NATURAL POLYMERS Polysaccharide I STARCH 2

Dr. Ladislav Pospíšil

January 2018/6

NATURAL POLYMERS MU SCI 6 2018

Time schedule

LECTURE	SUBJECT			
	Introduction to the subject – Structure & Terminology of			
1	nature polymers, literature			
2	Derivatives of acids – natural resins, drying oils, shellac			
3	Waxes			
	Plant (vegetable) gums, Polyterpene – natural rubber			
	(extracting, processing and modification), Taraxacum_kok-			
4	saghyz			
5	Polyphenol – lignin, humic acids			
6	Polysaccharides I – starch			
7	Polysaccharides II – celullosis			
8	Protein fibres I			
9	Protein fibres II			
10	Casein, whey, protein of eggs			
	Identification of natural polymers			
11	Laboratory methods of natural polymers' evaluation			

DISSOLVING OF STRACH

- NATIV STARCH is not soluble in the Cold Water, having Water in the in the Capillaries and Hydrogen bonds only, approx. 14 – 16 % w/w of Water
- NATIV STARCH after pouring to Water at the Laboratory Temperature – the only the other Pores are filled by Water
- NATIV STARCH in the Water at Temperature increasing to approx. 50°C - it is SWELLING, Hydrogen bonds are destroyed a DISPERSION OF **SWOLLEN (hydrated) Particles in Water**
- THE FULL HYDRATATION occurs (maximal for the particular Starch) after taking another Water and a Gel are arising (AMYLOPECTIN) or High Viscosity **Solution (AMYLOSE)**

 THE RESULTING STATE IS CALLED GELATION STARCH January 2018/6

Behaviour of Starch in Water

- Laboratory Temperature: the Reversible filling of the Capillaries in the Starch Particle only
- Temperature Increasing: the steady Hydratation and Destruction of the Hydrogen bonds, AMYLOSE DISOLVING, the only Swelling of the <u>AMYLOPECTIN</u>
- Temperature Increasing & Mixing: Hydrogen bonds are destroyed and so called " *GELATION STARCH* (GELLING) POINT (Peptisation)"
- GELATION STARCH (GELLING) POINT is characteristic for each type native or modified Starch

Viscograph®-E The standard for the measurement of starch

•Suited for starch and flour

- •Usage for acid and lye
- •Small sample size (5 15 g)
- •Short measuring times
- •Speed (0 300 min⁻¹)
- •Temperature measurement within the

sample

Heating / cooling rates of up to 10°C / min
No follow-up costs
Evaluation in BU, mPas, cP or cmg

Modified ROTATION VISCOSIMETER

ROTATION VISCOSIMETER

Modified ROTATION VISCOSIMETER

Standard ROTATION VISCOSIMETER

STARCH GELLING Curves of Starch in Water – in GENERAL

STARCH GELLING POINT

STARCH GELLING Curves of various sorts of Starch in Water 2

Viscosity curves of native Starches: 1) Wheat Starch, 2) Potato Starch, 3) Corn Starch

STARCH GELLING POINT Measuring Range: 235 [cmg] 1000 100 900 90 800 80 700 70 EMPERATURE [°C] 60 600 TORQUE [BU] 500 50 400 40 300 30 200 20 100 10 В 0 0 2.0 4.0 6.0 8.0 10,0 12.0 14.0 16.0 18.0 20.0 0.0 TIME [min]

Take notice of the COURSE TEMPERATURE MEASUREMENT and Points its Changes!

•Suited for starch and flour

- •Usage for acid and lye
- •Small sample size (5 15 g)
- •Short measuring times
- •Speed (0 300 min⁻¹)
- •Temperature measurement within the sample
- •Heating / cooling rates of up to 10°C / min
- •No follow-up costs
- •Evaluation in **BU**, mPas, cP or cmg

Brabender is the German manufacturer of such Devices

STARCH GELLING POINT

Typical Brabender viscosity curves of 8% granular suspensions of common starches.¹

Brabender ViscoAmylograph traces for commercial starches (5% starch by weight in water).

Figure **1.2** Pasting profiles of cassava (**△**) and corn (**●**)starches, under temperature (–) changes.

17

Another type of the Viscosimeter for Maesurement of the STARCH GELLING POINT 1

NATURAL POLYMERS MU SCI 6 2018

Another type of the Viscosimeter for Maesurement of the STARCH GELLING POINT 2

Two Scans each of Dent Corn and Waxy Maize Starch 100.0 2.0 Various Sorts of Corn 90.0 **Transition** (Maize) Starch 1.5 GEL > SOL 80.0 lemperature (70.0 Viscosity (Pa.s) 1.0 60.0 50.0 0.5 Dent Corn Starch 40.0 Waxy Maize Starch 30.0 0 250.0 500.0 750.0 1250 1500 1750 2000 2250 0 1000 time (s)

VISCOSITY IS GIVEN IN THE SI UNITS!

January 2018/6

NATURAL POLYMERS MU SCI 6 2018

STARCH GELLING POINT - various Starches

Starch	GELLING POINT Temperature (°C)			
	Starting	Final	Middle	
Potato	59	60	63,5	
Corn (Maize)	62	72	67	
Wheat	58	64	60	
Rye	57	70	61	
Rice	68	78	74,5	
Pea	55	70	65	
Waxy Corn (Maize)	63	72	65	
Amylose Corn (Maize)	67	Full Gelling in the boiling Water	80	

STARCH GELLING POINT - various Additives to Water

Corn (Maize) Starch	GELLING POINT Temperature (°C)			
Additives	Starting	Final	Middle	
5 % w/w Saccharose	60,5	72,5	67	
10 % w/w Saccharose	60	74	67	
20 % w/w Saccharose	65,5	78	74	
40 % w/w Saccharose	72	85	79,5	
60 % w/w Saccharose	84	96,5	90,5	
0,2 % w/w NaOH	55,5	69,5	64	
0,3 % w/w NaOH	49	65	59	

STARCH GELLING POINT - various Additives to Water

Corn (Maize) Starch	GELLING POINT Temperature (°C)			
Additives	Starting	Final	Middle	
5 % w/w Na ₂ CO ₃	64	72	70	
10 % w/w Na ₂ CO ₃	67	76	72	
20 % w/w Na ₂ CO ₃	77,5	87	82	
30 % w/w Na ₂ CO ₃	92	103	98	
1,5 % w/w NaCl	67,5	77	72	
3 % w/w NaCl	69,5	78,5	74	
6 % w/w NaCl	75	82,5	79,5	

STARCH GEL BEHAVIUOR in Water

- Decreasing Temperature: gradual Regeneration of the Hydrogen Bonds, mainly at AMYLOSE, the Starch having high Content of the AMYLOPECTIN (Branched macromolecule) has lower Tendency to <u>RETROGRADATION</u>
- They precipitate from the Solution as the Flakes at low Concentration, up to approx. 3 % w/w
- The Gel is formed at high Concentrations, having High Viscosity
- This Process is called <u>RETROGRADATION</u> and it possible to retard it by Addition of e.g. Glucose, Fats or Inorganic Salts (e.g. NaNO₃)