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TEM image of the Pd-grafted mesoporous
silicate material
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Pore diameter, d 
[nm] Material Example 

d  50  Macroporous Aerogels 

2  d  50  Mesoporous Xerogels 

d  2  Microporous Zeolites 
 

• Amorphous, disordered - silica xerogels 

• Ordered pores, amorphous walls

Mesoporous Materials
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Mesoporous Materials
Pore diameter, d 

[nm] Material Example 

d  50  Macroporous Aerogels, foams 

2  d  50  Mesoporous Xerogels, MCM-41, SBA-15 

d  2  Microporous Zeolites, MOF, COF 
 



IUPAC classification of
porous materials
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MMS mesoporous molecular sieves

MCM-n Mobil Composition of Matter

M41S

A - lamellar, 2D layers, MCM-50

B - hexagonal order, 1D channels, MCM-41

C – cubic, 3D channel structure (bicontinuous), MCM-48

Inverse hexagonal

Discovered 1992

Mesoporous Materials
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Pore size distribution



Micelles - Supramolecular Templates
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In zeolitic materials the template is a single molecule or ion

Self assembled aggregates of molecules or ions can also serve as templates

Surfactants aggregate into a variety of structures depending on conditions
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Mesostructure Assembly
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Surfactants - amphiphilic molecules, polar (head group)and nonpolar (chain, tail) part

lyophilic, lyophobic

Ionic surfactants, cationic, anionic, zwitterionic

Nonionic amines, polyethyleneoxides

A - normal surfactant molecule

B - gemini

C - swallow tail

Supramolecular Templating
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Anionic

 sulfates: CnH2n+1OSO3
-Na+ 

 sulfonates: CnH2n+1SO3H

 phosphates: CnH2n+1OPO3H2

 carboxylates: CnH2n+1COOH

Cationic

 alkylammonium salts: CnH2n+1(CH3)3NX X = OH, Cl, Br, HSO4

 dialkylammonium salts: (C16H33)2(CH3)2N+Br-

Noionic

 primary amines: CnH2n+1NH2

 polyethyleneoxides: HO(CH2CH2O)nH

Surfactants



Supramolecular Templating
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Phase diagram of C16TMABr

CMC = critical micelle conc.



Micellar Shapes
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Micellar shapes

A -spherical, B - rod-like, C - lamellar

Micelles in media

A - normal, in polar solvent, H2O

B - inverse, in nonpolar solvent, organics



Surfactant Molecules
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Critical packing parameter – CPP
CPP = VH / a0 lc

VH  volume of the hydrophobic part, a0 surface area of the

hydrophilic part,  lc critical chain length:

lc  1.5 + 1.265 n    [Å]

n  number of carbon atoms. lc depends on the chain shape.

Conical (icecream cone, A) 
Inverse conical (champagne cork, B)
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Micellar Shapes

Micellar structures

A ) sphere, B ) cylinder, C ) planar bilayer, D ) reverse micelles, E ) bicontinuous phase, F ) 
liposomes).

CPP surfactant micelle shape
< 0.33 linear chain, large head spherical

0.33 - 0.5 linear chain, small head cylindrical

0.5 - 1.0 two chains, large head bilayers
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Surfactant Molecules
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Mechanism of the Mesoporous Material 
Formation

L1= micellar solution; Nc = nematic phase; H1 = normal hexagonal phase (MCM-41; SBA-15); 
V1 = normal bicontinuous cubic phase (MCM-48); L = lamellar phase (MCM-50)

path A, the micellar solution route 
path B, the lamellar phase route
path C, the nematic phase route



General Liquid Crystal Templating (LCT) 
Mechanism
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Mechanism of the Mesoporous Material 
Formation
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Hexagonal, MCM-41
LCT Liquid Crystal Templating



SLC Silicatropic Liquid Crystals 
Mechanism
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Lamellar to Hexagonal Transformation



Charge Density Matching
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As condensation proceeds the charge on the silicate layer decreases

SiO  SiOSi
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 Electrostatic interactions

a) S+I-             I = silicate

            S = trimethylammonium

I S

b) S-I+ I = Fe2+, Fe3+, Co2+, Ni2+,

                                                                                              Mg2+, Mn2+, Pb2+, Al3+

S = sulfonane

SI SI

c) S+X-I+ I =  silicate – polyelectrolyte

                                                                                              positive charge

X = Cl

S = trimethylammonium

                      
SI X

d) S-M+I- I = aluminate

M = Na

S = phophate

         
I SM
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 Hydrogen Bond

a) S0I0 I = silicate

S = ammine

           
SI

00

      b) N0I0 I = silicate

N = polyethylenoxide

           

0 0
I N

 Covalent Bond

a) S-I I = niobate, tantalate

S = ammine

     
I S
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Control of Pore Size

MCM-41
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Control of Pore Size

Surfactant chain length - increasing the chain length = bigger pores

Swelling agents – an organic additive, such as trimethylbenzene,
enters the surfactant assembly (micelle) = bigger pores

Post synthetic modification - after a material has been made the pore 
size can be reduced by modifying the interior surface = smaller pores
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Control of Pore Size
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Control of Pore Size
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Control of Pore Size
Silylation of hydroxyl groups in MCM-41 by 
Me3SiCl reduces the effective pore size



EISA = Evaporation-induced self-assembly
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EISA
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TEM micrograph of hexagonal molecular sieve
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XRD of Lamellar MCM-50
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XRD of Hexagonal MCM-41

wt = wall thickness
d(100) = interplanar distance in the (100) plane
a0 = mesoporous parameter

3
2 100

0
da 
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Gas Adsorption Isotherms

Mesopore filling

Micropore filling

Pores filled 
with LN2
Pore volume

BET
Surface area



Template Removal
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Mesoporous Platinum Metal

H2[PtCl6] or (NH4)2[PtCl6] 

C16(EO)8

Assembly of liquid crystalline phase

Reductants: Fe, Zn, Hg, NH2NH2

Washed with acetone, water, HCl

SEM (upper) and TEM (lower) 
images of mesoporous Pt metal 
show particles 90-500 nm in 
diameter and a pore diameter of 
30 A and a pore wall thickness of 
30 A.
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Surface Silanols in MCM-41 Pores
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Chemistry inside the Pores
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Hard Tempalting
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A = microwave digestion - template removal
B = introduction of metal salt solution
C = calcination
D = dissolution of SiO2 in HF or NaOH

Cr2O3 crystalline nanowires
(bar = 25 nm for A, 10 nm for A1)
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Pore Size Regimes and Transport 
Mechanisms
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Macropores = larger than 50 nm
larger than typical mean free path length 
of typical fluid. Bulk diffusion and 
viscous flow

Mesopores = between 2 and 50 nm
same order or smaller than the mean free 
path length. Knudsen diffusion and 
surface diffusion. Multilayer adsorption
and capillary condensation may
contribute

Micropores = smaller than 2 nm
pore size comparable to the size of
molecules. Activated transport dominates



Spinodal Decomposition

Sol-Gel Methods 44

(a) Free energy of a binary 
system as a function of 
composition and the miscibility 
region showing the origin of 
the binodal and spinodal lines

(b) Evolution of a blend 
microstructure phase
separating by spinodal 
decomposition



Spinodal Decomposition

Sol-Gel Methods
45

A two component system with a composition, c, that is unstable to small 
fluctuations in concentration,

where

(G = the free energy),

will spontaneously phase separate with the fluctuations increasing and 
coarsening over time.

02

2





c
G



Spinodal Decomposition
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coarsening



Sol–Gel with Phase Separation

i = the volume fraction
Pi (i = 1, 2) = the degree of polymerization of each component,
12 the interaction parameter
The former two terms in the bracket express the entropic contribution,
and the last term the enthalpic contribution
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Hierarchically Porous Monoliths
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Macroporous – good mass transport
Mesoporous – large surface area available for active sites
Microporous – catalytic selectivity 
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TMOS-Formamide-1M nitric acid (b) 
calculated composition. 
Reaction temperature 40 oC; circles
with cross and shaded areas denote the 
composition where the
interconnceted structure has been 
obtained. : nanoporous gel, :
interconnected strucuture, : particle 
aggregates, : macroscopic
two-phase.



TiO2

SEM images of dried TiO2 gels prepared with varied water/TiO2 molar ratios in the overall starting 
1:0.5:0.5:f Ti(OnC3H7)4:HCl:formamide:water composition: (a) f ) 20.50, (b) f ) 20.75, (c) f ) 21.00, (d) f ) 
21.25, and (e) f ) 21.50. (f) Photo image of monolithic TiO2gels prepared in Teflon tubes and a coin.
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Hierarchically Porous Monoliths
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Hierarchically Porous Monoliths
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Hierarchically Porous Monoliths
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Time evolution of a spinodally decomposing isotropic
symmetrical system
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