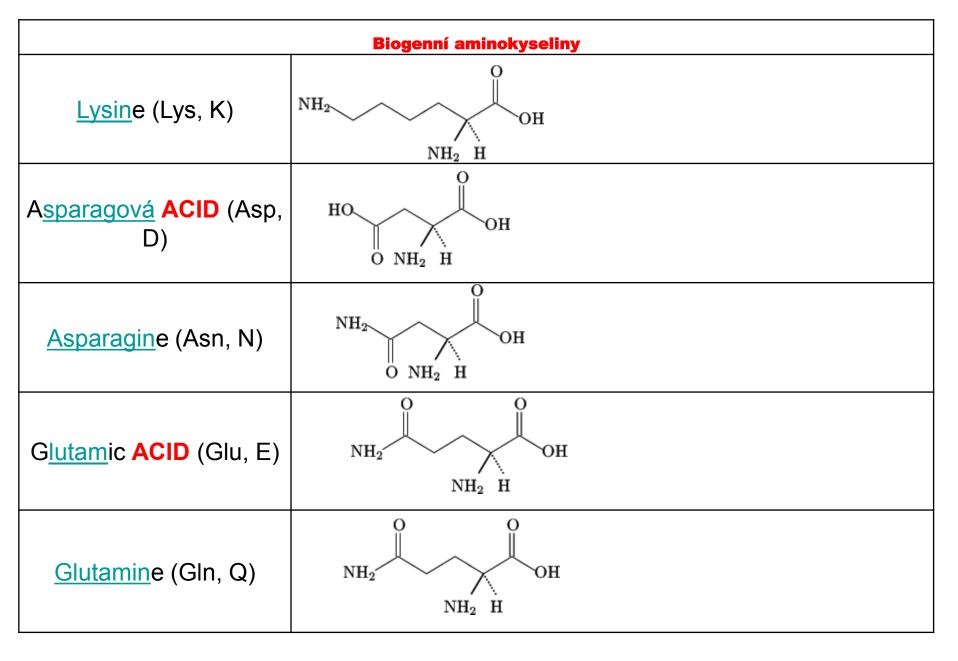
AminoAGIDS with Sulphur Atom in the Side chain <u>Methionin</u>e Met (M) <u>Cystein</u>e Cys (C)

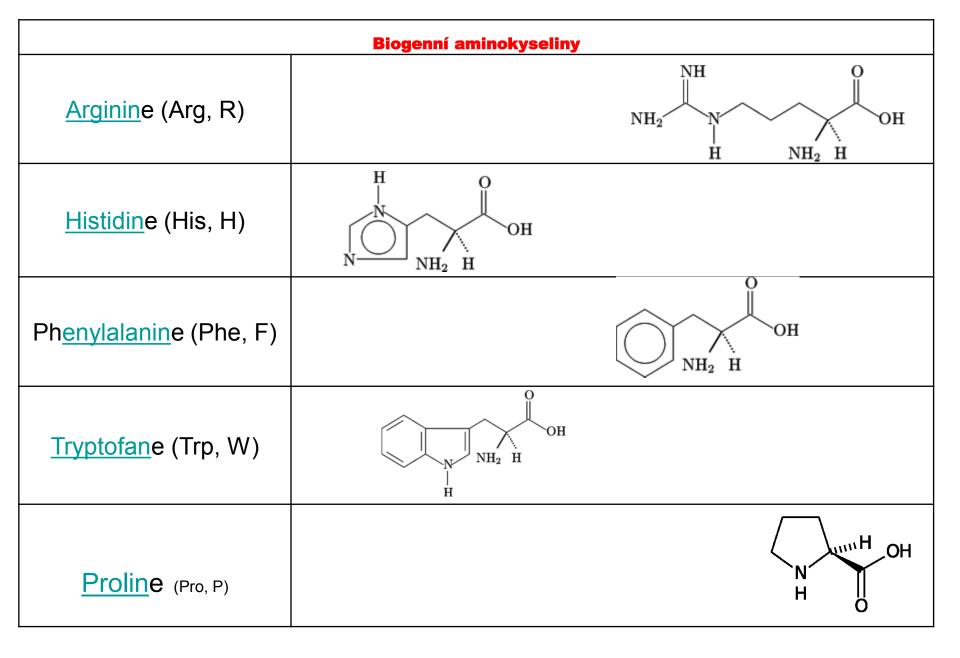

AminoACIDS with the SECONDARY AMINE <u>Prolin</u>E Pro (P)


21. AminoACID (CONTAINING Se) Selenocystein E SeCys

22. AminoACID Pyrolysine Pyl

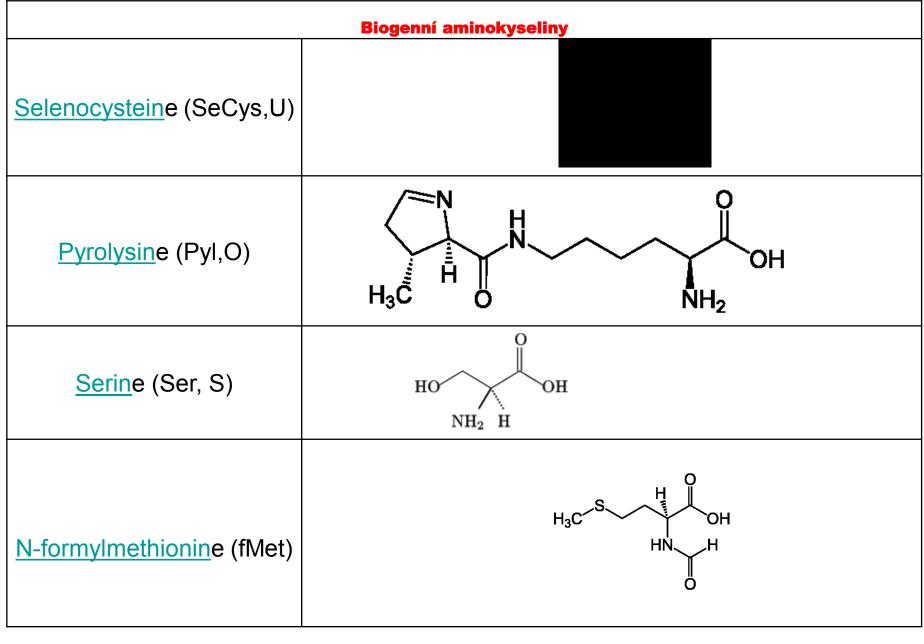
January 8/2018

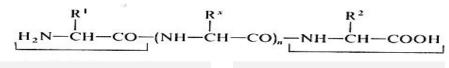

Class	Name of the amino acids
Aliphatic	Glycine, Alanine, Valine, Leucine, Isoleucine
Hydroxyl or Sulfur- containing	Serine, Cysteine, Threonine, Methionine
Cyclic	Proline
Aromatic	Phenylalanine, Tyrosine, Tryptophan
Basic	Histidine, Lysine, Arginine
Acidic and their Amide	Aspartate, Glutamate, Asparagine, Glutamine



January 8/2018

NATURAL POLYMERS MU SCI 8 2018

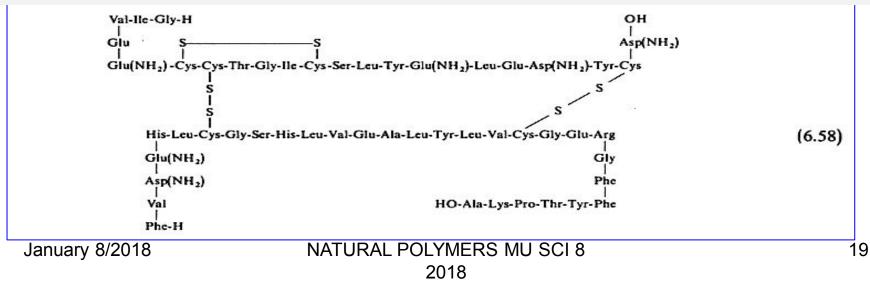




January 8/2018

NATURAL POLYMERS MU SCI 8 2018

17



The Rest of N- ending Amino acid The Rest of C- ending Amino acid

Peptide Chains are written horizontally using the Abbreviations of the particular Amino acids. An Example showing the Structure of the Oxitocine Hormone is as follows:

An Example showing the Structure of the Horse Insulin Hormone (M = 5 802, containing 51 Amino acids) is as follows:

SCLEROPROTEINS or fibrous proteins

The roles of such proteins include protection and support, forming <u>connective</u> <u>tissue</u>, <u>tendons</u>, <u>bone matrices</u>, and <u>muscle fiber</u>. A SCLEROPROTEIN forms long <u>protein filaments</u>, which are shaped like rods or wires. SCLEROPROTEINS are structural proteins or <u>storage proteins</u> that are typically <u>inert</u> and water-<u>insoluble</u>. A SCLEROPROTEIN occurs as an aggregate due to <u>hydrophobic side chains</u> that protrude from the <u>molecule</u>.

A SCLEROPROTEIN'S <u>peptide sequence</u> often has limited <u>residues</u> with repeats; these can form unusual <u>secondary structures</u>, such as a <u>collagen helix</u>. The structures often feature <u>cross-links</u> between <u>chains</u> (e.g., cys-cys <u>disulfide bonds</u> between keratin chains).

Composition of the Fibrous Proteins

Aminoacid	R	Aminoacid Content (% Molar)		
H ₂ N-CHR-COOH (Abbreviation)		Merino Wool	Silk Fibroin	Beef Collagen
Glycine (Gly)	-H	59,4	44,8	38,0
Alanine (Ala)	-CH ₃	15,7	29,4	11,9
Valine (Val)	-CH(CH ₃) ₂	5,8	2,2	2,2
Leucine (Leu)	-CH-CH(CH ₃) ₂	7,9	0,5	2,8
Isoleucine (Ile)	-CH ₂ -C ₆ H ₅	3,3	0,7	1,3
Serine (Ser)	-CH ₂ -OH	11,8	12,1	1,5
Threonine (Thr)	-CH(CH ₃)OH	7,6	0,9	4,3
Tyrosine (Tyr)	-CH₂C ₆ H₄OH	4,8	5,2	1,9

Composition of the Fibrous Proteins

Aminoacid	R	Aminoacid Content (% w/w)		ntent (%
H ₂ N-CHR-COOH (Abbreviation)		Merino Wool	Silk Fibroin	Beef Collagen
Tryptophan (Trp)		1,4	0,2	
Lysine (Lys)	-(CH ₂) ₄ NH ₂	2,6	0,3	2,8
Arginine (Arg)	-(CH ₂) ₂ –N=C(NH ₂) ₂	8,2	0,5	5,4
Histidine (His)		0,8	0,2	0,5
Hydroxylysine	-(CH ₂) ₂ CH(OH)CH ₂ NH ₂	Traces		0,8
Asparagic Acid (Asp)	-CH ₂ COOH	6,9	1,3	0,1
Glutamic Acid (Glu)	-(CH ₂) ₂ COOH	13,8	1,0	0,1
Methionine (Met)	-(CH ₂) ₂ SCH ₃	0,5	0,1	0,8

Composition of the Fibrous Proteins

Aminoacid	R	Amin	oacid Cor w/w)	ntent (%
H ₂ N-CHR-COOH (Abbreviation)		Merino Wool	Silk Fibroin	Beef Collagen
Cystine (Cys-S- S-Cys)	-CH ₂ -S-S-CH ₂ CH(NH ₂)COOH	6,4	0,1	
Cystein (Cys)	-CH ₂ SH	0,4		
Proline (Pro)	N H OH			4,81,
Hydroxyproline				10,3
Lanthonine	-CH ₂ -S-CH ₂ CH(NH ₂)COOH	0,01		
January 8/2018	NATURAL POLYMERS	MU SCI 8	3	23

The Characteristic Bonds which determine Protein Conformation are in the following Formulas:

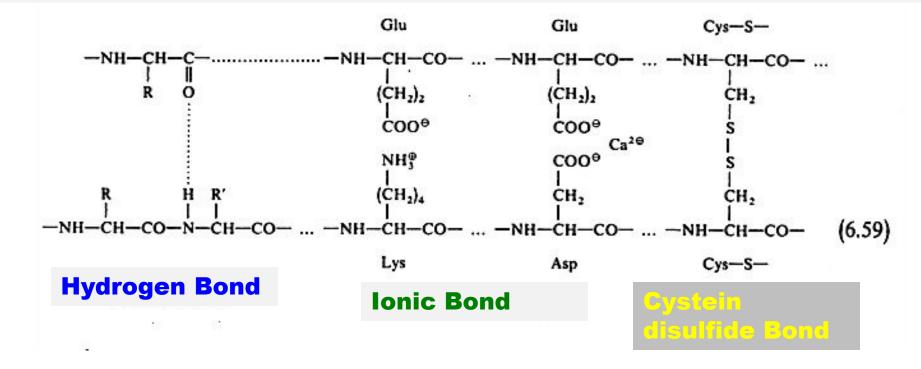
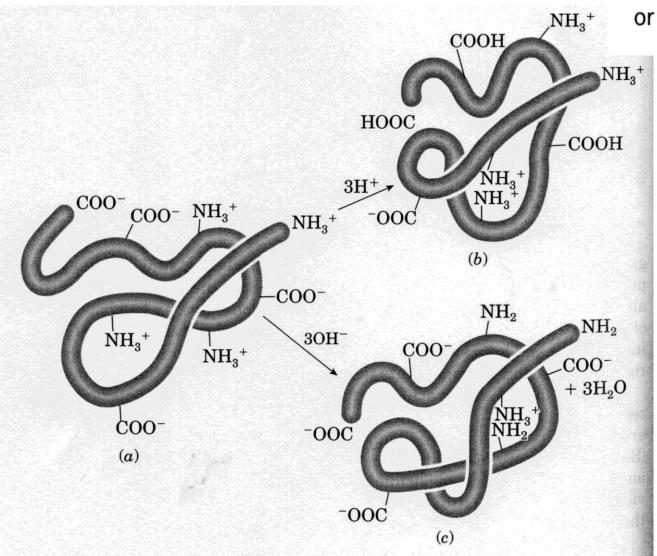
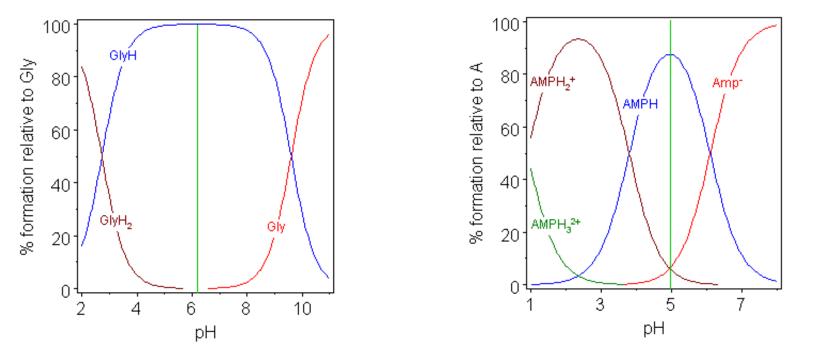




FIGURE 22.7 Schematic diagram of a protein (a) at its isoelectric point and its buffering action when (b) H^+ or (c) OH^- ions are added.

The isoelectric point (pl, pH(I), IEP), is the pH at which a particular <u>molecule</u> carries no net <u>electrical charge</u> in the <u>statistical mean</u>. The standard nomenclature to represent the isoelectric point is pH(I), although pI is also commonly seen, and is used in this article for brevity. The net charge on the molecule is affected by pH of its surrounding environment and can become more positively or negatively charged due to the gain or loss, respectively, of <u>protons</u> (H⁺).

glycine pK = 2.72, 9.60

adenosine monophosphate pK = 2.15, 9.16, 10.67

NATURAL POLYMERS MU SCI 8 2018

For an <u>amino acid</u> with only one <u>amine</u> and one <u>carboxyl</u> group, the **pl** can be calculated from the <u>mean</u> of the <u>pKas</u> of this molecule.

pl = (pKa + pKb)/2

Each Amino acid contains at least two Groups, which are able to dissociate giving: -COOH a $-NH_3^+$ and they form conjugated Bases -COO⁻ a $-NH_2$.

The Acid and their conjugated Base are in the proton Equilibrium:

 $\textbf{R-COOH} \leftrightarrow \textbf{R-COO}^- + \textbf{H}^+\textbf{R-NH}_3^+ \leftrightarrow \textbf{R-NH}_2 + \textbf{H}^+$

It is depends on the Environments (Conditions) pH Value, so on the H⁺ Concentration, how is the Equivalence set. The Carboxylic Group is the stronger Acid and so the H⁺ is easily cleaved from this Group then taken by this Group.

pK and pl Values of Amino Acids

Name	рК	рк рК	рК	pl at 25°C
	α-CO ₂ H	NH ₃	R-group	
Alanine	2.35	9.87		6.11
Arginine	2.18	9.09	13.2	10.76
Asparagine	2.18	9.09	13.2	10.76
Aspartic Acid	1.88	9.60	3.65	2.98
Cysteine	1.71	10.78	8.33	5.02
Glutamic Acid	2.19	9.67	4.25	3.08
Glutamine	2.17	9.13		5.65
Glycine	2.34	9.60		6.06
Histidine	1.78	8.97	5.97	7.64
Isoleucine	2.32	9.76		6.04
Leucine	2.36	9.60		6.04
Lysine	2.20	8.90	10.28	9.47
Methionine	2.28	9.21		5.74
Phenylalanine	2.58	9.24		5.91
Proline	1.99	10.60		6.30
Serine	2.21	9.15		5.68
Threonine	2.15	9.12		5.60
Tryptophan	2.38	9.39		5.88
Tyrosine	2.20	9.11	10.07	5.63
Valine	2.29	9.74		6.02

January 8/2018

NATURAL POLYMERS MU SCI 8

2018

Essential	Nonessential
Histidine	<u>Alanine</u>
Isoleucine	Arginine*
<u>Leucine</u>	<u>Asparagine</u>
Lysine	Aspartic acid
Methionine	Cysteine*
<u>Phenylalani</u> <u>ne</u>	Glutamic acid
Threonine	Glutamine*
<u>Tryptophan</u>	<u>Glycine</u>
<u>Valine</u>	Ornithine*
	Proline*
	Selenocysteine*
	<u>Serine</u> *
	<u>Tyrosine</u>

(*) Essential only in certain cases January 8/2018

Of the 22 standard amino acids, 9 are called essential amino acids because the human body cannot synthesize them from other <u>compounds</u> at the level needed for normal growth, so they must be obtained from food.^[52] In addition, cysteine, taurine, tyrosine, and arginine are considered semiessential aminoacids in children (though taurine is not technically an amino acid), because the metabolic pathways that synthesize these amino acids are not fully developed.^{[53][54]} The amounts required also depend on the age and health of the individual, so it is hard to make general statements about the dietary requirement for some amino acids.

Amino acid > Peptide > Protein

- Amino acid monomer, L- configuration only
- Peptide it has less then 50 Amino acids, it is MW up to approx. 5*10⁵, it goes through Cellophane membrane at <u>DIALYSIS</u>
- **Protein –** MW is over approx. $5*10^5$ to $X*10^6$, X $\in (1;10)$

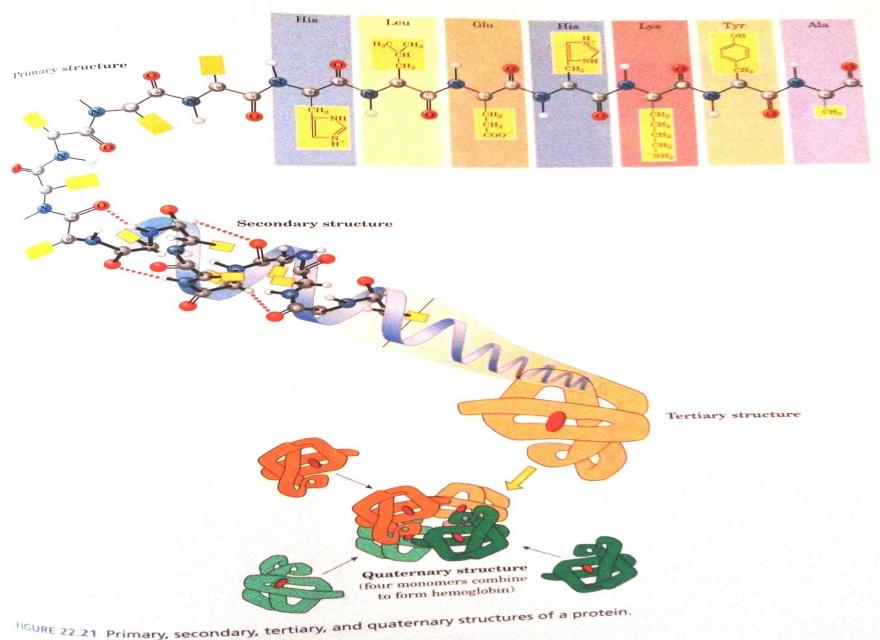
Determination of the Peptide and Protein Composition

- Acid hydrolysis to Amino acids
- Chromatography (Thin layer, GPC)

PEPTIDES X PROTEINS

PEPTIDES

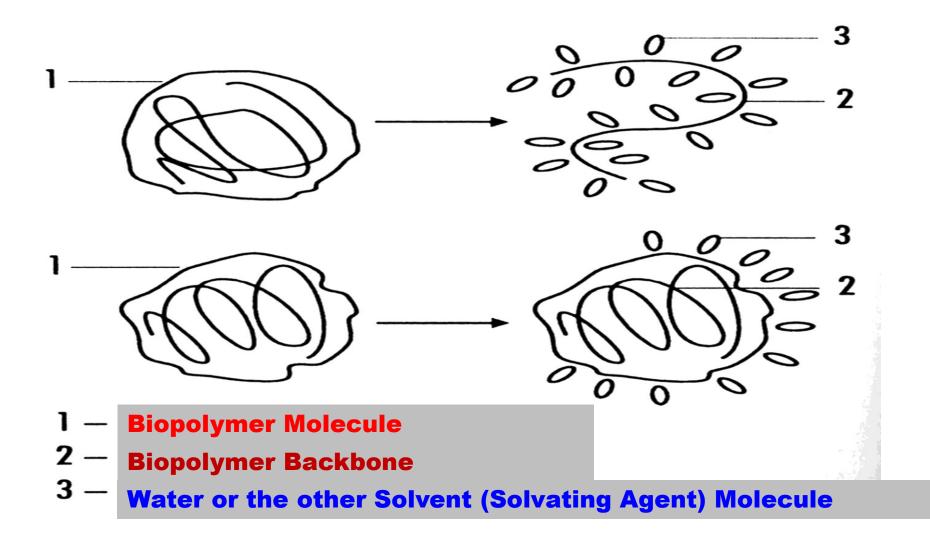
- It contains β and γ Amino acids also
- Configuration both D and L
 It belongs here:
- GLUTATHIONE (biological redox system)
- HORMONE
- ANTIBIOTICS
- TOXINE (death angel and the other TOXIC mushrooms, bee poison etc.)


PROTEINS

- α Amino acids only
- Configuration D only

Structure Hierarchie of Peptides and Proteins

- Primary structure the Amino acids Sequence of the Protein
- Secondary structure No covalent Interactions in the Backbone of the one Polypeptide (Protein) Chain, usually the near Parte of the Backbone (α Helix and/or β Sheet)
- Tertiary structure various Interactions between the Backbones of more then the one Polypeptide (Protein) Chain of Chains or remote NO neighbouring) Segments of one Chain
- Quaternary structure Interactions between the Chain Bundles, between the Tertiary structures


<u>Tertiary & Quaternary Structures – we give attention</u> <u>to this in the next Lesson!</u>

Proteins dividing – the Occurrence of other Components in Macromolecule accordingly

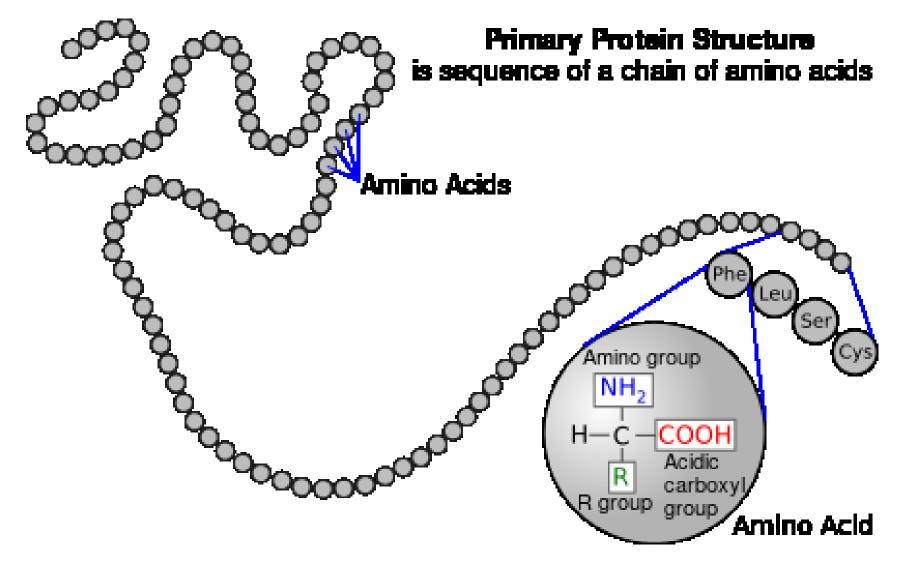
- Simple protein they are broken by Hydrolysis to Amino acids only
- **Compound protein** they are broken by Hydrolysis to Amino acids, Saccharides, Fats, ...
 - LIPOPROTEINE (Fats)
 - GLYKOPROTEINE (Saccharides)
 - FOSFOPROTEINE (Phosphate groups > KASEIN)
 - CHROMOPEROTEINE (Colorants, e.g. Haemoglobin, Melamine)

SOLUBILITY versus SWELING

Proteins dividing – Macromolecules' Solubility in Water of accordingly

• SOLUBLE (SFEROPROTEINE)

- HEAT > COAGULATION
- Albumin > Egg white
- Glutelin > Glutelin from Wheat


• UNSOLUBLE (SKLEROPROREINE)

- Keratin α and β
- Collagen

Proteins dividing – Macromolecules' Shape and Supermolecular Structure accordingly

- FIBRILAR > natural/genuine Silk, Hair, animal Hair, Muscles, fibrous connective Tissue
- GLOBULAR > ENZYM, Egg white, Milk white, INSULIN, ...

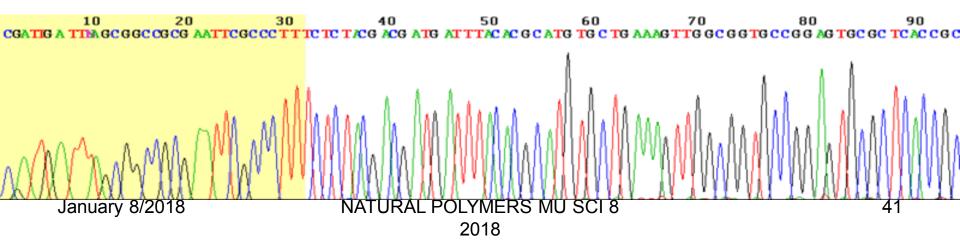
PRIMARY STRUKTURE of Proteine I

Proteines Molecular Weight

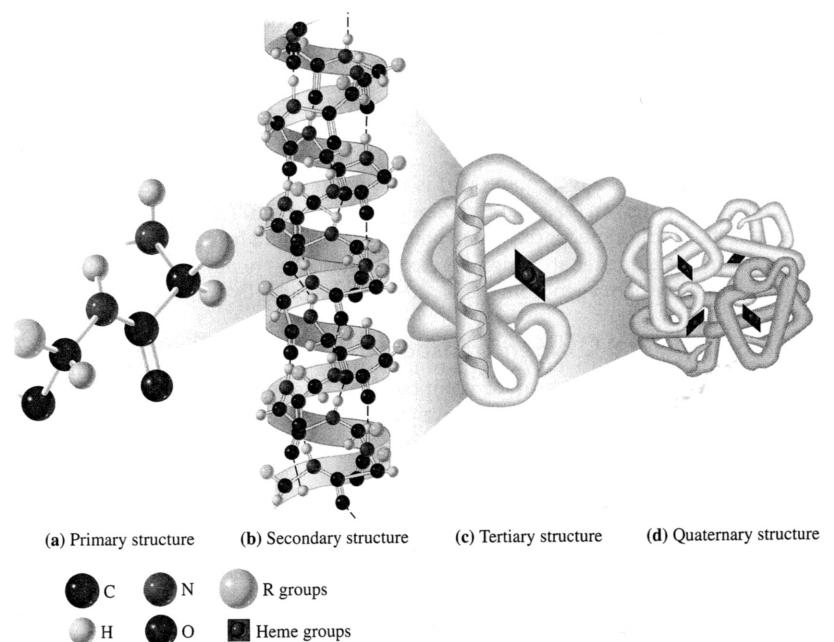
Protein	MW (Relativ, Mean)
cytochrom c	12 400
ribonukleasa	13 700
lysozym	14 600
myoglobin	17 800
X-laktelbumin	23 000
trypsin	23 300
g-chymotrypsin	25 170
pepsin	34 500
vaječný albumin	44 000
hemoglobin	64 500
≪-elastin	70 000
peroxydasa	200 000
tropokollagen	300 000
fibrinogen	340 000
myosin	480 000
Tobacco mosaic virus	39 400 000

I do not know, if it is the \overline{M}_n or the \overline{M}_w

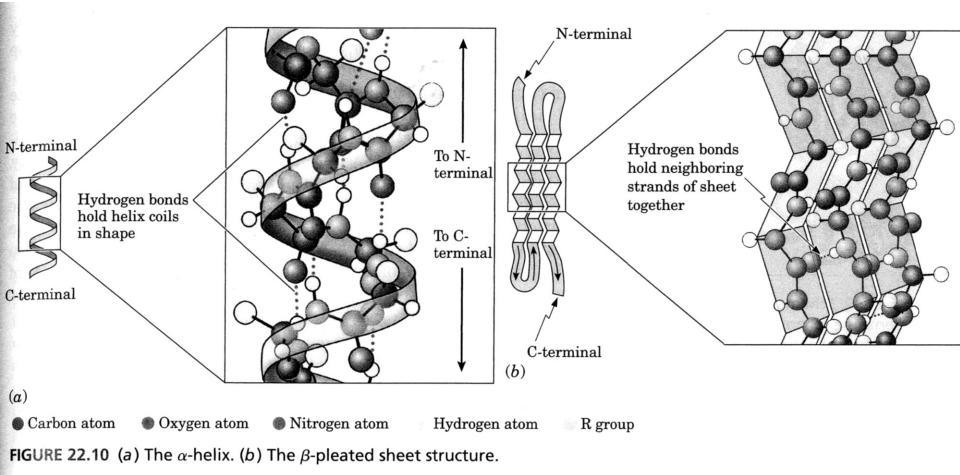
January 8/2018


125.2

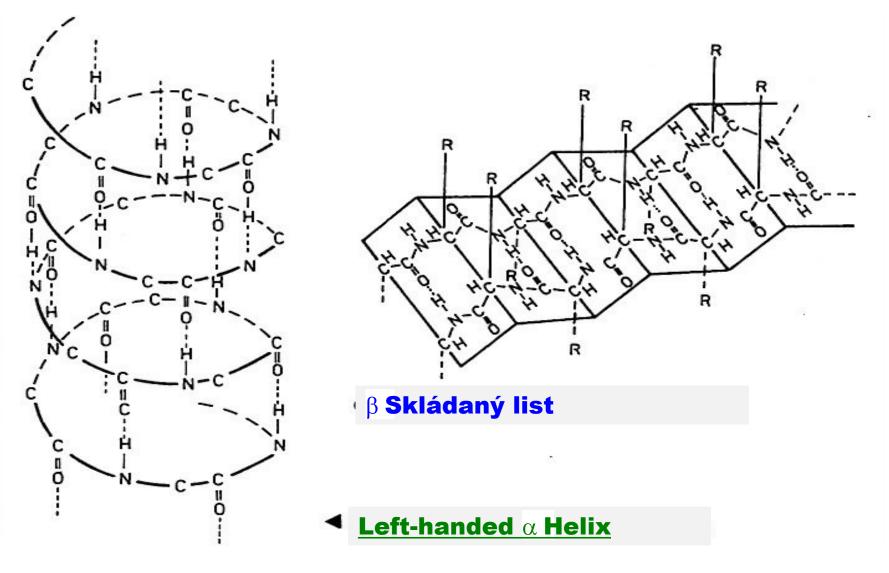
PRIMARY PROTEINS STRUCTURE II DETERMINATION OF THE AMINO ACIDS' SEQUENCE

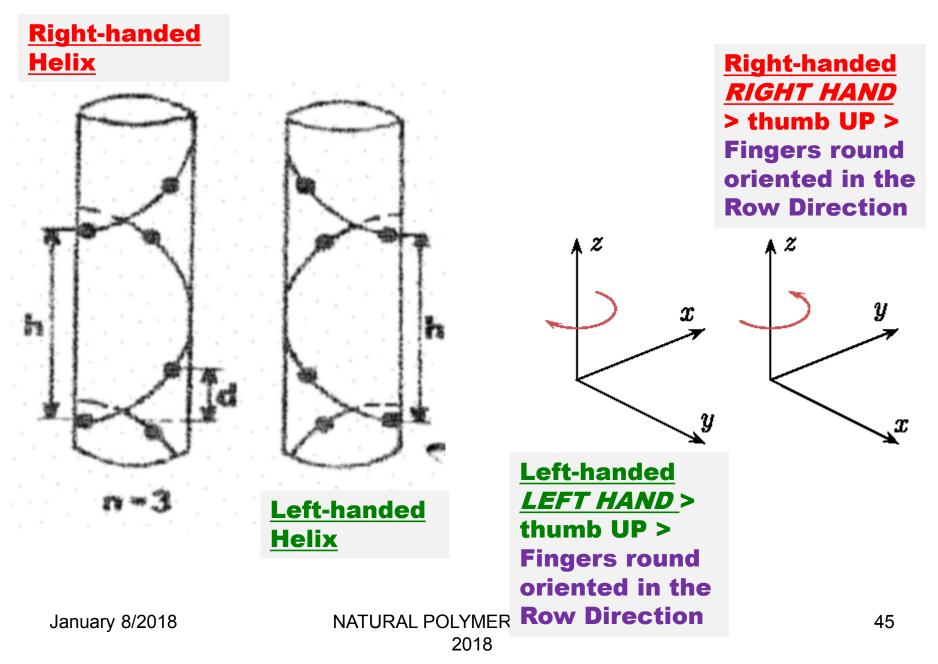

- PROTEINS are broken (cleaved) to Amino acids by ENZYMS - the given ENZYM break (cleave) only the Bond between the Definite AMINO ACIDS
- Using the Different ENZYMS Different Grafts (Broken Parts) > AMINO ACIDS SEQUENCE Determination

PRIMARY PROTEINS STRUCTURE III DETERMINATION OF THE AMINO ACIDS' SEQUENCE

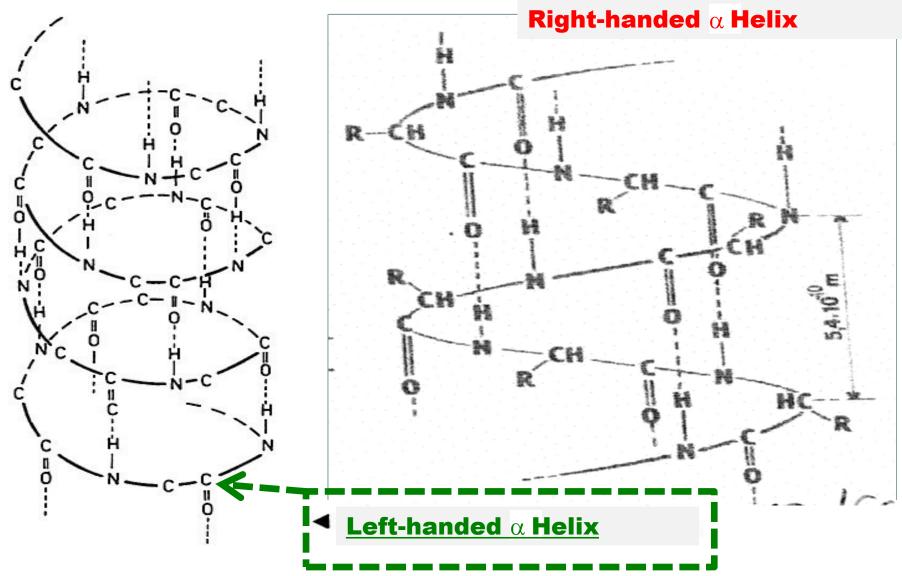

- Breaking (Cleaving) on the well define points (only the Bond between the Definite AMINO ACIDS) to shorter Parts by ENZYMS "RESTRICTIVE ENDONUCLEASES" (their Number is approx. 200 Types)
- Consecutive Breaking (Cleaving) of this shorter Parts taken by Primary Breaking (Cleaving) by "RESTRICTIVE ENDONUCLEASES" again, but other Types then used primary
- Electrophoretic Sorting (Separation) of the Grafts (Broken Parts)
- Computer Processing of the Results

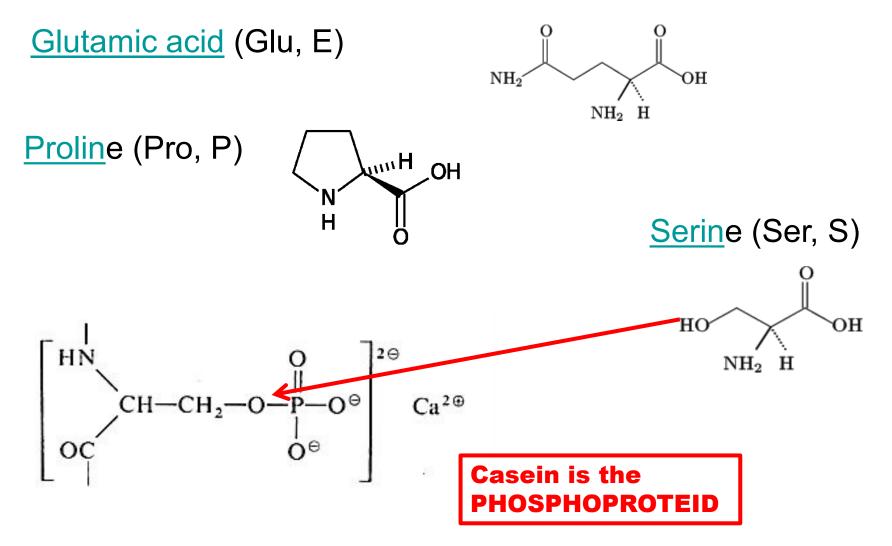
PROTEIN SECUNDARY STRUCTURE I


PROTEIN SECUNDARY STRUCTURE II A


Left-handed Helix

January 8/2018


PROTEIN SECUNDARY STRUCTURE II B


PROTEIN SECUNDARY STRUCTURE III

PROTEIN SECUNDARY STRUCTURE IV

Casein – the main Amino acid Components

Amino acids Content in various Proteins

Amino acid	PROTEIN			
	Gelatine	Casein	Egg white	Egg yellow
	(Molar %)			
Hydroxyproline	6	0	0	0
Asparagic acid	4	6	10	11
Theorine	2	3	4	6
Serine	4	5	7	11
Glutamic acid	7	18	12	13
Proline	12	15	5	5
Glycine	35	3	6	6
Alanine	12	4	9	8
Valine	2	8	9	7
1/2 Cystine	0	0	2	2
Methionine	1	2	1	2

Amino acids Content in various Proteins

Amino acid	PROTEIN			
	Gelatine	Casein	Egg white	Egg yellow
		(Mola	ar %)	
Isoleucine	1	6	6	5
Leucine	3	9	10	9
Thyrosine	0	4	1	2
Phenylalanine	1	4	4	3
Lysine	3	6	7	5
Histidine	1	3	2	2
Arginine	5	3	5	4

Gelatine = Denaturated Collagen

Casein – characteristics

Cacein Type (Sort)	Water	Fat	Ash	Acidity
Acid, grain	9,5	0,3	1,7	9,9
Acid, Cheese, Lumps	7,8	0,4	4,1	7,6
Acid, Salt, Lumps	7,1	0,2	5,7	6,7
Rennet coagulated	8,3	0,6	8,0	7,9

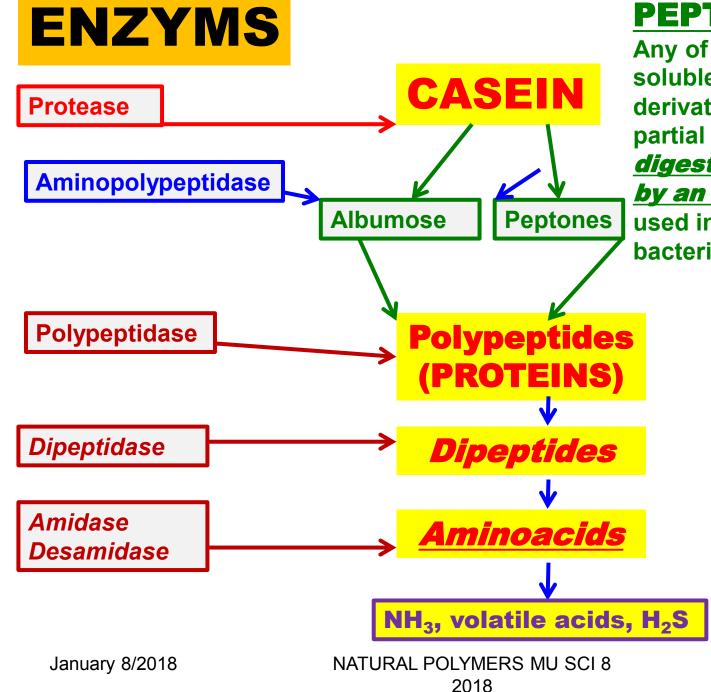
CASEIN versus QUARK

CASEIN is manufactered from the skimmed (fat-free) MILK, THE HIGH FAT CONTENT IS a DEFECT!

QUARK is manufactered from the Whole (fat) MILK, but it can be also manufactered as the Fat-free or Low Fat Product!

January 8/2018

Casein – Charasteristics


- Protein Part of Milk
- Four Types of Casein recognised: αS1, αS2, β, κ
 (kappa)
- Casein is gained by precipitating of Milk using Acids or Enzymes
- MW = approx. 75 000 350 000
- Insoluble in Water
- Soluble in Acids or Bases
- Alkali Solutions have the dispergation (dispersion) Ability

From Casein to Cheese

• Casein

- ENZYMEs

- PROTEASE it cleavages peptide Bond in the Middle of the Casein Backbone > ALBUMOSE & PEPTONS are the Results
- PEPTIDASE it cleavages peptide Bond o<u>n the</u> End the Casein Backbone
- AMINASE it cleavages Amino acids (UNDSIBABLE)
- Cheese = cleavaged CASEIN
- <u>**"Holes" in Cheese** = it is done by</u> Bacterias & Enzymes, which release CO₂

PEPTONES:

Any of various watersoluble *protein* derivatives formed by partial *hydrolysis or digestion of proteins by an acid or enzyme*, used in culture media in bacteriology.

ALBUMOSE:

Any of a class of substances derived from albumins and formed by the <u>enzymatic</u> <u>breakdown of</u> <u>proteins</u> during digestion

ALBUMOSE – they are only the shorter Proteins from CASEIN

PEPTONES - they are Proteins in general or the Mixture of Proteins which results from Proteins by partial Hydrolysis done by Enzyme Pepsin and HCl in Stomach It is stated, that PEPTONES have 3 – 4 Amino acids. **PEPTONES** are further cleaved in the Small intestine by Trypsin and Chymotripsin, which are further cleaved in to the individual Amino acids.

Casein – Use

• Glus

•

Paints

• Galalit (Thermoset crosslinked by FORMALDEHYDE)

January 8/2018

Galalit is coming back (returning)! EU funds 'plastics from protein' project in France

French company Lactips says that its bioplastics project, Ecolactifilm, has attracted funding of €1.5m from the European Union's H2020 SME phase 2 programme.

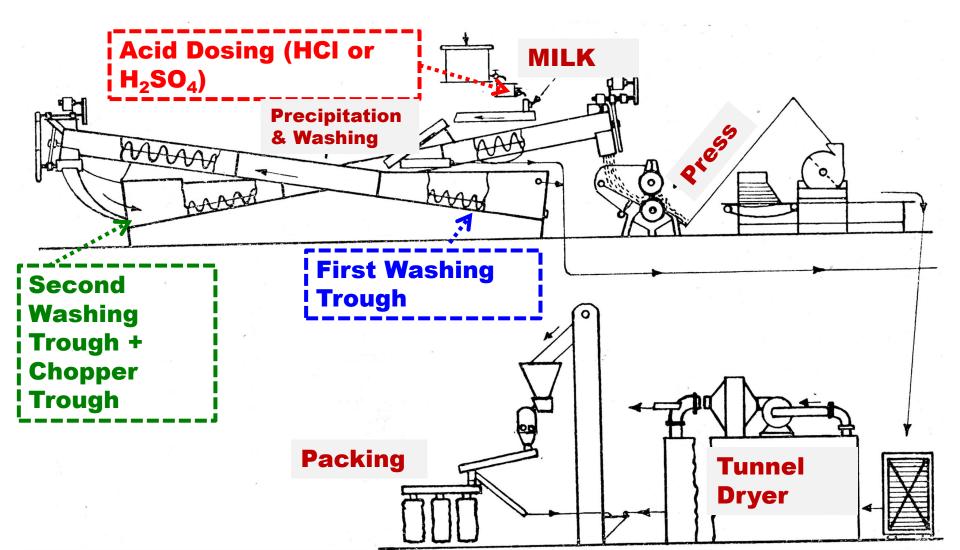
The company produces water-soluble and biodegradable thermoplastic pellets from casein, a protein found in milk. The material, called Ecolactifilm and can be used in water-soluble or edible packaging.

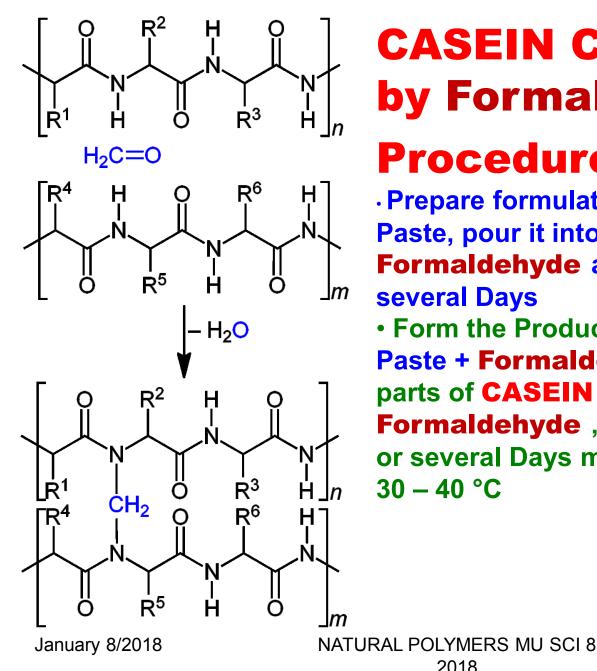
Lactips said the funding would allow it to expand from 20 to 30 staff, and generate a turnover of €20m (\$24m) by 2020, according to a report in Dairy Reporter.

The process begins by making pellets of the material, which can then be extruded into film. The

Lactips has won funding to turn milk protein into plastic

company says that its first application will be to make a dissolvable film for dishwasher tablets.


The material will biodegrade in less than three weeks, says the company. In addition, it has an oxygen barrier and can support printing. Lactips will also expand its research with the Jean Monnet University of Saint Etienne with a project called Hydroprint.


This project will look to develop water-soluble plastic filaments for use in 3D printing.

> www.lactips.com

Continual Manufacture of CASEIN

The BYPRODUCT is WHEY (Proteins, Saccharides, Inorganic Substances etc. ...)

CASEIN Crosslinking by Formaldehyde

Procedure :

2018

- Prepare formulation from the CASEIN Paste, pour it into 4 % w/w Formaldehyde and leave it mature several Days
- Form the Product from the CASEIN Paste + Formaldehyde (approx. 5 – 10 parts of CASEIN + 1 part of Formaldehyde, leave it several Hours or several Days mature at Temperature of 30 – 40 °C

Casein Glues

CASEIN Glue with Ammonia :

- 50 g of pure (industrial Grade) **CASEIN** is mixed with 250 ml Water and is slightly heated.
- 15 g of **Ammonia** is mixed with a bit of Water and is poured into heated **CASEIN.** The Solution boils over and CO_2 is released. **CASEIN Glue** is mixed up to point, when the releasing of CO_2 is finished.

CASEIN Glue with Lime:

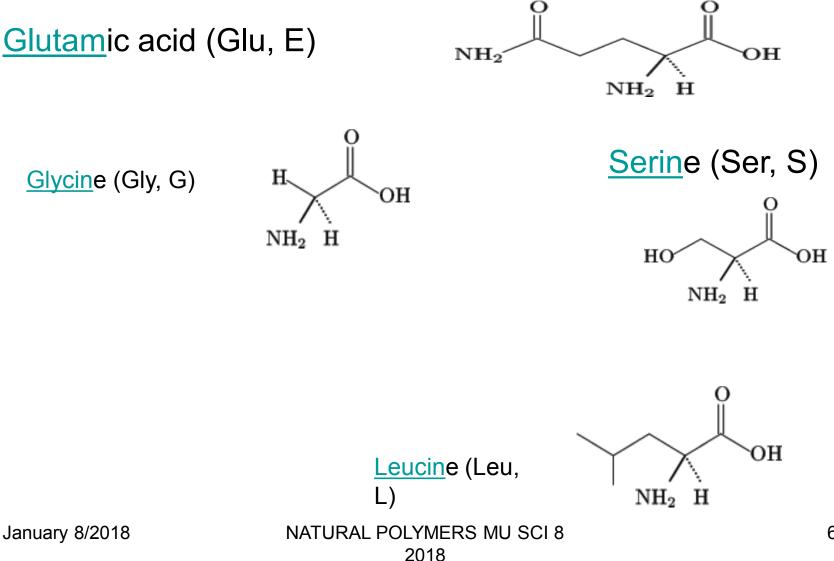
4 Parts of Fat free QUARK is mixed with 1 Part of well matured (two Years old) Ca(OH)₂. The Glue is finished after 10 Minutes. CASEIN Glue with Lime must be freshly prepared every Day. It is diluted by 2 – 3 Parts of Water if used for binding Agent for Paints.

CASEIN Glue with NaHCO₃:

50 g of NaHCO₃ is dissolved in hot Water is chilled at continuous mixing. Add 500 g of Fat free QUARK and mix it in the Kitchen mixer. Leave it stay for 30 Minutes. Dilute it by cold Water to desired Consistency. CASEIN Glue with NaHCO₃ is suitable as the Glue and/or binding Agent for Paints.

CASEIN Glue – a simple Recipe:

One Soup Spun (approx. 10 g) of Borax (Na₂[B₄O₅(OH)₄]·8H₂O) is dissolved in approx. 250 ml of Water. Fat free **QUARK** is mixed with the Borax Solution. Leave it stay for 20 Minutes and mix one more.


CASEIN based Paints working:

The Pigments are mixed with a bit of Water to a Paste. Mix 1 Part of the Coloured Paste with 1 Part CASEIN Glue and 3 Parts of Water.

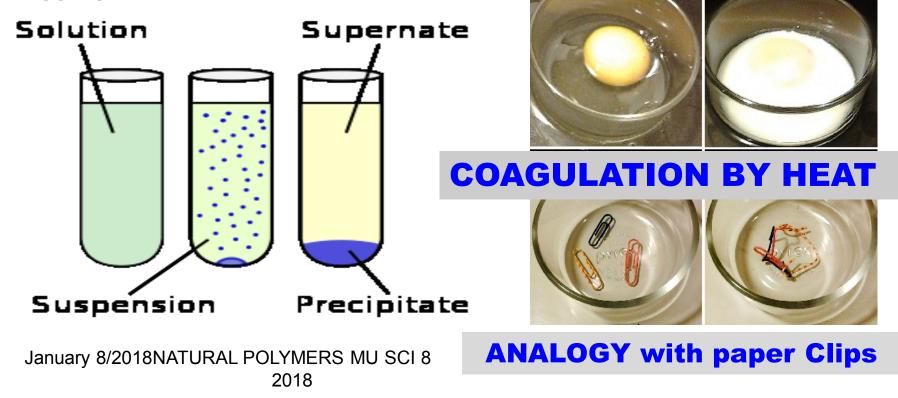
CASEIN based Wall Paint:

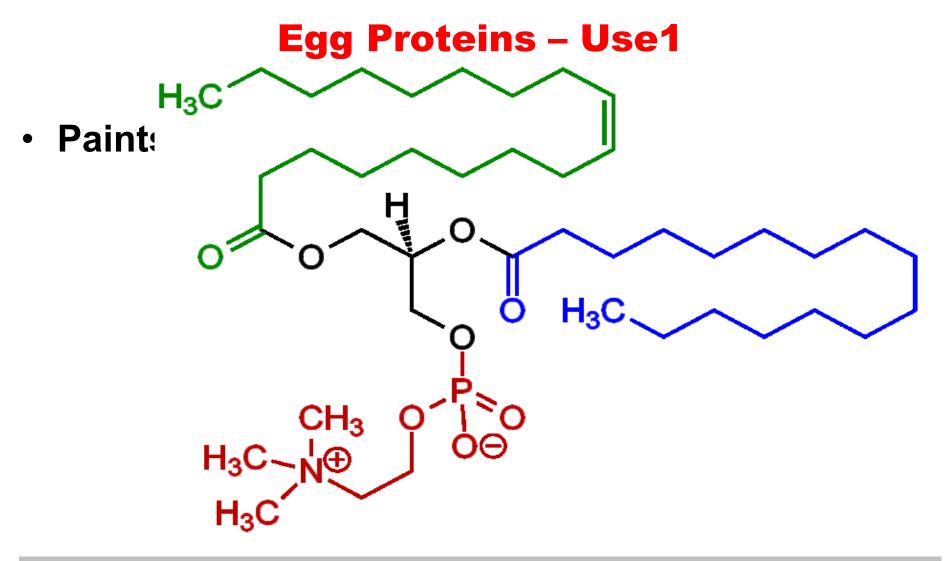
- 1. 2 kg fat free QUARK
- 2. 90 g of Borax (Na₂[B₄O₅(OH)₄]·8H₂O) is dissolved in 500 ml of Water and this Solution is mixed together
- 3. Mix it in the Kitchen mixer for 20 Minutes and leave it for 20 Minutes stay
- 4. It is diluted by 8 Litres of Water for basic Painting
- 5. Mix 1 2 Parts of the Pigments Water Paste with 1 Part of the CASEIN Glue and 2 3 Parts of Water .

Egg Proteins – the main A<u>mino acids</u> <u>Components</u>

61

Amino acids Content in various Proteins

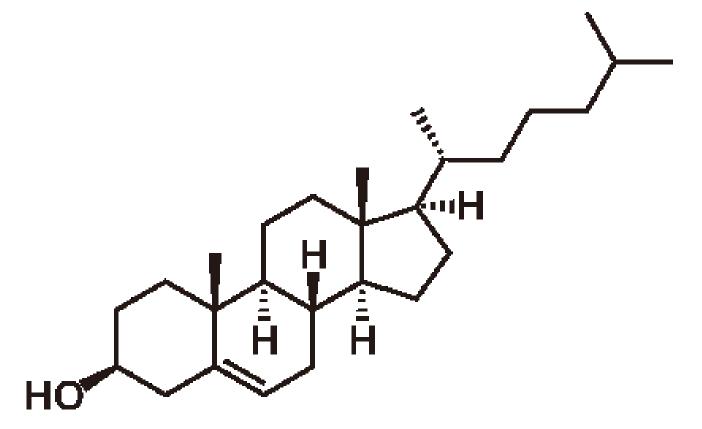

Amino acid	PROTEIN			
	Gelatine	Casein	Egg white	Egg yellow
		(Mo	lar %)	
Hydroxyproline	6	0	0	0
Asparagic acid	4	6	10	11
Theorine	2	3	4	6
Serine	4	5	7	11
Glutamic acid	7	18	12	13
Proline	12	15	5	5
Glycine	35	3	6	6
Alanine	12	4	9	8
Valine	2	8	9	7
1/2 Cystine	0	0	2	2
Methionine	1	2	1	2
	·			4

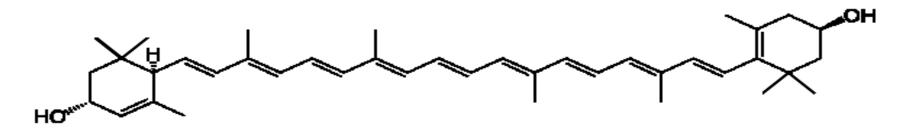

Amino acids Content in various Proteins

Amino acid	PROTEIN			
	Gelatine	Casein	Egg white	Egg yellow
	(Molar %)			
Isoleucine	1	6	6	5
Leucine	3	9	10	9
Thyrosine	0	4	1	2
Phenylalanine	1	4	4	3
Lysine	3	6	7	5
Histidine	1	3	2	2
Arginine	5	3	5	4

Gelatine = Denaturated Collagen

Denaturation is a process in which <u>proteins</u> or <u>nucleic acids</u> lose the <u>quaternary structure</u>, <u>tertiary structure</u> and <u>secondary structure</u> which is present in their <u>native state</u>, by application of some external stress or compound such as a strong <u>acid</u> or <u>base</u>, a concentrated <u>inorganic</u> salt, an <u>organic</u> solvent (e.g., <u>alcohol</u> or <u>chloroform</u>), radiation or <u>heat</u>.^[3] If proteins in a living cell are denatured, this results in disruption of cell activity and possibly cell death. Denatured proteins can exhibit a wide range of characteristics, from loss of solubility to <u>communal</u> aggregation




PHOSPHOLIPID LECITINE – emulsifying Agent It is Part of the Egg yellow, but is NOT its Protein Part

Egg Proteins – USE 2

• Pain

CHOLESTEROL – STEROID & emulsifying AgentIt is Part of the Egg yellow, but is NOT its Protein Part

It is Part of the Egg yellow, but is NOT its Protein Part

Luteine - Colorant in the Egg yellow

Chemical Name	β,ε-karoten-3,3'-diol		
Summary Formula	$C_{40}H_{56}O_2$		
<u>CAS registration</u> <u>Number</u>	127-40-2		
	Solid, red – orange		
Appearance	Crystalic Matter		
<u>Molar Mass</u>	568,871 g/mol		
Melting Temperature	190 °C		
Solubility in Water	no		
Solubility in Fats	ves		

Egg White & Drinks

- Clarifying of Fruit Juices
- Probably the oldest Clarifying Agent for Fruit Juices and Wine

Whey

- Whey is a yellow-green Liquid, which is the Rest gained after precipitation of Milk using Acids or Enzymes. Whey is in fact Milk Serum. It looks like in Practise, that the Milk is precipitated and the Solid Part is CASEIN and the Liquid Part is Whey.
- **Dried Whey** arises also as the By-product at Manufacture of Cheese and/or **QUARK.**
- Whey contains Vitamins B1, B2, B6, B12 and further Vitamins C and E. As to Inorganic Elements it contains Mg, P, Ca, K, Na, Zn. It contains also the Saccharide LACTOSE.
- Whey has antiflammable Effect when used externally, so it is suitable for the sensitive Skin also. The other Uses as Dermatologic Agents are also widely used.

Whey – contained PROTEINS

- Whey protein is a mixture of <u>globular proteins</u> isolated from <u>whey</u>
- Whey protein is the collection of <u>globular proteins</u> isolated from <u>whey</u>, a by-product of <u>cheese</u> manufactured from cow's <u>milk</u>. The protein in cow's milk is 20% whey protein and 80% casein protein, whereas the protein in human milk is 60% whey and 40% casein. The protein fraction in whey constitutes approximately 10% of the total dry solids in whey. This protein is typically a mixture of <u>beta-lactoglobulin</u> (~65%), <u>alpha-lactalbumin</u> (~25%), <u>bovine serum albumin</u> (~8%)(see also <u>serum albumin</u>), and <u>immunoglobulins</u>. These are soluble in their native forms, independent of <u>pH</u>.
- **β-Lactoglobulin** is the major <u>whey protein</u> of <u>cow</u> and <u>sheep</u>'s <u>milk</u> (~3 g/l),
- α-Lactalbumin is an important <u>whey protein</u> in <u>cow</u>'s <u>milk</u> (~1 g/l) that enhances efficiency of <u>brain function</u>,
- Serum albumin, often referred to simply as albumin is a <u>globular protein</u>.
 Serum albumin is the most abundant <u>plasma protein</u> in <u>mammals</u>.
- An antibody (Ab), also known as an immunoglobulin (Ig), is a large Yshaped protein produced by <u>B cells</u> that is used by the <u>immune system</u> to identify and neutralize foreign objects such as <u>bacteria</u> and <u>viruses</u>.

Plant Proteins

- Proteins are usually related with Animal Products, but Proteins can be also of the Plant Origin:
- Glutens (glutelins)
- Prolamins (gliadins)
- They are MOSTLY Water insoluble (approx . 80 % of them)

Plant	Group	Protein	Remark, more Specific
Wheat, Barley, Rye	Gluten	glutenin	8 – 13, sometimes also 15 % w/w Proteins
Rice		oryzenin	
Wheat, Rye	Prolamin	gliadin	coeliac disease, allergy to <i>Gluten</i>
Corn		zein	
Barley		hordein	GLYCOPROTEIN, coeliac disease, allergy to <i>Gluten</i>
Legumes	Pea, Bean, Lentil, Soya, Ground-nut etc., up to 45 % w/w Proteins		

Prolamins are a group of plant <u>storage proteins</u> having a high <u>proline</u> content and found in the seeds of cereal grains: <u>wheat</u> (**gliadin**), <u>barley</u> (hordein), <u>rye</u> (secalin), <u>corn</u> (zein), <u>sorghum</u> (kafirin) and as a minor protein, <u>avenin</u> in <u>oats</u>. They are characterised by a high <u>glutamine</u> and <u>proline</u> content and are generally soluble only in strong <u>alcohol</u> solutions. Some prolamins, notably <u>gliadin</u>, and similar proteins found in the tribe Triticeae (see <u>Triticeae</u> <u>glutens</u>) may induce <u>coeliac disease</u> in genetically predisposed individuals.

Gluten is a composite of <u>storage proteins</u> termed **prolamins** and **glutelins** and stored together with <u>starch</u> in the <u>endosperm</u> (which nourishes the <u>embryonic plant</u> during <u>germination</u>) of various <u>cereal (grass) grains</u>. It is found in <u>wheat</u>, <u>barley</u>, <u>rye</u>, <u>oat</u>, related species and hybrids (such as <u>spelt</u>, <u>khorasan</u>, <u>emmer</u>, <u>einkorn</u>, <u>triticale</u>, <u>kamut</u>, etc.) and products of these (such as <u>malt</u>). Glutens, and most especially the <u>Triticeae glutens</u>, are appreciated for their <u>viscoelastic</u> properties. It gives elasticity to <u>dough</u>, helping it <u>rise</u> and keep its shape and often gives the final product a <u>chewy</u> texture.

Gliadin (a type of **prolamin**) is a class of proteins present in <u>wheat</u> and several other <u>cereals</u> within the grass genus <u>Triticum</u>. Gliadins, which are a component of <u>gluten</u>, are essential for giving bread the ability to rise properly during baking. Gliadins and <u>glutenins</u> are the two main components of the gluten fraction of the wheat <u>seed</u>. This gluten is found in products such as <u>wheat flour</u>. Gluten is split about evenly between the gliadins and glutenins, although there are variations found in different sources.

Gliadin is the water-soluble component of gluten, while glutenin is insoluble. There are three main types of gliadin (α , γ , and ω), to which the body is intolerant in <u>coeliac (or celiac) disease</u>. Diagnosis of this disease has recently been improving

January 8/2018

NATURAL POLYMERS MU SCI 8