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SiCl4 + H2O   OSiCl2 + 2 HCl

OSiCl2 + H2O   SiClOOH  + HCl

SiClOOH  SiO2 + HCl

Gas Phase Reactions
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Gas Phase Reactions
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Y2O3 Particles by Flame Aerosol Process

oxygen

hydrogen
Y(NO3)3
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Particle Size Control

Particle size control by precursor concentration

Higher concentration = larger size
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Calcium phosphate nanoparticles Ca/P molar ratios 1.43 to 1.67 

synthesized by simultaneous combustion of 
Ca(OAc)2 + OP(OnBu)3 in a flame spray reactor

Fluoro-apatite and zinc or magnesium doped calcium phosphates
adding trifluoroacetic acid or metal carboxylates into the fuel. 

Nanoparticle morphology 

At a molar ratio of Ca/P < 1.5 promoted the formation of dicalcium pyrophosphate 
(Ca2P2O7). 

Phase pure tricalcium phosphate TCP - Ca3(PO4)2
obtained with a precursor Ca/P ratio of 1.52 after subsequent calcination at 900 °C 

micropores and the facile substitution of both anions and cations 
possible application as a biomaterial.

Gas Phase Reactions



Spray Pyrolysis
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(1) mass flow controller – O2 1 L/min
(2) ultrasonic nebulizer – aqueous solution
2 Co(OAc)2 : 1 Ni(OAc)2
(3) 3-zone heater - 400 C
(4) temperature controller
(5) electrostatic precipitator

SEM micrographs of NiCo2O4 particles
obtained from different concentrations of 
Co(OAc)2 and Ni(OAc)2 precursor solutions –
Lower concentration reduces particle size

400 C

tubular furnace reactor 



Morphology Control
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(a) HAADF-STEM of a rutile@anatase 
core@shell microsphere; (b) titanium 
L2,3 core-loss EELS spectra acquired 
from the indicated areas compared to 
reference TiO2 polymorphs [rutile 
(green) and anatase (red)] (d−f) EELS 
maps: (d) rutile (green), (e) anatase 
(red), and (f) rutile and anatase overlaid 
color map. (c) 3D tomographic 
reconstruction of another typical 
rutile@anatase core−shell microsphere, 
together with the corresponding 
HAADF-STEM image (inset).
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Gas Phase Reactions
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T1T2

traces of a transporting agent B
(e.g. I2)

A
AB

Vapor Phase Transport Syntheses
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Whether T1 < T2 or T1 > T2 depends on the thermochemical balance of the reaction !
Transport can proceed from higher to lower or from lower to higher temperature

Vapor Phase Transport Syntheses
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Vapor Phase Transport Syntheses

van’t Hoff equation
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Estimation of the thermochemical balance (H) of a transport reaction:

e.g.:

ZnS(s) +  I2(gas)  ZnI2(gas) + S(g) H = ??

Zn(s) +  I2(g)  ZnI2(gas)          H = - 88 kJ mol-1

ZnS(s)  Zn(s) +  S(g)             H = +201 kJ mol-1

----------------------------------------------------------------
 ZnS(s) +  I2(gas)  ZnI2(gas) + S(g) H = +113 kJ mol-1

endothermic reaction, transport from hot to cold!

Vapor Phase Transport Syntheses
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Ti  + 2I2 TiI4 H = -376 kJ mol-1

exothermic: transport from cold to hot

W-filament (ca. 1500 K)

Ti-powder (ca. 800 K)

I2

Ti-crystals
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Laser-induced homogeneous pyrolysis, LIHP

C2H4 + h  C2H4
*

Excitation energy transferred to 
vibrational-translational modes

 T increases
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Sensitizer

SF6
948 cm-1

Isopropanol
958 cm-1

laser wavelength
10.60 ± 0.05 m
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Reaction Zone

Overlap between 
the vertical reactant gas stream 
and the horizontal laser beam 

away from the chamber walls 

nucleation of nanoparticles 
less contamination
narrow size distribution
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Iron-oxide Nanoparticles by Laser-induced 
Pyrolysis

2 Fe(CO)5 + 3 N2O  Fe2O3 + 10 CO + 3 N2


