TEM image of the Pd-grafted mesoporous silicate material

Mesoporous Materials

- Amorphous, disordered silica xerogels
- Ordered pores, amorphous walls

Pore diameter, d [nm]	Material	Example	
d > 50	Macroporous	Aerogels	
2 < d < 50	Mesoporous	Xerogels	
d < 2	Microporous	Zeolites	

Mesoporous Materials

Pore diameter, d [nm]	Material	Example
d > 50	Macroporous	Aerogels, foams
2 < d < 50	Mesoporous	Xerogels, MCM-41, SBA-15
d < 2	Microporous	Zeolites, MOF, COF

IUPAC classification of porous materials

Mesoporous Materials

MMS mesoporous molecular sieves

MCM-n Mobil Composition of Matter

M41S

Discovered 1992

A - lamellar, 2D layers, MCM-50

B - hexagonal order, 1D channels, MCM-41

C – cubic, 3D channel structure (bicontinuous), MCM-48

Inverse hexagonal

Pore size distribution

Micelles - Supramolecular Templates

In zeolitic materials the template is a single molecule or ion

Self assembled aggregates of molecules or ions can also serve as templates

Surfactants aggregate into a variety of structures depending on conditions

Mesostructure Assembly

Supramolecular Templating

Surfactants - amphiphilic molecules, polar (head group)and nonpolar (chain, tail) part lyophilic, lyophobic

Ionic surfactants, cationic, anionic, zwitterionic

Nonionic amines, polyethyleneoxides

- A normal surfactant molecule
- **B** gemini
- C swallow tail

Surfactants

Anionic

• sulfates:	$C_nH_{2n+1}OSO_3Na^+$
• sulfonates:	$C_nH_{2n+1}SO_3H$
• phosphates:	$C_nH_{2n+1}OPO_3H_2$
• carboxylates:	$C_nH_{2n+1}COOH$

Cationic

•	alkylammonium salts:	$C_nH_{2n+1}(CH_3)_3NX$	$X = OH, Cl, Br, HSO_4$

• dialkylammonium salts: $(C_{16}H_{33})_2(CH_3)_2N^+Br^-$

Noionic

•	primary	amines:	$C_nH_{2n+1}NH_2$
---	---------	---------	-------------------

• polyethyleneoxides: HO(CH₂CH₂O)_nH

Supramolecular Templating

Phase diagram of C_{16} TMABr CMC = critical micelle conc.

Micellar Shapes

Micellar shapes

A -spherical, B - rod-like, C - lamellar

Micelles in media

- A normal, in polar solvent, H₂O
- **B** inverse, in nonpolar solvent, organics

Surfactant Molecules

Critical packing parameter – CPP

 $\mathbf{CPP} = \mathbf{V}_{\mathbf{H}} / \mathbf{a}_0 \mathbf{l}_{\mathbf{c}}$

 V_H volume of the hydrophobic part, a_0 surface area of the hydrophilic part, l_c critical chain length:

 $l_c \le 1.5 + 1.265 n$ [Å]

n number of carbon atoms. l_c depends on the chain shape.

Micellar Shapes

Micellar structures

A) sphere, B) cylinder, C) planar bilayer, D) reverse micelles, E) bicontinuous phase, F) liposomes).

CPP	surfactant	micelle shape
< 0.33	linear chain, large head	spherical
0.33 - 0.5	linear chain, small head	cylindrical
0.5 - 1.0	two chains, large head	bilayers

Surfactant Molecules

15

 L_1 = micellar solution; Nc = nematic phase; H_1 = normal hexagonal phase (MCM-41; SBA-15); V_1 = normal bicontinuous cubic phase (MCM-48); L_{α} = lamellar phase (MCM-50)

path A, the micellar solution route path B, the lamellar phase route path C, the nematic phase route

General Liquid Crystal Templating (LCT) Mechanism

Mechanism of the Mesoporous Material Formation

Hexagonal, MCM-41

LCT Liquid Crystal Templating

SLC Silicatropic Liquid Crystals Mechanism

Lamellar to Hexagonal Transformation

Charge Density Matching

As condensation proceeds the charge on the silicate layer decreases

 $Si-O^- \rightarrow Si-O-Si$

23

 $(\pm$

• Hydrogen Bond

a) **S⁰I⁰**

I = silicate

 $\mathbf{S} = ammine$

b) **N⁰I⁰**

N = polyethylenoxide

• Covalent Bond

a) **S-I**

I—S

Surfactant chain length - increasing the chain length = bigger pores

Swelling agents – an organic additive, such as trimethylbenzene, enters the surfactant assembly (micelle) = bigger pores

Post synthetic modification - after a material has been made the pore size can be reduced by modifying the interior surface = smaller pores

Surfactant chain length n C _n H _{2n+1} NMe ₃	Lattice constant (Å)	Ar pore size (Å)	Maximum benzene uptake at 50 torr (wt%)
8	31	18	16
9	32	21	37
10	33	22	32
12	33	22	36
14	38	30	54
16	40	37	64

Silylation of hydroxyl groups in MCM-41 by Me₃SiCl reduces the effective pore size

EISA = Evaporation-induced self-assembly

EISA

TEM micrograph of hexagonal molecular sieve

XRD of Lamellar MCM-50

XRD of Hexagonal MCM-41

d(100) = interplanar distance in the (100) plane **a**₀ = mesoporous parameter

8

9

$$a_0 = \frac{2d_{100}}{\sqrt{3}}^{34}$$

10

10

Gas Adsorption Isotherms

Template Removal

Mesoporous Platinum Metal

H₂[PtCl₆] or (NH₄)₂[PtCl₆] C₁₆(EO)₈ Assembly of liquid crystalline phase Reductants: Fe, Zn, Hg, NH₂NH₂ Washed with acetone, water, HCl

SEM (upper) and TEM (lower) images of mesoporous Pt metal show particles 90-500 nm in diameter and a pore diameter of 30 A and a pore wall thickness of 30 A.

Surface Silanols in MCM-41 Pores

Chemistry inside the Pores

Hard Tempalting

- **A** = microwave digestion template removal
- **B** = introduction of metal salt solution
- **C** = calcination
- $D = dissolution of SiO_2 in HF or NaOH$

Cr₂O₃ crystalline nanowires (bar = 25 nm for A, 10 nm for A1)

Pore Size Regimes and Transport Mechanisms

Macropores = larger than 50 nm larger than typical mean free path length of typical fluid. Bulk diffusion and viscous flow

Mesopores = between 2 and 50 nm same order or smaller than the mean free path length. Knudsen diffusion and surface diffusion. Multilayer adsorption and capillary condensation may contribute

Micropores = smaller than 2 nm pore size comparable to the size of molecules. Activated transport dominates

Spinodal Decomposition

(a) Free energy of a binary
system as a function of
composition and the miscibility
region showing the origin of
the binodal and spinodal lines

(b) Evolution of a blendmicrostructure phaseseparating by spinodaldecomposition

Spinodal Decomposition

A two component system with a composition, *c*, that is unstable to small fluctuations in concentration,

where

$$\frac{\partial^2 G}{\partial c^2} < 0$$

(G = the free energy),

will spontaneously phase separate with the fluctuations increasing and coarsening over time.

Spinodal Decomposition

Sol–Gel with Phase Separation

$\Delta G \propto RT[(\phi_1/P_1)\ln\phi_1 + (\phi_2/P_2)\ln\phi_2 + \chi_{12}\phi_1\phi_2]$

 $\phi i = the volume fraction$

Pi (i = 1, 2) = the degree of polymerization of each component,

 χ_{12} the interaction parameter

The former two terms in the bracket express the entropic contribution, 47 and the last term the enthalpic contribution

Macroporous – good mass transport Mesoporous – large surface area available for active sites Microporous – catalytic selectivity

TMOS-Formamide-1*M* nitric acid (b) calculated composition. Reaction temperature 40 °C; circles with cross and shaded areas denote the composition where the interconnceted structure has been obtained. •: nanoporous gel, ⊕: interconnected strucuture, O: particle aggregates, **—**: macroscopic two-phase.

SEM images of dried TiO₂gels prepared with varied water/TiO₂molar ratios in the overall starting 1:0.5:0.5:f Ti(O₄C₃H₇)₄:HCl:formamide:water composition: (a) f) 20.50, (b) f) 20.75, (c) f) 21.00, (d) f) 21.25, and (e) f) 21.50. (f) Photo image of monolithic TiO₂gels prepared in Teflon tubes and a coin.

Time evolution of a spinodally decomposing isotropic symmetrical system

Development of co-continuous structure

Self-similar coarsening 1

Self-similar coarsening 2

Fragmentation of domains

Spheroidization and sedimentation

Alkoxide + Water (r < 1.5) + Formamide

Gel Phase : Silica + Good Solv. Fluid Phase : Good & Poor Solvs.

Silica

Poor Solv.

Alkoxide + Water (r > 2) + Weakly H.B. Polymer Gel Phase : Silica + Solvent

Fluid Phase : Polymer + Solvent

Development of co-continuous structure

Self-similar coarsening 1

Self-similar coarsening 2

Fragmentation of domains

Spheroidization and sedimentation