Dry High-Pressure Methods

Chemistry at the Earth’s surface at 100 kPa
Chemistry in the Universe at hight pressures and temperatures
deep within the planets and stars

Laboratory:

Pressures up to 250 GPa, high temperatures ~7000 °C

1 bar =100 kPa 1 Mbar = 100 GPa

p-V work during compression to 1 Mbar equivalent to approx. 1 eV
chemical bond energy

In-situ observations by diffraction, spectroscopy to probe chemical reactions,
structural transformations, crystallization, amorphization, phase transitions

Methods of obtaining high pressures

* Anvils, diamond, tetrahedral and octahedral
% Shock waves (km s™)

% Explosions, projectiles

% Go to another planet: Jupiter

(hydrogen is metallic at 100 Gbar)
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PRESSURE SCALE
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Dry High-Pressure Methods

Pressure techniques useful for synthesis of unusual structures
TD metastable yet Kinetically stable when pressure released

= pressure and temperature quenching

reconstructive transformation hindered at low temperature
insufficient thermal energy for bond-breaking pressure, kilobars
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Pressure/Coordination Number Rule: increasing pressure — higher CN
Pressure/Distance Paradox: increasing pressure — longer bonds



Dry High-Pressure Methods

Gray Sn (diamond type, stable below 13 °C, semiconductor)
Coordination number 4, Sn-Sn bond length 281 pm

White Sn (metallic)
Coordination number 6, Sn-Sn bond lengths 302 and 318 pm




Solid
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KCl
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Li,MoO,

NaAlO,

Dry High-Pressure Methods

Examples of high pressure polymorphism for some simple solids

Normal
structure and
coordination
number
Graphite 3
Wurtzite 4:4
Rock salt 6:6
Quartz 4:2

Phenacite 4:4:3

Wurtzite 4:4:4
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transformation
conditions
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Diamond 4
Rock salt 6:6
CsCl1 8:8
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High-Pressure Phase Transformations

zinc blende rock salt
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Unusual Stoichiometries under High-Pressure
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Water

17 phases of ice
Ice-VII m.p. 100 °C

Ice-X fluorite, ionically conductive above 10 GPa

Equalization of O-H covalent

and hydrogen bonds above 60 GPa floats

sinks

Max pressure attained for water 210 GPa

Ca

ccp at ambient pressure

bce (1) above 20 GPa 4s-3d mixing, Ca become a transition metal

MgSiO3 most abundant silicate mineral within our planet !

pyroxene (silicate chains)

ilmenite > garnet > perovskite Si CN =6
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Reaction Equlibrium and Pressure

The reaction volume AV = the volume difference between the

products (A) and the reactants (C)

A=C

cRTInK

AG’ = —RTIn K —>( =

Associative type = negative AV°

K increases with increasing pressure

Dissociative type = positive AV

K decreases with increasing pressure

).

Energy

AP

Reaction Co-ordinate

: 16
Reaction: A—> (C



Reaction Kinetics
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The activation volume AV# = the volume difference between the transition
state complex and the reactants
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Associative type = the rate determining step involves the formation of a covalent bond

negative AV# > reaction rate increases with increasing pressure

Dissociative type = the breaking of a covalent bond

L L L L o L 17
positive AV# > reaction rate decreases with increasing pressure



Diamond Anvil Cell

Load .

|

Percy Williams Bridgman
(1882 — 1961, NP in Physics 1946) 18



Diamond Anvil Cell

Diamond anvil cell

p=F/A

p =40 GPa

Avple! Acutet =10 ¢ 1
A et = 100-200 pm

laser heating T > 2500 °C
Re, steel gasket
Diamond transparent

to radiation from IR to X-ray

pressure transmitting medium:

solid Ar, N,, O,,

sample in inert
medium

steel gasket

uniaxial load

diamond anvils

/ Rubin chip for
pressure determination
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Diamond Anvil Cell
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Dry High-Pressure Methods

Calibrating a high pressure diamond anvil
e Ruby - fluorescence transition
e Bi, Tl, Ba pressure induced phase transition

Ruby = Cr doped corundum

High pressure synthesis

SnO; + Pb,Sn0Oy > 2 PbSnO; perovskite 7 GPa, 400 °C

At ambient pressure only SnO, and PbO products

22



CrF¢* a,, (breathing)
vibrational mode

@A
@B
@F

Rb,KCrF, 2E, (1.865 eV)

(15040 cm™1)

Wavenumber (cm™")

12000 14000 1600 18000
T T T T

2 | Emission: ‘To—>"A,, l R Optical absorption

=
; 4 2 2

Rb K rF ; / / > Ty By Ty

= / 3 7
2 C 6 -
g
w
g
=}
=
=
oy

1.4 1.6 1.8 2.0 22 24

PL Intensity (arb. units)

Photon energy (eV)

10000 11000 12000 13000 14000 15000 (cm'l)
A (nm) 850 800 750 700 650 -
[ I I | E

L} 4] P=02GPa ]
08¢
8.1 GPa

04k

PL lifetime (ms)

0.0
0

s m s 20
Pressure (GPa)

17.5 GPa |

ot a g o Aouoaa .l P 1 PRI (RIS S T T T T N T

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Photon energy (eV)

(siun *q1e) 20ueqIosqy



High Pressure Two-Die Belt-Type Apparatus

i pressure - transmitting medium

h Fering (electrical connection)
9 Corundum disc (thermal insulation)

f Mo disc (electrical connection)

} sample container + lids

} graphite heating mantle

e pressure - transmitting medium

24



Synthesis of Diamonds

The hardest known substance, the highest thermal conductivity
Difficult to transform graphite into diamond
Industrial diamonds (GE) made from graphite around 3000 °C and 13 GPa
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e — transformation of C; into diamond
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Synthesis of Diamonds

The activation energy required for a sp? 3-coordinate to a sp? 4-coordinate structural
transformation is very high, so requires extreme conditions

Ways of getting round the difficulty

¢ Catalyst: transition metals (graphite is dissolved in molten metal: Fe, Ni, Co, 6
GPa, 1000 °C), alloys (Nb-Cu), CaCO;, hydroxides, sulfates, P (7.7 GPa, 2200 °C, 10
min)

¢ Squeezing (uniaxial not hydrostatic pressure), no heating, buckyball carbons are
already intermediate between sp?-3

C» diamond anvil, 25 GPa instantaneous transformation to bulk crystalline
diamond, highly efficient process, fast Kinetics

¢ Carbon onions, electron irradiation of graphite, concentric spherical graphite
layers, spacing decreases from 3.4 A to 2.2 A in the onion center, 100 GPa, 200 keV
beam, in several hours, pressureless conversion to diamond

¢ Using CH,/H, microwave discharges to create reactive atomic carbon whose
valencies are more-or-less free to form sp’ diamond, atomic hydrogen saturates the
dangling bonds, dissolves soot faster than diamond, a route for making diamond
films, 50 pm
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Carbon onions
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Organic molecule theory of diamond cleavage

The jeweler's chisel if placed correctly on a diamond, with a well
oriented blow, always cause cleavage along {111} greater than 90%
of the time, imagine the cost of a mistake with a large crystal

The number of bonds broken per unit area (that is, surface energies)
for different planes does not explain the observations of preferential
{111} cleavage!!!

Diamond viewed in terms of layers of polycondensed cyclohexane
rings with axial bonds between layers and equatorial bonds within
layers

Unfavorable axial-axial C-C bond interactions at 2.51 A versus
equatorial-equatorial at 2.96 A
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Model compounds like cis-decalin versus trans-decaline
comprised of two fused cyclohexane rings

trans-decalin is 11-12 kJmol" more stable because cis-strain
cannot be relieved by bond rotation as in cyclohexane itself,

cis can only isomerize to trans by bond cleavage followed by
recombination, hence origin of the high activation energy for the
cis-to-trans isomerization of decalin.

A breaking molecule theory: axial-axial unfavorable interactions
cause the mechanical energy of the jeweler's chisel to be funneled
into preferential breakage of an axial C-C bond

This then induces a kind of domino effect whereby the adjacent
axial C-C bonds break and C-C bonds throughout the entire {111}
plane are severed
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Lonsdaleite - hexagonal diamond

Discovered in the Canyon Diablo meteorite
(AZ, 50 ky, 30 t)
Found also in some rocks

May be stronger and stiffer than diamond
Synthesized in the laboratory at static pressure of 130 kbar and temperature
over 1000 °C from well-crystallized graphite in which the ¢ axes of the

crystallites are parallel to each other and to the direction of compression

The crystal structure is hexagonal with a =2.52 A and ¢ =4.12 A.
density is 3.51 g/cm?3, same as cubic diamond

Prepared also from crystalline graphite by a method involving intense shock
compression and strong thermal quenching
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Polymerization of C,

no. of covalently
Cs, phase bonded neighbors MVH, kg/mm? 0...c 9/Cm? d,. g/cm?

monomer 0 15 1.684 1.68
2D Immm 4 80 1.936 1.93
2D R3m 6 100 2.004 1.98
3D Immm 8 3,500 2.78 2.65
3D R3 12 4,500 2.81 2.61
Diamond? 10,000 3.52

c-BN? 5,000




Electrical conductivity of semiconductors increases with T. The change of
conductivity with T is one way of measuring the band gap.

Conductivity also increases with P, because atoms are pushed closer
together.

All elements eventually adopt metallic structures at high P.
The interior of Jupiter is thought to contain metallic hydrogen!
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