Layered Compounds

Two-dimensional layers

Graphite and Graphene

Clay Minerals

Layered Double Hydroxides (LDHs)

Layered Zirconium Phosphates and Phosphonates

Layered Metal Oxides

Layered Metal Chalcogenides - TiS_2 , MPS₃ (M = V, Mn, Fe, Co, Ni, Zn)

Alkali Silicates and Crystalline Silicic Acids

Layered Compounds

Host-Guest Structures

Host dimensionality

TOPOTACTIC SOLID-STATE REACTIONS = modifying existing solid state structures while maintaining the integrity of the overall structure

Intercalation

Intercalation

Exfoliation

APB = advancing phase boundary

APB = advancing phase boundary

Staging

HOST

Hendricks-Teller effect

HT = galleries are filled randomly

Intercalation

Dependence of the basal spacing of the intercalates of the alkylamines (circles) and alkanols (crosses) on the number of carbon atoms n_c in $SrC_6H_5PO_3\cdot 2H_2O$

a

C

Graphite

ABABAB

Graphite sp² sigma-bonding in-plane p-p-bonding out of plane Hexagonal graphite = two-layer ABAB stacking sequence

SALCAOs of the p-p-type create the valence and conduction bands of graphite, very small band gap, metallic conductivity properties in-plane, 10⁴ times that of out-of plane conductivity

Graphite

GRAPHITE INTERCALATION

G (s) + K (melt or vapour) \rightarrow C₈K (bronze)

 $\rm C_8K \ (vacuum, \ heat) \rightarrow C_{24}K \rightarrow C_{36}K \rightarrow C_{48}K \rightarrow C_{60}K$

C₈K potassium graphite ordered structure

Ordered K guests between the sheets, K to G charge transfer

AAAA stacking sequence reduction of graphite sheets, electrons enter CB K nesting between parallel eclipsed hexagonal planar carbon six-rings

Graphite

14

Li-ion Cells

Graphene

- Discovery 2004
- Exotic properties:
 - Firm structure
 - Inert material
 - Hydrofobic character
 - Electric and thermal conductivity
 - High mobility of electrons
 - Specific surface area (theoretically): 2630 m²g⁻¹

K. Novoselov

A. Geim

Sythesis of graphene

- Top down
 - Mechanical exfoliation
 - Chemical exfoliation
- Bottom up
 - CVD, epitaxial growth, ...
- Defects
- Application: diodes, sensors, solar cell, energy storage, composites, ...

Graphene

High electric conductivity (metallic)

Optically transparent – 1 layer absorbs 2.3% of photons

High mechanical strength

Graphene

LCAO-band structure of graphene

Preparation:

Graphene

- Scotch tape layer peeling, flaking
- SiC pyrolysis epitaxial graphene layer on a SiC crystal
- Exfoliation of graphite (chemical, sonochemical)
- CVD from CH₄, CH₂CH₂, or CH₃CH₃ on Ni (111), Cu, Pt surfaces

Scotch tape – Layer peeling

Mechanical exfoliation

SiC pyrolysis

- Annealing of the SiC crystal in a vacuum furnace (UHV 10⁻¹⁰ Torr)
- Sublimation of Si from the surface at 1250 –1450 °C
- The formation of graphene layers by the remaining carbon atoms

Exfoliation

Chemical exfoliation (surfactant)

Sonochemical exfoliation

CVD from CH₄ / H₂ on Metal Surfaces

(A) SEM - graphene on a copper foil

(B) High-resolution SEM - Cu grain boundary and steps, two- and three-layer graphene flakes, and graphene wrinkles. Inset (B) TEM images of folded graphene edges.
1L, one layer; 2L, two layers.

Graphene transferred onto (C) a SiO₂/Si substrate (D) a glass plate

Graphene on SiO₂

28

Pseudo-magnetism

Graphene on platinum grown from ethylene at high temperatures. Cooled to low temperature to measure STM to a few degrees above absolute zero.

Both the graphene and the platinum contracted – but Pt shrank more, excess graphene pushed up into bubbles, size 4-10 nm x 2-3 nm The stress causes electrons to behave as if they were subject to huge magnetic fields around 300 T (record high in a lab, max 85 T for a few ms)

Graphene family

Graphene

hBN

BCN

Fluorographene

graphene oxide

C3N4

Graphene oxide

- More reactive than graphene
- Presence of oxygen groups: -OH, -COOH, =O, -Ohydrophilic character
- Electric insulator
- Specific SA (theoretically): 1700-1800 m²g⁻¹
- Hummers method

Graphane – hydrogenated graphene

- 2009 (graphene + cold hydrogen plasma)
- Two conformations: chair x boat
- Calculated binding energy = most stable compound with stoichiometric formula CH
- Chair type graphane insulating nanotubes

- Monolayer of graphite fluoride
- Chair type x boat type-strong repulsion
- Sythesis:
 - Graphene + XeF₂/CF₄ (room temperature)
 - Mechanical or chemical exfoliation of graphite fluoride
 - By heating graphene in XeF₂ gas at 250 °C
- Graphene + XeF₂ at 70 °C high-quality insulator, stable up to 400 °C (resemblence with teflon)

Graphyn, graphydiyn

- Predicted
- "Non-derivatives" of graphene
- Semiconductors
- Movement of electrons as in graphene but only in one direction
Graphitic carbon nitride

Temperatureinduced condensation

dicyandiamide NH₂C(=NH)NHCN

In a LiCI/KCI melt

Graphitic carbon nitride

(a) triazine and (b) tri-s-triazine (heptazine)

Graphitic carbon nitride

("g-C₃N₄")

band gap 1.6 - 2.0 eV small band gap semiconductors Si (1.11 eV), GaAs (1.43 eV), and GaP (2.26 eV)

Phosphorene

Black phosphorus

Orthorhombic a = 3.31 Å, b = 4.38 Å, c = 10.50 Å $\alpha = \beta = \gamma = 90^{\circ}$ Space group *Bmab*

centrifugation

redispersion in water

N-methyl-2-pyrrolidone

Semiconductor - direct band gap bulk BP 0.3 eV monolayer phosphorene 1.5 eV 40

Phosphorene

Height-mode AFM images single-layer phosphorene ca. 0.9 nm

Phosphorene

Black phosphorus

12 lattice vibrational modes

6 Raman active modes

3 vibrational modes A_g^1 , B_{2g} , and A_g^2 can be detected when the incident laser is perpendicular to the layered phosphorene plane: 361 cm⁻¹, 438 cm⁻¹, 465 cm⁻¹

As the number of phosphorene layers increases, the three Raman peaks red-shift

42

Layered Compounds - Zirconium Phosphates

(a) α -zirconium phosphate = Zr(HPO₄)₂.H₂O interlayer spacing 7.6 Å

(b) γ -zirconium phosphate = Zr(PO₄)(H₂PO₄)2H₂O interlayer spacing 12.2 Å

Layered Compounds - Zirconium Phosphates

α-zirconium phosphate

Zr(HPO₄)₂.H₂O

interlayer spacing 7.6 Å

Layered Compounds - Zirconium Phosphates

(a) α -zirconium phosphate = Zr(HPO₄)₂.H₂O interlayer spacing 7.6 Å

(b) γ -zirconium phosphate = Zr(PO₄)(H₂PO₄)2H₂O interlayer spacing 12.2 Å

Clay Minerals

46

Montmorillonite

Clay Minerals

A clay $[Si_4O_{10}]^{4-}$ tetrahedral (T) sheet in (a) top view and (b) side view

A clay octahedral (O) sheet (c) top view and (d) side view

The $[AI_4O_{12}]^{12}$ dioctahedral top view is shown in (c)

[Mg₆O₁₂]¹²⁻ trioctahedral top view would show a continuous sheet of octahedral units

Clay Minerals

N₂ sorption isotherms

(a) TMA- and Camontmorillonite

(b) An Italian sepiolite

(c) Natural SHCa-1 Na-hectorite

(d) synthetic laponite and Li-(silane)-hectorites

Closed symbols = adsorption Open symbols = desorption

Surface Area

the most important parameters of clays with respect to catalytic applications

Clay	Outgassing conditions	S. A., m ² /g
Kaolinite ^{a,b}	200° C, overnight, $<10^{-2}$ torr	8.75
Na,Ca-montmorillonite ^{a,c}	same	31.0
Ca-montmorillonite ^{a,d}	same	80.2
Ca-montmorillonite ^{a,e}	same	93.9
Na-hectorite ^{a,f}	same	64.3
Laponite ^g	105 °C, overnight, 10 ⁻³ torr	360
Sepiolite ^h	96°C, 3 h	378
Palygorskite ^h	95°C, <70 h	192

TABLE 3 N₂ BET Surface Areas of Various Clay Minerals

nonpolar guest molecules N₂ do not penetrate the interlayer regions

Na⁺ forms of smectites and vermiculites – no penetration larger ions (Cs⁺ and NH_4^+ keep the basal planes far enough) - limited penetration

Layered Double Hydroxides

LDH = layered double hydroxides HT = hydrotalcites Natural mineral hydrotalcite Mg₆Al₂(OH)₁₆CO₃.4H₂O

Brucite layers, Mg²⁺ substituted partially by Al³⁺

Layers have positive charge

Hydrotalcites

Brucite layers, Mg²⁺ substituted partially by Al³⁺ Layers have positive charge

(a) $[Ca_2AI(OH)_6]_2SO_4.6H_2O$ (b) $[LiAI_2(OH)_6]CI$ (c) $[Mg_{2.25}AI_{0.75}(OH)_6]OH$

Hydrotalcite

The layered structure of LDH is closely related to brucite Mg(OH)₂

a brucite layer, Mg²⁺ ions octahedrally surrounded by six OH⁻ the octahedra share edges and form an infinite two-dimensional layer

the brucite-like layers stack on top of one another either rhombohedral (3R) or hexagonal (2H) sequence

Hydrotalcite Mg₆Al₂(OH)₁₆CO₃.4H₂O - 3R stacking

 $[M_{1-x}^{III}M_{x}^{III}(OH)_{2}]^{x+}(A^{m-})_{x/m}]\cdot nH_{2}O$

 $x = 0.25 Mg_6Al_2(OH)_{16}CO_3$

$$x = 0$$
 Mg(OH)₂

Hydrotalcite

The interlayer spacing c' is equal to d003, 2d006, 3d009, etc.;

c' = (d003 + 2d006 + ... + nd00(3n)) / n

The cell parameter c is a multiple of the interlayer spacing c'

c = 3c' for rhombohedral (3R)

c = 2c' for hexagonal (2H) sequences

Hydrotalcite

Hydrotalcite Mg₆Al₂(OH)₁₆CO₃.4H₂O - 3R stacking

unit cell parameters

a = 0.305 nm c = 3d(003) = 2.281 nm

the interlayer spacing: d(003) = 0.760 nmthe spacing occupied by the anion (gallery height) = 0.280 nm a thickness of the brucite-like layer = 0.480 nm the average M—O bond = 0.203 nm the distance between two nearest OH⁻ ions in the two opposite side layers = 0.267 nm shorter than a (0.305 nm) and indicative of some contraction along the c-axis.

XRD Patterns of LDH

XRD patterns of layered double hydroxides synthesized by coprecipitation method with various cations composition: A – Mg/AI; B- Mg/Co/AI; C- Mg/Ni/AI

* = Reflections from Si crystal used as a reference

XRD Patterns of LDH

rhombohedral structure the cell parameters *c* and *a*

The lattice parameter a = 2d(110) corresponds to an average cation–cation distance

The *c* parameter corresponds to three times the thickness of *d*003

c = 3/2 [*d*003+2*d*006]

Layered Compounds

LDH = layered double hydroxides hydrotalcites mineral Mg₆Al₂(OH)₁₆CO₃.4H₂O

Brucite layers, Mg²⁺ substituted partially by Al³⁺

Intercalation to LDH

the intercalation of methylphosphonic acid into Li/Al LDH

- (a) $[LiAl_2(OH)_6]CI.H_2O$
- (b) second-stage intermediate, alternate layers occupied by CI and MPA anions
- (c) first-stage product with all interlayer regions occupied by MPA.

Intercalation to LDH

LDH = layered double hydroxides

hydrotalcites mineral Mg₆Al₂(OH)₁₆CO₃.4H₂O

Brucite layers, Mg²⁺ substituted partially by Al³⁺

Layers have positive charge

Intercalate anions [Cr(C₂O₄)₃]³⁻

The anionic exchange capacity (AEC)

Types of the composite structures

Li Intercalation Compounds

Li Intercalation

x Li + TiS₂ \rightarrow Li_xTiS₂

Li Intercalation

65

67

Frequency of A_{1g} band is increasing while that of E_{2g}^1 is decreasing with increase in number of layers

(b,c) infraredand (d-f) Raman-active

a Molecular beam epitaxy

b Chemical vapour deposition

c Metal-organic chemical vapour deposition

Nature Reviews Materials volume 2, Article number: 17033 (2017)

3D Intercalation Compounds

Cu₃N and Mn₃N crystallize in the (anti-) ReO₃-type structure

the large cuboctahedral void in the structure can be filled

By Pd to yield (anti-) perovskite-type PdCu₃N

By M = Ga, Ag, Cu leading to MMn_3N

3D Intercalation Compounds

Tungsten trioxide structure

= WO₆ octahedra joined at their corners

= the perovskite structure of CaTiO₃ with all the calcium sites vacant

 $Zn + 2 HCI \rightarrow 2 H + ZnCI_2$

 $WO_3 + x H \rightarrow H_x WO_3$

The color and conductivity changes are due to the intercalation of protons into the cavities in the WO_3 structure, and the donation of their electrons to the conduction band of the WO_3 matrix. The material behaves like a metal, with both its conductivity and color being derived from free electron behavior. The coloration reaction used in electrochromic displays for sun glasses, rear view mirrors in cars
OD Intercalation Compounds

 $C_{60} = FCC$

K₃ C₆₀

