

Positive Mode	Negative Mode
mmonium Acetate	Ammonium Acetate
mmonium Formate	Ammonium Formate
Acetic Acid (pH 3-4)	Ammonia/Ammonium Hydroxide (pH>7)
ormic Acid (pH 2-3)	Triethylamine (pH >7)
rifluoro-acetic Acid (pH 1-2)	N-Methylmorpholin
separation differs from the pH for Additives will cause an high bac	ddition in case the solvent pH for optimal or optimal ionization. kground signal (TFA (m/z 113) in negative mode, , increase conductivity of the solvent and may

Post-column addition of the "TFA-fix"	
 No compromise on chromatography 	
 Additional hardware required (cost, reliability, mixing 	g efficiency)
 New stationary phases that have low silanophil peptide separations without compromising chr acid etc. 	
 Dionex Acclaim Pepmap 	
 Waters CSH130 C¹⁸ 	
Thermo BioBasic columns	
 Agilent AdvanceBio Peptide Mapping columns 	

Matrix Effect - Causes	
Competition for available charges (keep in mind that a very low fraction from the analytes actually make it into the MS)	
 Interfering substances may cause increase of viscosity and surface tension therewith hampering the formation of droplet 	
Formation of solid particles including the analyte	
 As with TFA ion pair formation renders the analyte neutral. 	

01	nmo	n Contami	nant & Background Ions	
m/2 101 102 102 123 120 123 123 124 123 124 123 123 124 125 125 125 125 125 125 125 125 125 125	ка разварі развірі развірі разварі	Angeneral Body Body Body Body Body Body Body Body	National Mass Spectrometry Facility UK www.mmss.ac.uk/documents/FSI contam and be ions.pdf Other sources File //www.www.seten.com/downloads/hechnotes/PV-3.pdf Wates https://www.www.seten.com/webassets/ons/_/doc/haged ion_mstr_list.pdf Alberts University www.inem.utbrets.col/masspec/e_joins.pdf	
798 803	[2M+N344]+ [2M+N3]+	Disportyl phthalate Disportyl phthalate		
m/z unit		polydimethyloxiosiloxane		

Clean-up your HPLC System	
Flush with water (no column, bypass UV-detection cell, outlet to waste) e.g. at 3 mL/min for 15-20 minutes to remove salts	
 Flush with i-propanol as above or at low flow rate overnight. Do blank sample injections with i-propanol to clean injection path 	
Flush with organics cleaning solution as above (e.g. transferent (02:31:10:0astransfright()-quotesand/dchorenethane) Do blank sample injections with cleaning solution	
 Change back to isopropanol and flush. Do blank injections with i-propanol to clean injection path 	
Flush with 100% methanol HPLC grade	
Install column and flush with 100% methanol at elevated temperature	
Switch to mobile phase. In case of gradient analysis do a reverse gradient.	
After pumping down MS connect LC	
As an alternative, one may use a solution of a few % formic acid in acetonitrile	
Formal passivation with strong acid only after checking manufacturer literature	

Focus on LC-MS		
Important aspects of LC-MS		
Factors Influencing ESI Proces	s and Mass Detection	
HPLC Column Technology, Spe Developments	ecial Techniques and Nev	v
Is separation prior to MS needed	4?	
HPLC instrumental factors		
What column diameter to use		
HPLC Chip column technologies	for LC-MS	
Direct El LC-MS		
Methods of Chemical Research	6.12.2013 59	

	gradients from 5 – 90 %B in 15' Inj. vol. 0.5 μL
D 0.5, F 20	Peak height increase
i kikiluti	
 A Contract of the contract of the	43)
D 1.0, F 100	
i a billada a	
D 2.1, F 430	10
1 4 4 A A	
D 2.1, F 430	

