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The state of the art of the field of protein structure prediction is reviewed. The strengths

and weaknesses of the three general approaches, comparative modelling, threading

and template-freemodelling, are discussed, and an overview of the results of the critical

assessment of structure prediction (CASP) protein structure prediction experiments are

summarized. The implications for protein structure prediction of the finding that the

library of solved single domain protein structures is likely complete are examined.

Recent advances in the modelling of membrane proteins and proteome scale protein

structure predictions are presented. Finally, the key remaining unsolved proteins in

protein structure prediction are described.

Introduction

A paradigm shift brought about by the sequencing of the
genomes of hundreds of organisms has occurred in biology.
There is increasing focuson the large-scale, high-throughput
examination of all genes and gene products of an organism,
with the aim of assigning their functions and elucidating
how they interact and operate on a system-wide level. This
has given rise to the new and emerging field of systems
biology. However, having a gene’s deoxyribonucleic acid
(DNA) sequence does not directly provide insight into its
function. Sequence-based methods which detect evolution-
ary relationships can provide insights into some aspects of
thebiological functionof about 40–60%of theopen reading
frames (ORFs) found in a given genome but they increas-
ingly fail as the protein families become ever more distant.
Predicting the functions of these unassigned ORFs is an
important challenge. Because the biochemical function of a
protein is ultimately determined by the three-dimensional
structure of its biologically active, native conformation,
protein structures can assist in functional annotation. The
recognition of the role that structure plays in the elucidation
of protein function is one impetus for structural genomics
that aims for high-throughput protein structure determina-
tion. Another is to provide the complete library of solved
protein structures so that an arbitrary protein lies within
modelling distance of a solved protein structure.

Protein structure prediction methods have historically
been divided into three approaches: comparative modelling
(CM), threading and template-free (TF) or ab initio meth-
ods. Conceptually, CM and threading employ the same
ideas: (1) Identify a protein that is structurally related to the
target sequence of interest. ForCM, the target and template
proteins are clearly evolutionarily related,while in threading
they need not be. Threading should identify homologous as
well as analogous folds, viz. proteins that adopt a similar
tertiary structure but need not have any evolutionary rela-
tionship. (2) Once the related fold is identified, the target
sequence is aligned to the template structure either indirectly
by performing a sequence alignment and then transferring

this alignment to the associated position in the structure as
in CM or by incorporating structural information directly
into the alignment procedure. With the convergence of
threading and CM methods, this has recently given rise to
the term template-based (TB) approaches. In TF or ab initio
methods, one does not use any global template structural
information as input to the structure prediction process.
Thus, the possibility of assembling a novel fold exists.
(As shown later for compact single domain proteins, recent
work suggests that there are few if any novel folds (Zhang
et al., 2006), but the identification of analogous structures
remains problematic.) Some approaches are purely physics
based and use empirical potentials that are based on quan-
tummechanics, while others use predicted secondary struc-
ture and/or side chain contacts and knowledge-based
potentials derived from the properties of solved protein
structures.

CASP Evaluation of the State of the Art
of Protein Structure Prediction

The status of the field of protein structure prediction has
been evaluated on a biannual basis by the critical assess-
ment of structure prediction (CASP) experiments (see later
for a more detailed discussion of CASP), where the
sequences of structures that are about to be experimen-
tally determined aremade available to the protein structure
prediction community, the structures are then blindly pre-
dicted and then assessed. This offers the advantage that the
various approaches can be compared for the same set of
targets. However, the number of targets is small, and
especially for the TF category, only a handful are typically
present. Thus, it is difficult to assess progress, so caution in
over interpreting the results should be exercised. Never-
theless, there have been a few general trends. In recent
CASPs, the most successful have been unified approaches
that span the CM to TF range. ROSETTA (Chivian et al.,
2005) and TASSER (Zhang et al., 2005), were examples
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of two successful unified approaches in CASP6 (Zhang
et al., 2005). ROSETTAmodels the protein using a library
of preselected fragments that are three and nine residues in
length. TASSER first does threading which provides a
set of continuous fragments and predicted tertiary con-
tacts that are then assembled into global folds with the
unaligned regions predicted by an ab initio approach.
Despite this methodological unification, there is a concep-
tual advantage in discussing the three approaches sepa-
rately, as they have different success rates and applicability,
depending on the target’s relationship to proteins whose
structures are in the Protein Data Bank (PDB). We discuss
the different methodologies later as well as highlight the
state of the art for the various level of target difficult as
assessed by CASP.

Comparative Modelling/Homology
Model Building

Comparative modelling can predict the structure of a
target protein whose sequence identity is above 30% to a
protein sequence having a solved structure, the template.
This is the regime where the alignments are stable and an
evolutionary relationship between the target and template
proteins can be readily established. For proteins with
more than 50% sequence identity to their template, CM
sometimes yields models with a 0.5–1 Å root mean-square
deviation (RMSD), from the native for the resulting
backbone atoms. In the 30–50% sequence identity range,
the backbone frequently has about 85% of its core within
a RMSD of 3.5 Å from native, with errors mainly in the
loops. When the sequence identity drops below 30%, the
‘twilight’ zone, model accuracy sharply decreases, be-
cause of the lack of significant template hits and sub-
stantial alignment errors.

As shown in CASP6, a limitation of traditional com-
parative modelling techniques is that the predicted struc-
tures are generally closer to the template structure onwhich

they are based rather than to their native conformation, but
the more recent CASPR exercise (a variant of CASPwhere
the starting template structure is provided) began to show
progress in this direction. One notable exception in CASP6
was TASSER that often generated an improvement over
the template alignment for this identity range (Zhang et al.,
2005). Furthermore, the recently developed TASSER-lite
programme (Pandit et al., 2006) (TASSER optimized for
the CM limit to give rapid results) was applied to 901 single
domain proteins, 41–200 residue in length with sequence
identities between 35 and 90% to the template. The results
are given in Figure 1a, where for the same aligned region, the
RMSD of the final model to native is shown. For many
cases, there is a clear improvement, with a number of
models refined from a RMSD of more than 2 Å to struc-
tures close to 1 Å. Figure 1b shows results from the widely
used CM programme MODELLER5, whose predictions
basically recapitulate the template alignment.

Threading Approaches to Protein
Structure Prediction

Methodology

As mentioned earlier, the goal of threading is to be able to
identify analogous as well as homologous folds. Over the
years, there have been a variety of attempts to develop
purely structure-based approaches (i.e. those that do not
directly exploit evolutionary information) andwhich repre-
sent the protein by its Cas, Cbs, side-chain centres of mass
or other reduced descriptors. Because generating an align-
ment with explicit consideration of pairwise interactions is
NP-hard, pair potentials between interacting residues are
often either reduced to pseudo one-body interactions or the
structure-based component of the energy simply accounts
for predicted secondary structure or burial propensities
that may be depth-dependent from the protein’s surface.
In practice, the most successful threading algorithms
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Figure 1 (a) Scatter plot of the RMSD of the final model by TASSER (Zhang and Skolnick, 2004) to native versus RMSD of the initial alignment by the threading

algorithm PROSPECTOR_3 (Skolnick et al., 2004) to native. The same aligned region is used in both RMSD calculations. (b) Similar to (a), but with models from

MODELLER (Pieper et al., 2006). The sequence identity ranges are shown in the figure legend.
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combine sequence profile information, viz. evolutionary
information, with a template structure-based component.
Structure-dependent substitution matrices, gap penalties
and profiles have also been employedwith some success. As
first demonstrated inCASP5 and subsequently inCASP6, a
number of threading methods significantly outperform
PSI-BLAST. By CASP7, the latest variants of these algo-
rithms can sometimes identify structurally related templates
at the level of 10% sequence identity with a rather accurate
global alignment.

Metapredictor-based protein structure
prediction approaches

Recent CASP experiments demonstrated the power of
Metapredictors, defined as automated servers that com-
bine structure predictions from a variety of threading and
sequence-based servers thatmakemore accurate consensus
predictions that now can rival all but the best human pre-
dictors. The idea is that for difficult targets, consensus
among different methods is more reliable than an individ-
ual approach as different threading methods recognize
different features, so that in combination better composite
results can be obtained (but the results do not improve by
much when more than three state-of-the-art methods are
used as input). Among Metapredictors of note in CASP6
were 3-D SHOTGUN (Fischer, 2003) which does not just
select amodel from the input structures but generatesmore
complete and accurate hybrid models by splicing together
individual models. In large-scale testing, 3D-SHOTGUN
produced models up to 28% more accurate than the indi-
vidual methods with 17% higher specificity in identifying
correct templates.

Structural completeness of the PDB

Essential to the success of CM/threading approaches is the
presence of a solved template structure upon which a
reasonable model of the target’s structure can be assem-
bled. Such templates are what we call ‘buildable’. Is there a
limited, but large repertoire of single domain topologies
such that at some point, the PDB would be sufficiently
complete that the likelihood of finding a new fold is mini-
mal? Or is the repertoire of folds essentially infinite? Con-
sistent with the early enumerations of protein topologies,
the preponderance of evidence suggests that the former
view holds (Hou et al., 2005). This idea is strongly sup-
ported by the recent work of Kim et al. who find that the
four main classes of protein structures emerge from a com-
mon centre 9 with sparse regions in between that possibly
arise because certain folds are unstable. If the number of
folds is indeed finite, then one can ask how complete is the
current PDB library? That is, how likely is it that a given
protein will have an already solved structure?

One way to explore this issue is to employ structural
alignment algorithms to establish the structural relation-
ship, if any, between a newly solved protein structure and
those already in the PDB. (Structural alignment algorithms

are designed to define the best structurematch between two
protein structures when the set of aligned residues are not
a priori specified.) One can also examine structural rela-
tionships between nonhomologous PDB structures as well
as between PDB structures and incorrectly folded decoys
from ab initio folding simulations. In that respect, several
authors addressed the nature of protein structure space by
comparing all (or representative) structures in the PDBand
emphasized its discreteness for protein domains (Hou et al.,
2005). However, this conclusion might just reflect the fact
that the structural alignment algorithms used lacked the
sensitivity to detect more distant structural relationships.
Support for the view that structure space is continuous
comes from Shindyalov & Bourne who, using their CE
method, recently pointed out that substructures obtained
from an all-against-all structure comparison sometimes
distribute among protein domains, transgressing their
respective fold types (Shindyalov and Bourne, 2000). They
find �130 residue long, continuous substructures, much
longer than the conventional concept of supersecondary
structure. Thus, there are structural motifs of significant
length that occur in many other folds, and some regions
of protein fold space are not as distinct as once thought.
Indeed, in a recent review, Honig et al. conclude that struc-
ture space is likely continuous and multidimensional
(Kolodny et al., 2006).
The continuity of fold space, while suggestive, does not

require that the possible fold space of all compact protein
structures in the current PDB be complete. Kihara and
Skolnick (2003) demonstrated that at the level of single
domain proteins, the PDB is likely complete and provides a
set of templates on which low-to-moderate resolution
structures can be built. More recently, analysing randomly
generated, 100 and 200 residues, compact conformations
of generic homopolypeptides in simplified and all-atom
proteinmodels, Skolnick et al. showed that all have similar
folds in the PDB, and conversely, all compact, single
domain protein structures in the PDB have structural
matches to the set of compact homopolypeptide structures
(Zhang et al., 2006). Thus, both sets are likely complete,
with the protein fold universe arising from compact con-
formations of hydrogen bonded, secondary structures.
Since side chains are represented by the Cbs alone in both
protein models, these results suggest that the observed
protein folds are insensitive to chain packing details.
Sequence specificity enters in fine-tuning the structure and
stabilizing a given fold with respect to alternatives.
To demonstrate that the resulting set of structures are

buildable, the ten worst PDB-compact homopolypeptide
structures matched on the basis of their TM-score (a mea-
sure of structural similarity that is length independent,
ranging from [0,1]). The value is 0.30 for the best structural
alignment of a pair randomly related proteins, with a
standard deviation of 0.01 and is 1.0 for a pair of identical
structures, whose value is about 0.37 were examined.
Although this is a modest TM-score, the alignments pro-
vide the correct topology for around 2/3 of the core-region
of the protein structure. After TASSER refinement, the
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average TM-score improves to 0.62 (structural alignment
Z-score of 32) and the average globalRMSDfrom thePDB
structure of the first TASSER model is 5.1 Å. Thus,
reasonable full-length models can be built.

Template-free Protein Structure
Prediction

The practical issue is to identify a template in the PDB from
which a biologically useful model can be built. Unfortu-
nately, for �1/3 of compact, nonhomologous single
domain proteins such templates cannot be identified using
extant threading approaches (Zhang and Skolnick, 2004).
Here, TF or ab initio methods are required. They are also
needed to predict the structure of the unaligned regions/
loops and tails in proteins where a reasonable template
structure can be identified. Furthermore, the PDB is
not likely to be complete at the level of multidomain or
multimeric protein structures. TF structure prediction is
essential for these situations.

In TF folding, one starts from a random conformation
and then attempts to assemble the native structure without
use of any template information. Some variants are more
physics-based (i.e. they employ little information from
native protein structures) and could be used to better
understand the factors stabilizing proteins, not to mention
to simulate pathways. Recently, there has been progress in
the prediction of the tertiary structure of some very small
proteins using molecular dynamics simulations of detailed
atomic models. Notably, Baker et al. generated a model at
near atomic resolution in CASP6 (Bradley et al., 2005).
However, the CASP6 results suggested that while there are
a number of promising developments, the number of TF
targets was too small to definitively identify progress
(Chivian et al., 2005; Zhang et al., 2005) and that successful
TF structure prediction is limited to small, single domain,
preferably helical, proteins.As in threading,model ranking
can be problematic.

Modelling of Membrane Proteins

Although integral membrane proteins, estimated to com-
prise 15–40% of the proteome (with the lower (higher)
range characteristic of prokaryotes (eukaryotes)) are
essential for cellular function, they represent less than 1%
of the entire PDB. Thus, the ability to model membrane
protein structures is essential. However, because the
number of solved structures is so small, CM techniques
are of limited validity, and it is difficult to assess the general-
ity of the success of membrane protein structure prediction
methods. SinceMilik and Skolnick (1992) first successfully
modelled the insertion of magainin, M2d, mellitin, fd and
pf1 coat proteins into a membrane by treating the mem-
brane as hydrophobic slab bounded by an interfacial
region to mimic the lipid head groups, related simulations

have successfully described the tendency of helical mem-
brane peptides to insert and orient with respect to the
bilayer (Im and Brooks, 2005). However, modelling indi-
vidual helical peptides is just a small part of the integral
membrane protein tertiary structure prediction problem.
Often, to predict the tertiary structure of helical membrane
proteins, one first predicts the putative transmembrane
region locations in the sequence and then models the pack-
ing of the helices and intervening loops.
Since G protein-coupled receptors (GPCRs) are an

essential class of integral membrane signalling proteins,
they have been the subject of numerous such modelling
efforts. The GPCR rhodopsin has received special atten-
tion because it has a high-resolution crystal structure.
Becker et al. used PREDICT to model the transmembrane
region with a RMSD from native of 2.9 Å (Becker et al.,
2004).Using MembStruk, Vaidehi et al. built a model with
aRMSD fromnative of 3.1 Å in the transmembrane region
and 8.3 Å for the full-lengthmolecule (Vaidehi et al., 2002).
Alternatively, one can use experimental restraints to assist
in structure prediction. For example, Sale et al. modelled
the transmembrane helical region using a statistical poten-
tial combined with 27 experimental distance constraints
and built a model with a RMSD of 3.2 Å to native in the
transmembrane region (Sale et al., 2004). One can also
combine modelling with cryo-electron microscopy data.
While the results were encouraging, their generality
remains to be demonstrated.
Although tertiary structural information is crucial for

functional annotation and drug design, there are few
experimentally determined GPCR structures. To address
this issue, TASSER was employed to generate structure
predictions for all 907 putative GPCRs in the human gen-
ome (Zhang et al., 2006). First benchmarking of TASSER
on membrane proteins with solved structures was done to
provide an estimate of the expected success rate. The results
for the benchmarking on bovine rhodopsin are summa-
rized later. As shown in Figure 2, on excluding homologous
structures whose sequence identity is 430% as well as all
seven transmembrane helical proteins in the PDB (e.g.
bacteriorhodopsin),
PROSPECTOR_3 identified three templates that are

quite distant from the rhodopsin structure.AfterTASSER,
a RMSD of 4.6 Å for the final model is obtained on super-
imposing all 338 Ca atoms (10 residues are absent in the
crystal structure). The major errors are in the N- and
C-termini and the C3 loop. Excising the tails and super-
imposing the model on to the core (residues 32–323), the
RMSD to the native structure is 3.3 Å. If we consider the
transmembrane helix region, theRMSD is 2.1 Å. Applying
the methodology to the four other solved seven transmem-
brane proteins, archeorhodopsin (1uaz), sensory rhodop-
sin (1jgj), halorhodopsin (1e12) and bacteriorhodopsin
(1ap9), yields final models with RMSDs to native of 2.66,
1.25, 2.39 and 1.86 Å, respectively.
Applying TASSER to a benchmark set of 38 membrane

proteins (Zhang et al., 2006) and again excluding templates
with 430% sequence identity in the aligned region, 17/38
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(45%)of the targets have aRMSDtonative56.5 Å, andan
average RMSD improvement over the template alignment
of 4.9 Å. Ninety-seven percent of the targets show an im-
provement compared to the starting template. While the
overall success rate is lower than for water-soluble proteins
(66%), it was sufficiently promising to apply TASSER to
the human GPCRs.

Based on the distribution of confidence scores shown in
Figure 3, which also shows the results for the large repre-
sentative benchmark set of proteins in the PDB below 200
residues, PDB200 benchmark, 820 targets should have the
correct fold (Zhang et al., 2006). Models of representa-
tive GPCRs were compared with mutagenesis and affinity
labelling data, with consistent agreement found. Structure
clustering of the predicted models shows that GPCRs with
similar structures tend to belong to a similar functional class
even when their sequences are diverse. These results demon-
strate the usefulness of the in silicomodels for GPCR func-
tional analysis. All predicted GPCR models are available
for noncommercial users at http://cssb.biology.gatech.edu/
skolnick/files/gpcr/gpcr.html.

Proteome Scale Protein Structure
Predictions

Depending on the proteome, about 40–50% of all
sequences have a homologous protein of known structure,
with CM results compiled in a number of databases. For
example, MODBASE (Pieper et al., 2006) contains over 3
millionmodels for domains covering 60%of the sequences
in the UniProt database (Wu et al., 2006). Other CM
modelling databases include PEDANT (Riley et al., 2005)
that contains structural predictions for 270 bacterial, 23
archaeal and 1 eukaryotic proteomes. Turning to more
powerful threading algorithms that can provide approxi-
mate structures for proteins in the twilight zone of sequence
identity, Kihara and Skolnick showed that threading
can provide at least approximate models for about 72%
of microbial sequences in representative proteomes

(Kihara and Skolnick, 2004). A more comprehensive,
threading-based structural database is GENTHREADER
(McGuffin et al., 2004) that contains structure predictions
for 261 proteomes; on average, the fold coverage statistics
for reliable models are consistent with that found by
Kihara and Skolnick (2004).
The small proteins in Mycoplasma genitalium were the

subjects of one of the earliest proteome scale fold predic-
tion studies, where a combined approach that spans the
range from CM to TF was applied with a success rate
estimated at 60% (Kihara et al., 2002). At about the same
time, Baker et al. applied ROSETTA to the major Pfam
families (Finn et al., 2006) 5150 residues in length, with an
estimated success rate of about 33%. TASSER was
subsequently applied to ORFs 5200 residues in the
Escherichia coli proteome, where 920/1360 ORFs are
expected to be accurately predicted based on confidence
criterion established in a comprehensive benchmark

Threading templates

Lactose permease
1pv6B, 12.3Å

Phosphatase Pp2A
1b3uA, 25.6Å

tRNA-synthetase
1a8h_, 18.3Å

Full-length molecule
4.6Å

Core region
3.3Å

TM region
2.1Å

TASSER model

Figure 2 Initial templates from PROSPECTOR_3 and the final TASSER model of highest cluster density superposed on the bovine Rhodopsin crystal structure

(PDB ID: 1f88A). Blue to red runs from N- to C-terminus. The numbers are the root mean-square deviation (RMSD), to native. Here, TM refers to the

transmembrane helix region.
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(see also Figure 3). Finally, as mentioned earlier, TASSER
was applied to model all identified human GPCRs with an
estimated success rate in predicting biologically useful
GPCR models of about 90% (Zhang et al., 2006).

The Key Unsolved Problems

To exploit the information provided by the availability of a
large number of sequenced genomes, the identification of
the function(s) of all genes/gene products in a given organ-
ismand the functional relationship amonggenes indifferent
organisms is essential. Since sequence-based approaches
leave the function of about 40–60%of the ORFs of a given
genome unassigned, the need for tools that go beyond these
methods is acute. With the ongoing structural genomics
projects as well as the finding that the PDB is essentially
complete for single domain proteins at the level ofmoderate
resolution protein structures, it is apparent that protein
structures canmake an important contribution to this goal.
However, for about 1/3 of single domainproteins that are at
best weakly homologous to proteins of solved structure,
because suitable templates cannot be identified, extant
structure prediction methods do not even yield acceptable
low-resolution models. Furthermore, since there are rela-
tively few solved integral membrane protein structures, the
development of predictive approaches that can provide
even low-to-moderate resolution structures would be of
great utility. Moreover, most prediction methods, at best,
only implicitly account for the effect of prosthetic groups,
ligands and metal ions on protein structure; thus, the
development of algorithms to predict the structural differ-
ences between the apo and holo forms of a protein is
essential. This is tied to the structure prediction of multiple
domain proteins, especially when the mutual orientation of
the domains depends on whether or not a small molecule
ligand is bound. Finally, the ability to refinemodels close to
atomic resolution so that they can be used for ligand
screening in drug discovery and in molecular replacement
for the solutionof crystal structures byX-raydiffractionhas
not been consistently demonstrated. This inability suggests
the need to build better detailed atomic force fields. Thus,
while a number of promising approaches to protein struc-
ture prediction have been developed, further progress
requires that these essential issues be addressed.
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