TEM image of the Pd-grafted mesoporous silicate material

Mesoporous Materials

- Amorphous, disordered - silica xerogels
- Ordered pores, amorphous walls

Pore diameter, \boldsymbol{d} $[\mathrm{nm}]$	Material	Example
$\boldsymbol{d}>50$	Macroporous	Aerogels
$2<\boldsymbol{d}<50$	Mesoporous	Xerogels
$\boldsymbol{d}<2$	Microporous	Zeolites

Mesoporous Materials

Pore diameter, \boldsymbol{d} $[\mathrm{nm}]$	Material	Example
$\boldsymbol{d}>50$	Macroporous	Aerogels, foams
$2<\boldsymbol{d}<50$	Mesoporous	Xerogels, MCM-41, SBA-15
$\boldsymbol{d}<2$	Microporous	Zeolites, MOF, COF

IUPAC classification of porous materials

Mesoporous Materials

MMS mesoporous molecular sieves

MCM-n Mobil Composition of Matter
M41S
Discovered 1992
A - lamellar, 2D layers, MCM-50
B - hexagonal order, 1D channels, MCM-41
C - cubic, 3D channel structure (bicontinuous), MCM-48
Inverse hexagonal

A

B

C

Pore size distribution

Micelles - Supramolecular Templates

In zeolitic materials the template is a single molecule or ion
Self assembled aggregates of molecules or ions can also serve as templates
Surfactants aggregate into a variety of structures depending on conditions

Mesostructure Assembly

A

Supramolecular Templating

Surfactants - amphiphilic molecules, polar (head group)and nonpolar (chain, tail) part lyophilic, lyophobic

Ionic surfactants, cationic, anionic, zwitterionic
Nonionic amines, polyethyleneoxides
A - normal surfactant molecule
B - gemini
C - swallow tail

Diblock copolymer surfactant

Bolaform surfactant

Classical surfactant (rigid surfactant)

Gemini surfactant (dimeric)

Surfactants

Anionic

- sulfates:
- sulfonates:
- phosphates:
- carboxylates:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+1} \mathrm{OSO}_{3} \mathrm{Na}^{+} \\
& \mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+1} \mathrm{SO}_{3} \mathrm{H} \\
& \mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+1} \mathrm{OPO}_{3} \mathrm{H}_{2} \\
& \mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+1} \mathrm{COOH}
\end{aligned}
$$

Cationic

- alkylammonium salts:
$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+1}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NX} \quad \mathrm{X}=\mathrm{OH}, \mathrm{Cl}, \mathrm{Br}, \mathrm{HSO}_{4}$
- dialkylammonium salts: $\left(\mathrm{C}_{16} \mathrm{H}_{33}\right)_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}^{+} \mathrm{Br}^{-}$

Noionic

- primary amines:
- polyethyleneoxides:
$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+1} \mathrm{NH}_{2}$
$\mathrm{HO}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n}} \mathrm{H}$

Supramolecular Templating

Phase diagram of $\mathrm{C}_{16} \mathbf{T M A B r}$
CMC = critical micelle conc.

Micellar Shapes

Micellar shapes
A -spherical, B - rod-like, C - lamellar

A

B

C

Micelles in media
A - normal, in polar solvent, $\mathrm{H}_{2} \mathrm{O}$
B - inverse, in nonpolar solvent, organics

Surfactant Molecules

Critical packing parameter - CPP

$$
\mathbf{C P P}=V_{H} / a_{0} I_{c}
$$

V_{H} volume of the hydrophobic part, a_{0} surface area of the hydrophilic part, I_{c} critical chain length:

$$
\mathrm{I}_{\mathrm{c}} \leq 1.5+1.265 \mathrm{n} \quad[\AA]
$$

n number of carbon atoms. I_{c} depends on the chain shape.

Conical (icecream cone, A)
Inverse conical (champagne cork, B)

Micellar Shapes

A

B

C

D

E

F

Micellar structures
A) sphere, B) cylinder, C) planar bilayer, D) reverse micelles, E) bicontinuous phase, F) liposomes).
CPP
<0.33
$0.33-0.5$
$0.5-1.0$
surfactant
linear chain, large head
linear chain, small head
two chains, large head
micelle shape
spherical
cylindrical
bilayers

Surfactant Molecules

Mechanism of the Mesoporous Material Formation

$\mathrm{L}_{1}=$ micellar solution; $\mathbf{N c}=$ nematic phase; $\mathrm{H}_{1}=$ normal hexagonal phase (MCM-41; SBA-15);
$\mathrm{V}_{1}=$ normal bicontinuous cubic phase (MCM-48); $\mathrm{L}_{\alpha}=$ lamellar phase (MCM-50)
path A, the micellar solution route
path B, the lamellar phase route
path C, the nematic phase route

General Liquid Crystal Templating (LCT) Mechanism

b) F

Mechanism of the Mesoporous Material Formation

Hexagonal, MCM-41
LCT Liquid Crystal Templating

SLC Silicatropic Liquid Crystals Mechanism

Lamellar to Hexagonal Transformation

Charge Density Matching

As condensation proceeds the charge on the silicate layer decreases

$$
\mathbf{S i}-\mathbf{O}^{-} \rightarrow \mathbf{S i}-\mathbf{O}-\mathbf{S i}
$$

- Electrostatic interactions

a) $\mathbf{S}^{+} \mathbf{I}^{-}$
$\mathbf{I}=$ silicate
$\mathbf{S}=$ trimethylammonium
I-
b) SI^{+}

$$
\begin{aligned}
\mathbf{I}= & \mathrm{Fe}^{2+}, \\
& \mathrm{Fe}^{3+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \\
& \mathrm{Mg}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Al}^{3+}
\end{aligned}
$$

$$
\mathbf{S}=\text { sulfonane }
$$

c) $\mathbf{S}^{+} \mathbf{X I}^{+}$
$\mathbf{I}=$ silicate - polyelectrolyte
positive charge
$\mathbf{X}=\mathrm{Cl}$
$\mathbf{S}=$ trimethylammonium
(
d) $\mathbf{S M}^{+} \mathbf{I}^{-}$
$\mathbf{I}=$ aluminate
$\mathbf{M}=\mathrm{Na}$
S = phophate
$\underbrace{\ominus}$

- Hydrogen Bond
a) $\mathbf{S}^{\mathbf{0}} \mathbf{I}^{\mathbf{0}}$
$\mathbf{I}=$ silicate
$\mathbf{S}=$ ammine

b) $\mathbf{N}^{\mathbf{0}} \mathbf{I}^{\mathbf{0}}$

I $=$ silicate
$\mathbf{N}=$ polyethylenoxide
I-

- Covalent Bond
a) $\mathrm{S}-\mathrm{I}$

I = niobate, tantalate
$\mathbf{S}=$ ammine
(—S~~~N

Control of Pore Size

Control of Pore Size

Surfactant chain length - increasing the chain length = bigger pores

Swelling agents - an organic additive, such as trimethylbenzene, enters the surfactant assembly (micelle) = bigger pores

Post synthetic modification - after a material has been made the pore size can be reduced by modifying the interior surface $=$ smaller pores

Control of Pore Size

Surfactant chain length \mathbf{n} $\mathbf{C}_{\mathbf{n}} \mathbf{H}_{2 \mathbf{n}_{+} \mathbf{N M e}_{3}}$	Lattice constant (\AA)	Ar pore size (\AA)	Maximum benzene uptake at 50 torr (wt\%)
8	31	18	16
9	32	21	37
10	33	22	32
12	33	22	36
14	38	30	54
16	40	37	64

Control of Pore Size

Control of Pore Size

Silylation of hydroxyl groups in MCM-41 by $\mathrm{Me}_{3} \mathrm{SiCl}$ reduces the effective pore size

EISA = Evaporation-induced self-assembly

EISA

TEM micrograph of hexagonal molecular sieve

XRD of Lamellar MCM-50

XRD of Hexagonal MCM-41

wt $=$ wall thickness
$\mathbf{d}(\mathbf{1 0 0})=$ interplanar distance in the (100) plane $a_{0}=$ mesoporous parameter

$$
a_{0}=\frac{2 d_{100}}{\sqrt{3}^{34}}
$$

Gas Adsorption Isotherms

Template Removal

Mesoporous Platinum Metal

$\mathrm{H}_{2}\left[\mathrm{PtCl}_{6}\right]$ or $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{PtCl}_{6}\right]$
$\mathrm{C}_{16}(\mathrm{EO})_{8}$
Assembly of liquid crystalline phase
Reductants: $\mathrm{Fe}, \mathbf{Z n}, \mathbf{H g}, \mathbf{N H}_{2} \mathbf{N H}_{2}$
Washed with acetone, water, HCl

SEM (upper) and TEM (lower) images of mesoporous Pt metal show particles $90-500 \mathrm{~nm}$ in diameter and a pore diameter of 30 A and a pore wall thickness of 30 A.

Surface Silanols in MCM-41 Pores

Chemistry inside the Pores

bis(benzene)chromium

Hard Tempalting

$A=$ microwave digestion - template removal
B = introduction of metal salt solution
C = calcination
$\mathrm{D}=$ dissolution of SiO_{2} in HF or NaOH

$\mathrm{Cr}_{2} \mathrm{O}_{3}$ crystalline nanowires (bar = $25 \mathbf{n m}$ for A, 10 nm for A1)

Pore Size Regimes and Transport Mechanisms

Macropores = larger than 50 nm larger than typical mean free path length of typical fluid. Bulk diffusion and viscous flow

Mesopores = between 2 and 50 nm same order or smaller than the mean free path length. Knudsen diffusion and surface diffusion. Multilayer adsorption and capillary condensation may contribute

Micropores = smaller than 2 nm pore size comparable to the size of

Capillary condensation

Activated

Spinodal Decomposition

(a) Free energy of a binary system as a function of composition and the miscibility region showing the origin of the binodal and spinodal lines
(b) Evolution of a blend microstructure phase separating by spinodal decomposition

Spinodal Decomposition

A two component system with a composition, c, that is unstable to small fluctuations in concentration, where

will spontaneously phase separate with the fluctuations increasing and coarsening over time.

Spinodal Decomposition

Sol-Gel with Phase Separation

Physical Cooling

Chemical Cooling

Composition

$$
\Delta G \propto R T\left[\left(\phi_{1} / P_{1}\right) \ln \phi_{1}+\left(\phi_{2} / P_{2}\right) \ln \phi_{2}+\chi_{12} \phi_{1} \phi_{2}\right]
$$

$\phi i=$ the volume fraction
Pi $(i=1,2)=$ the degree of polymerization of each component, χ_{12} the interaction parameter
The former two terms in the bracket express the entropic contribution, and the last term the enthalpic contribution

Hierarchically Porous Monoliths

Macroporous - good mass transport Mesoporous - large surface area available for active sites Microporous - catalytic selectivity

(a)

TMOS-Formamide-1M nitric acid (b) calculated composition.
Reaction temperature $40^{\circ} \mathrm{C}$; circles with cross and shaded areas denote the composition where the interconnceted structure has been obtained. •: nanoporous gel, \oplus : interconnected strucuture, O : particle aggregates, - : macroscopic two-phase.

(b)

SEM images of dried TiO_{2} gels prepared with varied water/ TiO_{2} molar ratios in the overall starting 1:0.5:0.5:f Ti($\mathrm{O}_{\mathrm{c}} \mathrm{CH}$).: HCl :formamide:water composition: (a) f) 20.50 , (b) f) 20.75 , (c) f) 21.00 , (d) f) 21.25, and (e)f) 21.50. (f) Photo image of monolithic TiO_{2} gels prepared in Teflon tubes and a coin.

Hierarchically Porous Monoliths

(a)

Alkoxide + Water $(r<1.5)$
 + Formamide

Gel Phase: Silica + Good Solv. Fluid Phase : Good \& Poor Solvs.
(b)

Alkoxide + Water (r > 2)

+ Weakly H.B. Polymer
Gel Phase: Silica + Solvent Fluid Phase : Polymer + Solvent
(c)

Alkoxide + Water $(r>2)$

+ Strongly H.B. Polymer
Gel Phase: Polymer + Silica Fluid Phase : Solvent + Silica

Hierarchically Porous Monoliths

Hierarchically Porous Monoliths

Time evolution of a spinodally decomposing isotropic symmetrical system

Alkoxide + Water $(r<1.5)$

+ Formamide
Gel Phase: Silica + Good Solv. Fluid Phase : Good \& Poor Solvs.
(b)

