4.7 Driving force and entropy production in diffusion

Furthermore, 2CO - 2C + O; (4)is also a dependent reaction. It can be obtained
as 2{1)} + (2)and thus D, = 2D, + D,. The rates of formation of C and O, will be
ve=KDy+ KyD; + 2K,D, = KD, + KD, + D,) + 2K,(2D, + D,) =

(Ky + K3 + 4K D, + (K, + 2K )D,; and

Yo, = K3D, + KDy + KDy = KD, + KyDy + D)+ Ky2D, + D)) =

(Ky +2K)D, + (K, + K, + K4)D,. Both cross coefficients are thus equal to

Ky + 2K,

Exer;:ise 4.6.2

Examine if it is possible that the amount of a species decreases although its driving
force is positive. To make the discussion more specific, consider the case of L, M
and N in the text.

Hint

Consider the formation of N. For a single reaction I and d¢ must have the same
signt (usually* + * by definition) because PA¢ > Ofora spoutaneous reaction. There
is no such restriction on the cross coefficients.

Solution

. oy = Kip¥ 4 KD The second term represents the rate of formation of N by the
reaction M ~» N. Its value and even its sign depends on its driving force, By starting
with very little M this reaction would go backwards and consume more N than is
produced by L — N if the amounts of L and N are initially ciose to their
equilibrium,

Driving force and entropy production in
diffusion

The kind of chemical reaction considered in Sections 4.5 and 4.6 occurs in a system that
is homogeneous at every instant. It occurs in cvery point and with the same rate
everywhere. It is classified as a homogeneous reaction. The opposite case is a heterogen-
eous reaction occurring at the interfaces in a system of different regions, usually
regarded as phases. A heterogeneous reaction often results in the growth of some phase
and the shrinkage of another. Such a reaction is also called phase transformation. If the
phase transformation does not result in a change of the local composition, then the
driving force is easily obtained as the difference in the value of the appropriate charac-
teristic function, A@, between the parent phases and the product phases, counted per
mole of atoms, for instance. This case and related ones will be further discussed in
Section 6.8.
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Evaluation and use of driving force

In most cases, a heterogeneous reaction is accompanied by a change in compo-
sition and occurs under diffusion. Diffusion itself is yet another type of reaction. It may
occur in a system of a single phase which initially has differences in composition. In the
general case, it occurs everywhere where there is a composition difference but not with
the same rate. The result will be that local differences decrease and eventually disappear.
In this case one should discuss the progress of the reaction in each point. At any
particular point there may be a flux J of diffusing material and the derivative of the flux
resuits in a change de of the local composition. Phenomenologically this situation is
described with Fick’s laws. His first law states that

For simplicity we shall introduce the molar content, x, = c,/V,, and assume that the
motlar volume ¥, is constant. Then we obtain

We should now like to interpret this equation thermodynamically by starting
with our basic expression, Dd¢. In this case it is convenient to consider two large
reservoirs, separated by a layer of thickness Ay of the phase in which we are interested.
The layer is our system and in this unusual case we have two surroundings and twice as
many independent variables as usual. However, if Tand P have the same values and are
constant in the two reservoirs, then we can formulate the change in a characteristic state

function, @, related to Gibbs energy,
d@ = TudN; + ZydN] — Dd¢

where' and " identify the two reservoirs. Of course, there s only one Dd{ term because it
represents the effect of the process inside the system. There may be diffusion through the
system if ¢ and pt} are different in the two reservoirs. After a stationary state of diffusion
has been established, there will be no further changes inside the system and the value of
the characteristic state function will not change with time, d@ = 0, and dN; + dN} = 0.
If we further assume that there are only two components, I and 2, and they diffuse with
the same rate but in opposite directions, J, +J, =0, then we get dN)| =
—dN, = — dN} = dNj and

ey — oY — (g — #2)"]'dN'x = Dd¢

The quantity i, — i, was mentioned in Section 3.5 as the diffusion potential. dN \ can
be expressed as AJ,dt where J, is the flux of | through the layer and 4 is the area of the

cross section.

D-d¢/dt = AT Ay, — 1)
where A means the difference between the two reservoirs. We could now formulate a
kinetic equation using the same scheme as before
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4.7 Driving force and entropy production in diffusion

Adt = AT, = K-Ay ~ )

However, if we apply this equation to a thin slice of the layer, the result would depend on
the thickness. Thus it does not seem very useful to define dé/dr as AJ 1+ We would prefer
to defineit as A7 Ay, yielding the following kinetic equation

d(ﬂz".uz)
Jl—-K"—d'y—-—-

It couid be brought into the form of Fick’s law by writing

dipt; — py) _ dip; ~ p1,) dx, - dem dox,
dy dx, dy dx? dy

Inserting this and assuming that K is proportional to x,x,,ie. K = Lx;x,, where Lisa
constant, because x, x, gives the probability that 1 and 2 are available for an exchange of
positions, we get

d*G,, dx,

~Jy=J, = — Lxix, ax? dy
1

Comparison with Fick’s law gives

1 m
-I/_m = Lxlxz‘ dxi
The derivative d2G,/dx, ? is often regarded as the thermodynamic factor in diffusion,
The interesting question is now to see if we can express the entropy production
with the flux and force used in the kinetic equation. For a thin layer we can transform
our previous expression, to yield
74,5 d¢ Ay — )
— =D~ = AJ A, — =AJ,—=—"L A
dr dr 1Ay — ) 1 v Y
But A-Ay is the volume of the system, AV. We may thus express the rate of entropy
production per volume with the flux and force from the kinetic equation

T'di21>S=D d2¢ =7 de, — p,)
dedv dedV ™ “1 dy

We may thus identify J, with d2¢/dsd ¥ and D with d(gt; — p,)/dy. Note that K in our
equation has different dimensions than in previous kinetic equations.

The present derivation was made under two assumptions that we should now
discuss. Firstly, we assumed that J 1 +J; =0, which is always satisfied if one uses a
so-called ‘number-fixed frame of reference’ for diffusion. However, one can mathemat-
ically transform Fick’s law to other frames of reference, e.g. the “lattice-fixed frame of
reference’ and one gets different expressions for J, and — J - However, that is just a
mathematical operation and the assumption of J, + J, = 0 does not make our deriva-
tion less general.




Evaluation and use of driving force

Secondly, we assumed stationary conditions. However, the final equation
applies to a thin layer and it is no longer limited to stationary conditions. If the
composition profile in a non-stationary case is known, then one could evaluate the
entropy production by integration. The equation could then be used in three different
forms,

T.d2§ 2 dy — ety — )\
i _ d*¢ =, d(p, #1)2 K. (12 — 1) =1’U:)2
dedV dedV dy dy K

For stationary states the integration would simply yield the initial equation containing
Afu, — py), ie. the difference between the two reservoirs,

Exercise 4.7.1

Derive Fick’s law for diffusion of B in an A-B phase assuming that the driving force
is dyeu/dy.

Hint

In this case it would seem reasonabie to assume that the rate constant contains a
factor xg, representing the chance that a B atom is in the right place for jumping.
Also, remember that u; = G, + x,dG,_ /dx,,

Solution

dpg/dxy = dG_ fdxg — 1-dG, Jdxy + x,d%G,/dxg? = x,-d>G, fdxz%;

Jg = ~ Kgxg(x,d2G, fdxs%)dxy/dy. In the same way we would find J, =

K axA(xgd2G,, /dxp*)dxp/dy. This is in complete agreement with the case J, +
Jy = Gif A and B have the same mobility, ie. K, = K, = K,

~ Effective driving force

When a phase transformation occurs under diffusion it often happens that the processes
occurring at the phase interfaces are rapid compared to the rate of diffusion. The
transformation will then be diffusion controlled and the boundary conditions governing
the rate of diffusion can be evaluated by assuming that, whenever two phases meet at an
interface, their compositions right at the interface are very close to those required by
equilibrium. This is called the local equilibrium approximation. That approximation will
be used in the following, except when other conditions are clearly defined. For such
exceptions, see Section 6.8 and Chapter 13.

So far, we have chosen to regard T-d, S/d¢ as the driving force for the process,




4.8 Effactive driving force

the progress of which is measured by £, and it thus seemed natural to assume that the
rate of the process is proportional to D = T-d,,S/d{, at least as a first approximation,
yielding d&/dr = KD. However, one should be aware of the possibility that a process
may be accompanied by an entropy production that does not contribute to the rate of
the process. This possibility may be best explained by an example from a very simple
type of transformation.

Let us first consider particles of pure A immersed in liquid B. The component A
may dissolve in the liquid to a small but measurable extent, but B does not dissolve in
the solid. It is well known that smaller particles will dissolve and larger ones will grow,
so-called coarsening or ‘Ostwald ripening”. The driving force comes from the increased
pressure inside the smaller particles. Next, suppose that B can dissotve in solid A but the
temperature is so low that diffusion can be neglected. We would stili expect that the
pressure difference makes the smaller particles go into solution and the larger ones grow.
However, the growing layer of a large particle should now be a solid solutionof Bin A
and the process could be written as: solid A 4+ liquid B — solid A-B alloy. The chemical
driving force for such a reaction can be evaluated from — AG,, assuming that all the
phases are under the same pressure but then we should add the effect of the pressure
difference. It would seem that the chemical driving force should give a drastic increase of
the driving force for the process and make it possible even without the pressure effect, at
least after the process has started. Such a process has actually been observed in sintering
in the presence of a liquid.

However, in this description of the process we did not consider the local
equilibrium conditions at the solid A/liquid interface. Even though the rate of diffusion
inside solid A is negligible, the rate of transfer of atoms between the solid and liquid may
be appreciable. Under ordinary conditions the net rate of dissolution of A is obtained as
the difference between opposite fluxes that are much larger. We should thus recognize
that there is a very localized reaction at the interface by which a monolayer ofan A + B
solid solution forms. The chemical driving force will drive that reaction but it will soon
slow down if B does not diffuse into the interior of the A particle. Only the pressure
difference may remain and cause material from the monolayer to go into solution and
diffuse to a larger, growing particle. B from the liquid will then again react with the fresh
A surface and the mdnolayer will he healed.

This example has demonstrated that the Gibbs energy may decrease as a result
of the progress of a process without actually driving the process. One might say that the
decrease of Gibbs energy depends on the progress of the process but the process does not
depend on the decrease of Gibbs energy. The effective driving force, from which one may
estimate the rate of reaction, has to come from another source, in our example from a
pressure difference.

In the above example, it was fairly easy to identify the various steps in the
whole process and thus to identify what part of the total driving force actually contrib-
utes to the rate. The example gets more complicated if we replace the liquid by a grain
boundary which has contact with a B-rich reservoir outside the A material. Even in that
case it has been observed experimentally that an A-B solid solution can grow at the
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expense of pure A, a phenomenon called DIGM (diffusion-induced grain boundary
migration). This is actually the case for which Cahn, Pan and Balluffi {1979) first
emphasized that the whole driving force does not necessarily contribute to driving a
process. For DIGM they argued that the chemical driving force does not contribute at
all and they proposed that the effective driving force comes from the process of diffusion
of B down the grain boundary. Later, it was proposed that a part of the chemical driving
force is not dissipated, as described above, thanks to the action of coherency stresses,

“and that this undissipated part thus is able to drive the main process. There may also be
‘a deviation from the local-equilibrium approximation by the sluggishness of processes
occurring at or in the interface. Contrary to the natural expectation that this would
cause further dissipation of the driving force, it may, in fact, result in less dissipation and
thus again leave some of the driving force to drive the main process.

This kind of complication has not attracted much attention and it wiil not be
further considered in this book. Thus, we shall regard chemical driving forces as forces
actually contributing to the rate of processes and the local-equilibrium approximation
will be applied in most cases. .

Exercise 4.8.1

Consider the mechanical device shown here. The left hand piston is supposed to
have a friction against the cylinder, but not the right-hand piston. Between the two
chambers there is a thin tube and the rate of transfer of gas from left to right is
governed by the flow of gas through that tube. Examine how close an analogue this

device would be to the example discussed in the text?

Exercise 4.8.1

Hint

Suppose the friction force is constant, i.e. independent of the rate of movement,

Solution

If we compare P, — P, with the chemical driving force and P, — P, with the effect
of the pressure difference between small and large particles, then the analogue is
very close. The friction between piston and cylinder corresponds to the dissipation
of chemical driving force by the interface reaction,




