Crystalline State

Basic Structural Chemistry

Structure Types

Lattice Energy

Pauling Rules

Degree of Crystallinity

Crystalline - 3D long range order Single-crystalline
Polycrystalline - many crystallites of different sizes and orientations (random, oriented)

Paracrystalline - short and medium range order, lacking long range order

Amorphous - no order, random

Degree of Crystallinity

- Single Crystalline
- Polycrystalline \qquad
- Semicrystalline
- Amorphous

Grain boundaries

Degree of Crystallinity

A crystalline solid: HRTEM image of strontium titanate. Brighter atoms are Sr and darker are Ti.

Crystal Structure

The building blocks of these two are identical, but different crystal faces are developed

(b)

Conchoidal fracture in chalcedony
(a)

Single crystal X-ray diffraction

 structure analysis

X-ray structure analysis with single crystals

Crystals

- Crystal consist of a periodic arrangement of structural motifs = building blocks
- Building block is called a basis: an atom, a molecule, or a group of atoms or molecules
- Such a periodic arrangement must have translational symmetry such that if you move a building block by a distance:

$$
\begin{aligned}
& \bar{T}=n_{1} \bar{a}+n_{2} \bar{b}+n_{3} \bar{c} \\
& \text { where } n_{1}, n_{2} \text {, and } n_{3} \text { are integers, and } \bar{a}, \bar{b}, \bar{c} \text { are vectors. }
\end{aligned}
$$

then it falls on another identical building block with the same orientation.

- If we remove the building blocks and replace them with points, then we have a point lattice or Bravais lattice.

Planar Lattice 2D

LATTICE

A lattice is the geometrical pattern formed by points representing the locations of these basis or motifs.

BASIS OR MOTIFS
Basis are the positions of the atoms inside the unit cell.

Five Planar Lattices

Ten Planar Point Groups

17 Plane Space Groups

Unit Cell: An „imaginary" parallel sided region of a structure from which the entire crystal can be constructed by purely translational displacements. It contains one unit of the translationally repeating pattern. Content of a unit cell represents its chemical composition. The unit cells that are commonly formed by joining neighbouring lattice points by straight lines, are called primitive unit cells.

Space Lattice: A pattern that is formed by the lattice points that have identical environment.

Coordination Number (CN): Number of direct neighbours of a given ${ }^{6}$ atom (first coordination sphere)

Crystal $=$ Periodic Arrays of Atoms

(Atom, molecule, group of molecules,...)
Primitive Cell:

- Smallest building block for the crystal lattice.
- Repetition of the primitive cell gives a crystal lattice

Seven Crystal Systems

All angles 90°

Seven Crystal Systems

Simple cubic
$a=b=c$
$\alpha=\beta=\gamma=90^{\circ}$

Tetragonal
$a=b \neq c$
$\alpha=\beta=\gamma=90^{\circ}$

Orthorhombic
$a \neq b \neq c$
$\alpha=\beta=\gamma=90^{\circ}$

Rhombohedral

$$
a=b=c
$$

$$
\alpha=\beta=\gamma \neq 90^{\circ}
$$

Monoclinic
$a \neq b \neq c$ $\gamma \neq \alpha=\beta=90^{\circ}$

Triclinic
$a \neq b \neq c$
$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

Hexagonal

$$
a=b \neq c
$$

$$
\alpha=\beta=90^{\circ}, \gamma=120^{\circ}
$$

Fourteen Bravais Lattices

Seven Crystal Systems + Centering

3D Lattices and Space Groups

Simple Cubic (SC)

$$
\mathrm{a}=\mathrm{b}=\mathrm{c} \quad \text { Conventional Cell }=\text { Primitive Cell }
$$

$$
\mathrm{a} \perp \mathrm{~b} \perp \mathrm{c}
$$

Add one atom at the center of the cube

Add one atom at the center of each face

Face-Centered Cubic (FCC)
Body-Centered Cubic (BCC)
Conventional Unit Cell \neq Primitive Cell

Primitive Cell

A primitive cell of the lattice = volume of space translated through all the vectors in a lattice that just fills all of space without overlapping or leaving voids.
A primitive cell contains just one Bravais lattice point.
The primitive cell is the smallest cell that can be translated throughout space to completely recreate the entire lattice.
There is not one unique shape of a primitive cell, many possible shapes.
The primitive cell for the simple cubic lattice is equal to the simple cubic unit cell (they are identical).

Body-Centered Cubic (I)

Unit Cell

Primitive Cell

Primitive Cell

A primitive cell of the lattice may be constructed in 2 ways:

- The primitive cell may have the lattice point confined at its CENTER = the WIGNER-SEITZ cell
- The primitive cell may be formed by constructing lines

BETWEEN lattice points, the lattice points lie at the VERTICES of the cell

Primitive Cell

Nonprimitive Unit Cell vs. Primitive Cell

Face-Centered Cubic (F)

Unit Cell

Primitive Cell

Rotated 90°

The primitive cell is smaller or equal in size to the unit cell. The unit cells possesses the highest symmetry present in the lattice (for example Cubic).

Nonprimitive Unit Cell vs. Primitive Cell

(a) Conventional non-primitive cubic unit cell showing a closepacked (1 11) plane

The primitive cell is smaller or equal in size to the unit cell. The unit cells possesses the highest symmetry present in the lattice (for example Cubic).

Index System for Points

1) Coordinates within a unit cell
2) Express the coordinates $\mathbf{u} \mathbf{v} \mathbf{w}$ as fractions of unit cell vectors (lattice parameters) a, b, and c
3) Entire lattice can be referenced by one unit cell

Central point coordinates?

Index System for Directions (Miller Indices)

1) Determine coordinates of two points in direction of interest (simplified - origin):
u1 v1 w1 and u2 v2 w2
2) Subtract coordinates of the second point from those of the first point:
$u^{\prime}=u 1-u 2, \quad v^{\prime}=\mathrm{v} 1-\mathrm{v} 2, \quad w^{\prime}=\mathrm{w} 1-\mathrm{w} 2$
3) Clear fractions from the differences to give indices in lowest integer values.
4) Write indices in [] brackets - [uvw]

$$
\begin{aligned}
& A=[100] \\
& B=[111] \\
& C=\left[1^{-} 2^{-} 2\right]
\end{aligned}
$$

Index System for Directions (Miller Indices)

In the cubic system directions having the same
 indices regardless of order or sign are equivalent

For cubic crystals, the directions are all equivalent by symmetry:
[10 0 0], [$\begin{aligned} & 1- \\ & 0\end{aligned} 0$

Families of crystallographic directions e.g. <1 0 0>

Angled brackets denote a family of crystallographic directions.

Index System for Crystal Planes (Miller Indices)

1. If the plane passes through the origin, select an equivalent plane or move the origin
2. Find the intercepts on the axes in terms of the lattice constants a, b, c. The axes may be those of a primitive or nonprimitive unit cell.
3. Take the reciprocals of these numbers and then reduce to three integers having the same ratio, usually the smallest three integers.
4. $(1 / \infty=0)$
5. The result enclosed in parenthesis (hkl), is called the index of the plane.

Index System for Crystal Planes (Miller Indices)

Index System for Crystal Planes (Miller Indices)

Cubic system - planes having the same indices regardless of order or sign are equivalent
(111), (11 ${ }^{-1}$), (111 ${ }^{-}$).... belong to $\{111\}$ family
(100), (1-00), (010), and (001) belong to $\{100\}$ family

(001)

(111)

(100)

(110)

(11]1)

(010)

(111)

Index System for Crystal Planes (Miller Indices)

The Miller indices (hkl) is the same vector as the normal to the plane [hkl]

Index System for Crystal Planes
 (Miller Indices)

Quasiperiodic Crystals

Quasiperiodic crystal = a structure that is ordered but not periodic continuously fills all available space, but it lacks translational symmetry

Penrose - a plane filled in a nonperiodic fashion using two different types of tiles

Five-fold symmetry

Only 2, 3, 4, 6fold symmetry allowed to fill 2D plane completely

Crystals and Crystal Bonding

- metallic (Cu, Fe, Au, Ba, alloys)
metallic bonding, electron delocalization
- ionic ($\mathrm{NaCl}, \mathrm{CsCl}, \mathrm{CaF}_{2}, \ldots$)
ionic bonds, cations and anions, electrostatic interactions, ions pack into extremely regular crystalline structures, in an arrangement that minimizes the lattice energy (maximizing attractions and minimizing repulsions). The lattice energy is the summation of the interaction of all sites with all other sites.

- covalent network solid (diamond, graphite, $\mathrm{SiO}_{2}, \mathrm{AIN}, \ldots$) atoms, covalent bonding, a chemical compound (or element) in which the atoms are bonded by covalent bonds in a continuous network extending throughout the material, there are no individual molecules, the entire crystal or amorphous solid may be considered a macromolecule
- molecular (Ar, $\mathrm{C}_{60}, \mathrm{HF}, \mathrm{H}_{2} \mathrm{O}$, organics, proteins) molecules, van der Waals and hydrogen bonding

Covalent network solids

diamond

silicon dioxide

Three Cubic Cells

BCC (I)

Table 2 Characteristics of cubic lattices ${ }^{\text {a }}$

	Simple	Body-centered	Face-centered
Volume, conventional cell	a^{3}	a^{3}	a^{3}
Lattice points per cell	1	2	4
Volume, primitive cell	a^{3}	$\frac{1}{2} a^{3}$	$\frac{1}{4} a^{3}$
Lattice points per unit volume	$1 / a^{3}$	$2 / a^{3}$	$4 / a^{3}$
Number of nearest neighbors ${ }^{\text {a }}$	6	8	12
Nearest-neighbor distance	a	$3^{1 / 2} a / 2=0.866 a$	$a / 2^{1 / 2}=0.707 a$
Number of second neighbors	12	6	6
Second neighbor distance $^{\text {Nacking fraction }}$ b	$2^{1 / 2} a$	a	a
	$\frac{1}{6} \pi$	$\frac{1}{8} \pi \sqrt{3}$	$\frac{1}{6} \pi \sqrt{2}$
	$=0.524$	$=0.680$	$=0.740$

Cube

$$
\begin{aligned}
& a=\text { edge } \\
& d=\text { face diagonl } \\
& \quad\left(d^{2}=a^{2}+a^{2}=2 a^{2}\right) \\
& D= \\
& \quad \text { body diagonal } \\
& \quad\left(D^{2}=d^{2}+a^{2}=2 a^{2}+a^{2}=3 a^{2}\right)
\end{aligned}
$$

$d=\sqrt{2} \cdot \mathrm{a}$
 $D=\sqrt{3} \cdot \mathrm{a}$

Simple Cubic SC = Polonium

(b)

Space filling 52\%

$\mathbf{B C C}=\mathbf{W}$, Tungsten

$$
\mathrm{Z}=\mathbf{2}
$$

(b)

Space filling 68\%
CN 8

Fe, $\mathrm{Cr}, \mathrm{V}, \mathrm{Li}-\mathrm{Cs}, \mathrm{Ba}$

$\mathrm{FCC}=\mathbf{C o p p e r}, \mathbf{C u}=\mathbf{C C P}$

Space filling 74\%
CN 12

Close Packing in Plane 2D

B and C holes cannot be occupied at the same time

Close Packing in Space 3D

Side view

hexagonal

Structures with Larger Motifs

Structures with Larger Motifs

TEM images of superlattices composed of 11.3 nm Ni nanoparticles

Structures with Larger Motifs

Structures with Larger Motifs

$\mathrm{C}_{60}-\mathrm{FCC}=\mathrm{CCP}$

Coordination Polyhedrons

Coordination Polyhedrons

Space Filling

a = lattice parameter	Atom Radius, \mathbf{r}	Number of Atoms (lattice points), Z	Space filling
SC	$\mathbf{a} / 2$	$\mathbf{1}$	$\mathbf{5 2 \%}$
BCC	$\sqrt{3} \mathbf{a} / 4$	$\mathbf{2}$	$\mathbf{6 8 \%}$
FCC	$\sqrt{2} \mathbf{a} / 4$	$\mathbf{4}$	$\mathbf{7 4 \%}$
Diamond	$\sqrt{3} \mathbf{a} / \mathbf{8}$	$\mathbf{8}$	$\mathbf{3 4 \%}$

$\underline{\text { Type of Packing }}$| Packing
 Efficiency |
| :--- |
| Coordination
 Number |

Simple cubic (sc)

52\% 6

Body-centered cubic (bcc)

68%
8
74%
12
Hexagonal close-packed (hcp)
Cubic close-packed
74%
12
(ccp or fcc)

$\mathbf{C C P}=\mathrm{FCC}$

Close packed layers of CCP are oriented perpendicularly to the body diagonal of the cubic cell of FCC

Periodic Table of Metol Structures

Two Types of Voids (Holes)

5 Tetrahedral hole

2 Octahedral hole

3

Tetrahedral Holes T+
Octahedral Holes

Tetrahedral Holes T-

N cp atoms in lattice cell
N Octahedral Holes 2N Tetrahedral Holes

Two Types of Voids (Holes)

Two Types of Voids (Holes)

Octahedral Holes

Tetrahedral Holes

Tetrahedral Holes (2N)

$\mathrm{Z}=\underline{4}$ number of atoms in the cell (N)
$\mathrm{N}=\underline{8}$
number of tetrahedral holes (2 N)

Octahedral Holes (N)

$\mathrm{Z}=\underline{4}$ number of atoms in the cell (N)
$\mathrm{N}=\underline{4}$
number of octahedral holes (N)

Two Types of Voids (Holes)

N cp atoms in lattice cell
N Octahedral Holes
2N Tetrahedral Holes

Tetrahedral Holes (2N)

Characteristic Structures of Solids = Structure Types

Rock salt $\underline{\mathrm{NaCl}} \mathrm{LiCl}, \mathrm{KBr}, \mathrm{AgCl}, \mathrm{MgO}, \mathrm{TiO}, \mathrm{FeO}, \mathrm{SnAs}, \mathrm{UC}, \mathrm{TiN}, \ldots$
Fluorite ${\underline{\mathbf{C a F}_{2}}}_{\underline{2}} \mathrm{BaCl}_{\mathbf{2}}, \mathbf{K}_{\mathbf{2}} \mathbf{O}, \mathrm{PbO}_{\mathbf{2}} \ldots$
Lithium bismutide $\underline{\operatorname{Li}_{\underline{3}} \underline{B}}$

ICSD 3555 NaCl 3438 MgAl 2 O 4 2628 GdFeO3

Sphalerite (zinc blende) $\underline{\mathrm{ZnS}} \mathbf{C u C l}, \mathrm{HgS}, \mathrm{GaAs} . .$.
Nickel arsenide NiAs FeS, PtSn, CoS ...
Wurtzite $\underline{\mathbf{Z n S}} \mathbf{Z n O}$, MnS, SiC
Rhenium diboride ReB_{2}

Structure Types Derived from CCP $=\mathrm{FCC}$

Structure Types Derived from CCP = FCC

Structure Types Derived from CCP = FCC

Anions/cell ($=4$)	Oct. (Max 4)	Tet. (Max 8)	Stoichiometry	Compound
4	100\% = 4	0	$\mathrm{M}_{4} \mathrm{X}_{4}=\mathbf{M X}$	$\begin{aligned} & \mathrm{NaCl} \\ & \text { (6:6 coord.) } \end{aligned}$
4	0	100\% = 8	$\mathbf{M}_{8} \mathrm{X}_{4}=\mathrm{M}_{2} \mathbf{X}$	$\begin{aligned} & \mathrm{Li}_{2} \mathrm{O} \\ & \text { (4:8 coord.) } \end{aligned}$
4	0	50\% $=4$	$\mathrm{M}_{4} \mathrm{X}_{4}=\mathbf{M X}$	ZnS, sfalerite (4:4 coord.)
4	50\% $=2$	0	$\mathrm{M}_{2} \mathrm{X}_{4}=\mathbf{M X} \mathbf{2}$	$\mathbf{C d C l}_{2}$
4	$100 \%=4$	$100 \%=8$	$M_{12} \mathrm{X}_{4}=\mathrm{M}_{3} \mathrm{X}$	$\mathrm{Li}_{3} \mathbf{B i}$
4 spinel	50\% $=2$	$12.5 \%=1$	$\mathrm{M}_{3} \mathrm{X}_{4}$	$\mathbf{M g A l} \mathbf{2}^{\mathbf{O}} \mathbf{4}$,

Comparison between structures with filled octahedral and tetrahedral holes

O/lt	$\mathrm{fcc}(\mathrm{ccp})$	hcp
all oct.	NaCl	NiAs
all tetr.	CaF_{2}	ReB_{2}
oft (all)	$\mathrm{Li}_{3} \mathrm{Bi}$	$\left(\mathrm{Na}_{3} \mathrm{As}\right)$ (!) problem
$1 / 2 \mathrm{t}$	sphalerite (ZnS)	wurtzite (ZnS)
$1 / 20$	CdCl_{2}	CdI_{2}

Fluorite CaF_{2} and antifluorite $\mathrm{Li}_{2} \mathrm{O}$

Fluorite structure $=$ a face-centered cubic array (FCC) of cations = cubic close packing (CCP) of cations with all tetrahedral holes filled by anions $=$ a simple cubic (SC) array of anions.

Antifluorite structure = a face-centred cubic (FCC) array of anions = cubic close packing (CCP) of anions, with cations in all of the tetrahedral holes (the reverse of the fluorite structure).

Fluorite (CaF_{2}, antifluorite $\mathrm{Li}_{\mathbf{2}} \mathbf{O}$)

$\mathrm{K}_{2}\left[\mathrm{PtCl}_{6}\right], \mathrm{Cs}_{2}\left[\mathrm{SiF}_{6}\right],\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{TaF}_{6}\right]_{2}$

Fluorite structures (CaF_{2}, antifluorite $\left.\mathrm{Li}_{2} \mathbf{O}\right)$

Oxides: $\mathbf{N a}_{\mathbf{2}} \mathbf{O}, \mathbf{K}_{\mathbf{2}} \mathbf{O}, \mathbf{U O}_{\mathbf{2}}$, $\mathbf{Z r O}_{\mathbf{2}}, \mathbf{T h O} \mathbf{O}_{\mathbf{2}}$
alkali metal sulfides, selenides and tellurides
$\mathrm{K}_{2}\left[\mathrm{PtCl}_{6}\right],\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{PtCl}_{6}\right]$, $\mathrm{Cs}_{2}\left[\mathrm{SiF}_{6}\right]$, $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{6}\left[\mathrm{TaF}_{6}\right]_{2}\right.$.

$\mathrm{CaF}_{2}, \mathrm{SrF}_{2}, \mathrm{SrCl}_{2}, \mathrm{BaF}_{2}, \mathrm{BaCl}_{2}, \mathrm{CdF}_{2}, \mathrm{HgF}_{2}, \mathrm{EuF}_{2}, \beta-\mathrm{PbF}_{2}, \mathrm{PbO}_{2}$
$\mathrm{Li}_{2} \mathrm{O}, \mathrm{Li}_{2} \mathrm{~S}, \mathrm{Li}_{2} \mathrm{Se}, \mathrm{Li}_{2} \mathrm{Te}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{~S}, \mathrm{Na}_{2} \mathrm{Se}, \mathrm{Na}_{2} \mathrm{Te}, \mathrm{K}_{2} \mathrm{O}, \mathrm{K}_{2}^{82} \mathrm{~S}$

Fluorite structures ($\mathbf{C a F}_{2}$, antifluorite $\mathbf{L i}_{\mathbf{2}} \mathbf{O}$)

Sphalerite (zincblende, ZnS)

Cubic close packing of anions with $1 / 2$ tetrahedral holes filled by cations

Sphalerite (zincblende, ZnS)

Sphalerite (zincblende, ZnS)

13-15 compounds: BP, BAs, AIP, AlAs, GaAs, GaP, GaSb, AlSb, InP, InAs, InSb

12-16 compounds: BeS, BeSe, BeTe, $\beta-\mathrm{MnS}$ (red), β-MnSe, β-CdS, CdSe, CdTe, HgS, HgSe, $\mathbf{H g T e}$, ZnSe, ZnTe

Halogenides: AgI, CuF, CuCl, CuBr, CuI, NH4F
Borides: PB, AsB
Carbides: β-SiC
Nitrides: BN

Diamond

Diamond

Cubic Diamond

Diamond Structure

C, Si, Ge, grey-Sn

- Add 4 atoms to a FCC
- Tetrahedral bond arrangement
- Each atom has 4 nearest neighbors and 12 next nearest neighbors

Elements of the 14th Group

	$a(\AA)$	$\mathrm{d}\left(\mathrm{g} . \mathrm{cm}^{-3}\right)$
C	3.566	3.515
Si	5.431	2.329
Ge	5.657	5.323
$\mathrm{a}-\mathrm{Sn}$	6.489	7.285

Cuprite $\mathrm{Cu}_{2} \mathbf{O}$ Cubic Lattice

Wurzite, ZnS

Hexagonal close packing of anions with $\mathbf{1 / 2}$ tetrahedral holes filled by cations

Wurzite, ZnS

ZnO, ZnS, ZnSe, ZnTe, BeO, CdS, CdSe, MnS, AgI, AlN

Semiconductors of 13-15 and 12-16 type

Structure of III-V and II-VI Compound Semiconductors

Rock Salt, $\mathbf{N a C l}$

Cubic close packing of anions with all octahedral holes filled by cations

Rock Salt, NaCl

Cl^{-}

Na^{+}

Rock Salt, NaCl

(a)

(b)

Anion and cation sublattices

Rock Salt Crystal Structure

Rock salt structures ($\mathbf{N a C l}$)

Hydrides: LiH, NaH, KH,

$$
\mathrm{NH}_{4} \mathrm{BH}_{4}-\mathrm{H}_{2} \text { storage material }
$$

Pd(H)

Borides: ZrB, HfB

Carbides: TiC, ZrC, VC, UC

Nitrides: $\mathbf{S c N}, ~ T i N, ~ U N, ~ C r N, ~ V N, ~ Z r N ~$

Oxides: $\mathbf{M g O}, \mathbf{C a O}, \mathbf{S r O}, \mathrm{BaO}, \mathrm{TiO}, \mathrm{VO}, \mathrm{MnO}, \mathrm{FeO}$, CoO, NiO Chalcogenides: MgS, CaS, SrS, BaS, $\alpha-\mathrm{MnS}, \mathrm{MgSe}$, CaSe, SrSe , BaSe, CaTe

Halides: LiF, LiCl, LiBr, LiI, NaF, NaBr, NaI, KF, $\mathbf{K C l}, \mathrm{KBr}, \mathrm{KI}, \mathrm{RbF}, \mathrm{RbCl}, \mathrm{RbBr}, \mathrm{AgCl}, \mathrm{AgF}, \mathrm{AgBr}$

Intermetallics: SnAs
Other
FeS_{2} (pyrite), $\mathrm{CaC}_{2}, \mathrm{NaO}_{2}$

Rock salt structures ($\mathbf{N a C l}$)

Palladium-Hydrogen system

palladium

- face-centered cubic (fcc) structure
- dissociate hydrogen molecules
$\left(\mathrm{H}_{2} / \mathrm{D}_{2}\right)$
and absorb large amount of $H(D)$
atoms up to $\mathrm{H}(\mathrm{D}) / \mathrm{Pd}=1$
The spaces occupied by hydrogen are the interstitial octahedral (O) sites of palladium.

fcc structure

PdH(D)x
(x:hydrogen concentration $\mathrm{H}(\mathrm{D}) / \mathrm{Pd}$)

Rock salt structures ($\mathbf{N a C l}$)

FeS_{2} (pyrite), $\mathrm{CaC}_{2}, \mathbf{N a O}_{2}$

SiO_{2} (pyrite - high pressure polymorph, Uranus and Neptune core)

NiAs - type

Hexagonal close packing of anions with all octahedral holes filled by cations

NiS, NiAs, NiSb, NiSe, NiSn, NiTe, FeS, FeSe, FeTe, FeSb, PtSn, CoS, CoSe, $\mathrm{CoTe}, \mathrm{CoSb}, \mathrm{CrSe}, \mathrm{CrTe}, \mathrm{CoSb}$,

PtB (anti-NiAs structure)

NiAs - type

Hexagonal close packing of anions with all octahedral holes filled by cations

ReB $_{2}$ - type

Hexagonal close packing of anions with all tetrahedral holes filled by cations

$\mathrm{Li}_{3} \mathrm{Bi}$ - type (anti BiF_{3})

$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}, \mathrm{~K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
bcc

$\mathrm{Li}_{3} \mathrm{Bi}$ - type (anti BiF_{3})

$$
\begin{aligned}
& \mathrm{Fe}_{3} \mathrm{Al} \\
& {\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}} \\
& \mathrm{~K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]
\end{aligned}
$$

Cubic close packing of anions with all tetrahedral and octahedral holes filled by cations

$\mathrm{Li}_{3} \mathrm{Bi}$ - type (anti BiF_{3})

$$
\mathbf{M}_{3} \mathbf{C}_{60}
$$

Cubic close packing of $\mathrm{C}_{60}{ }^{3-}$ anions with all tetrahedral and octahedral holes filled by cations

CsCl
Primitive cubic packing of anions with all cubic holes filled by cations

Primitive cubic packing of 09
CsCl_{8} cubes sharing all faces

CsCl

CsCl is not BCC

$\mathrm{CsBr}, \mathrm{CsI}, \mathrm{CsCN}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NH}_{4} \mathrm{Br}, \mathrm{TlCl}, \mathrm{TIBr}, \mathrm{TII}, \mathrm{CuZn}, \mathrm{CuPd}, \mathrm{LiHg}$

NaTl

Both sublattices form independent diamond structures.
The atoms sit on the sites of a bcc lattice with $\mathbf{a}_{\text {bcc }}=1 / 2 \mathbf{a}$.

U. Müller , Inorganic Structural Chemistry , John Wiley ,

Chichester (UK), 1993 ; Figure 65 , p. 123

Niggli - 230 space groups - restrictions on arrangement of atoms:
There are only 4 possible AB cubic structures: $\mathrm{NaCl}, \mathbf{Z n S}$-sfalerite, CsCl , and NaTl

ReO_{3}

What type of unit cell? sc, bce, fcc

SC of ReO_{6} octahedra
NaCl structure with $3 / 4$ of cations removed and $1 / 4$ of anions removed

WO_{3}

MoO_{3}

Perovskite, CaTiO_{3}

Two equvivalent views of the unit cell of perovskite

Cubic "close packing" of Ca and O with $1 / 4$ octahedral holes filled by Ti catiigns

Perovskite, CaTiO_{3}

Two equvivalent views of the unit cell of perovskite

(b)

Cubic "close packing" of Ca and O with $1 / 4$ octahedral holes filled by Ti catiiqns

Perovskite structure $\mathbf{C a T i O}_{3}$

TiO_{6} - octahedra
CaO_{12} - cuboctahedra
$\left(\mathrm{Ca}^{2+}\right.$ and O^{2-} form a cubic close packing)
preferred structure of piezoelectric, ferroelectric and superconducting materials

$$
\mathrm{t}=\frac{\mathrm{r}_{\mathrm{A}-\mathrm{X}}}{\sqrt{2} \mathrm{r}_{\mathrm{B}-\mathrm{X}}}=\frac{\mathrm{r}_{\mathrm{A}}+\mathrm{r}_{\mathrm{X}}}{\sqrt{2}\left(\mathrm{r}_{\mathrm{B}}+\mathrm{r}_{\mathrm{X}}\right)}
$$

Perovskite, CaTiO_{3}

Cubic "close packing" of A and X with $1 / 4$ octahedral holes filled by B cations

Similarity to CsCl

Perovskite, CaTiO_{3}

Perovskite Crystal Structure

$\mathrm{MgSiO}_{3}, \mathrm{CaSiO}_{3}$
$\mathrm{KNbO}_{3}, \mathrm{KTaO}_{3}, \mathrm{KIO}_{3}$, $\mathrm{NaNbO}_{3}, \mathrm{NaWO}_{3}, \mathrm{LaCoO}_{3}$, $\mathrm{LaCrO}_{3}, \mathrm{LaFeO}_{3}, \mathrm{LaGaO}_{3}$, $\mathrm{LaVO}_{3}, \mathrm{SrTiO}_{3}, \mathrm{SrZrO}_{3}$, SrFeO_{3}
$\mathrm{ThTaN}_{3}, \mathrm{BaTaO}_{2} \mathrm{~N}$
A

Perovskite, BaTiO_{3}

Perovskite - ferroelectric BaTiO_{3}

Perovskite - ferroelectric BaTiO_{3}

Cubic centrosymmetric paraelectric

(Ba^{2+}
$\mathrm{O}^{\mathrm{Ti}{ }^{2+}}$
O^{2-}

Tetragonal, orthorhombic and rhombohedric non centrosymmetric - ferroelectric

Perovskite structure of YBCO

Perovskite structure of $\mathbf{C H}_{3} \mathbf{N H}_{3} \mathbf{P b I}_{3}$

Perovskite $\left(\mathrm{MeNH}_{3}\right) \mathrm{PbX}{ }_{3}$

Rutile, $\mathbf{T i O}_{2}$

CN - stoichiometry Rule
$A_{x} B_{y}$
$\mathbf{C N}(\mathbf{A}) / \mathbf{C N}(\mathbf{B})=\mathbf{y} / \mathbf{x}$

Distorted hexagonal close packing of anions with $1 / 2$ octahedral holes filled by cations (giving a tetragonal lattice)

Rutile, $\mathbf{T i O}_{2}$

Rutile Crystal Structure

$$
\begin{gathered}
\mathrm{GeO}_{2}, \mathrm{CrO}_{2}, \mathrm{IrO}_{2}, \mathrm{MoO}_{2}, \mathrm{NbO}_{2}, \beta-\mathrm{MnO}_{2}, \mathrm{OsO}_{2}, \mathrm{VO}_{2} \\
(>340 \mathrm{~K}), \mathrm{RuO}_{2}, \mathrm{CoF}_{2}, \mathrm{FeF}_{2}, \mathrm{MgF}_{2}, \mathrm{MnF}_{2}
\end{gathered}
$$

The rutile structure: $\mathbf{T i O}_{\mathbf{2}}$

TiO_{6} - octahedra
OTi_{3} - trigonal planar
(alternative to CaF_{2} for highly charged smaller cations)

Three polymorphs of $\mathbf{T i O}_{\mathbf{2}}$

The spinel structure: $\mathbf{M g A l}_{2} \mathbf{O}_{4}$

fcc array of $\mathrm{O}^{\mathbf{2 -}}$ ions, $\mathrm{A}^{\mathbf{2 +}}$ occupies $1 / 8$ of the tetrahedral and $B^{3+} 1 / 2$ of the octahedral holes
\rightarrow normal spinel:

$$
\mathrm{AB}_{2} \mathrm{O}_{4}
$$

\rightarrow inverse spinel:

$$
\overline{\mathrm{B}[\mathrm{AB}] \mathrm{O}_{4}}
$$

$\mathrm{Fe}_{3} \mathrm{O}_{4}=\mathrm{Fe}^{3+}\left[\mathrm{Fe}^{2+} \mathrm{Fe}^{3+}\right] \mathrm{O}_{4}$
\rightarrow basis structure for severabs magnetic materials

- MAGNETITE $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$
- MAGHEMITE $\left(\gamma-\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$
> Cubic inverse spinel
> O^{2-} atoms are arranged in close-packed FCC lattice
, Fe^{2+} occupy $1 / 2$ of OCT sites
> Fe^{3+} are split evenly across the remaining OCT and TET sites
> Fully oxidized form of magnetite
> Inverse spinel with cation deficiency
> One of every six octahedral sites in magnetite is vacant in maghemite structure
> Stoichiometry $\mathrm{Fe}^{\mathrm{tet}}\left(\mathrm{Fe}_{5 / 3} \square_{1 / 3}\right)^{\text {oct }} \mathbf{O}_{4}$

Spinel

$\mathrm{AB}_{2} \mathrm{X}_{4}$ Spinel normal: Cubic close packing of anions with $1 / 2$ octahedral holes filled by B cations and $1 / 8$ tetrahedral holes by A cations
$\mathrm{MgAl}_{2} \mathrm{O}_{4}, \mathrm{CoAl}_{2} \mathrm{O}_{4}, \mathrm{MgTi}_{2} \mathrm{O}_{4}, \mathrm{Fe}_{\mathbf{2}} \mathrm{GeO}_{4}, \mathrm{NiAl}_{2} \mathrm{O}_{4}, \mathrm{MnCr}_{2} \mathrm{O}_{4}$
$\mathrm{AB}_{2} \mathrm{X}_{4}$ Spinel inverse: As for spinel but A cations and $\mathbf{1 / 2}$ of \mathbf{B} cations interchanged
$\mathrm{MgFe}_{2} \mathrm{O}_{4}, \mathrm{NiFe}_{2} \mathrm{O}_{4}, \mathrm{MgIn}_{2} \mathrm{O}_{4}, \mathrm{MgIn}_{2} \mathrm{~S}_{4}, \mathrm{Mg}_{2} \mathrm{TiO}_{4}, \mathrm{Zn}_{2} \mathrm{TiO}_{4}, \mathrm{Zn}_{2} \mathrm{SnO}_{4}$, $\mathrm{FeCo}_{2} \mathrm{O}_{4}$.
$\delta=$ the inversion parameter
$\left(\mathbf{A}_{\delta} B_{1-\delta}\right)_{\mathrm{A}}\left[\mathrm{A}_{1-\delta} \mathrm{B}_{1+\delta}\right]_{\mathrm{B}} \mathrm{O}_{4}$

Values from $\delta=1$ (normal) to $\delta=0$ (inverse)
May depend on synthesis conditions

Corundum

$\mathrm{Al}_{2} \mathrm{O}_{3}$ consists of hep $\mathrm{O}^{\mathbf{2 -}}$ ions
Al^{3+} fill of all octahedral holes

The Al centres are surrounded by \qquad oxides

Oxide ligands are \qquad .coordinated by AI

Corundum

AlO_{6} octahedral units are linked in both facesharing and edge-sharing orientations as parallel and perpendicular to the c-axis, respectively. The relative orientation of the metal centres causes a pseudo Peierls distortion, resulting in neighbouring metal centres that are rotated at an angle of 64.3° away from each other. Elongation in pairs of the surrounding oxide ligands results in a pentagonal bi-pyramidal geometry belonging to the space group R-3c. The material is largely ionic in nature with a wide band gap of 9.25 eV .

Garnets

Naturally occuring garnets $\mathrm{A}_{3} \mathrm{~B}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}=\mathrm{A}_{3} \mathbf{B}_{\mathbf{2}}\left(\mathrm{SiO}_{4}\right)_{3}$

$\mathrm{A}_{3}=$ divalent cation ($\mathrm{Mg}, \mathrm{Fe}, \mathrm{Mn}$ or Ca) dodecahedral
$B_{2}=$ trivalent (Al, Fe^{3+}, Ti , or Cr) octahedral
$\mathrm{Si}_{3}=$ tetravalent, tetrahedral
Since Ca is much larger in radius than the other divalent cations, there are two series of garnets: one with calcium and one without:
pyralspite contain Al (pyrope, almandine, spessartine)
ugrandite contain Ca (uvarovite, grossular, andradite)
Synthetic garnets $\mathbf{A}_{\mathbf{3}} \mathbf{B}_{\mathbf{5}} \mathrm{O}_{\mathbf{1 2}}$
$\mathrm{A}_{3}=$ trivalent cations, large size (Y, La,...)
$\mathrm{B}_{5}=$ trivalent (Al, Fe^{3+}, Ti , or Cr) 2B octahedral, 3B tetrahedral
$\mathrm{Y}_{3} \mathrm{Al}_{5} \mathrm{O}_{12}$
$\mathrm{Y}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$

Garnets

Garnet $\mathbf{Y}_{\mathbf{3}} \mathbf{A l}_{\mathbf{5}} \mathbf{O}_{\mathbf{1 2}}$
$Y_{3}=$ red - dodecahedral trivalent cations, large size
$\mathrm{Al}_{5}=$ blue
2 octahedral 3 tetrahedral
O_{12}

Fullerides

$\mathrm{M}_{1} \mathrm{C}_{60}$ all the octahedral (O) sites (dark blue) are occupied ($\mathbf{N a C l}$)
$\mathrm{M}_{2} \mathrm{C}_{60}$ all the tetrahedral (T) sites (light blue) are occupied (CaF_{2})
$\mathrm{M}_{3} \mathrm{C}_{60}$ both the O and the T sites are occupied $\left(\mathrm{BiF}_{3}\right)$
$\mathrm{M}_{4} \mathrm{C}_{60}$ rearranged to a body-centered tetragonal (bct) cell and both the O and the T sites of the bet lattice are occupied
$\mathrm{M}_{6} \mathrm{C}_{60}$ a bec lattice and all its T sites are occupied

$M_{1} C_{60}$

$M_{3} C_{60}$

$\mathrm{M}_{4} \mathrm{C}_{60}$

$\mathrm{M}_{6} \mathrm{C}_{60}$

Fullerides

BCC unit cell of $\mathrm{Rb}_{6} \mathrm{C}_{60}$ and $\mathrm{Cs}_{6} \mathrm{C}_{60}$

Layered Structures

CdI_{2} Hexagonal close packing of anions with $\mathbf{1 / 2}$ octahedral holes filled by cations
$\mathrm{CoI}_{2}, \mathrm{FeI}_{2}, \mathrm{MgI}_{2}, \mathrm{MnI}_{2}, \mathrm{PbI}_{2}, \mathrm{ThI}_{2}, \mathrm{TiI}_{2}, \mathrm{TmI}_{2}, \mathrm{VI}_{2}, \mathrm{YbI}_{2}, \mathrm{ZnI}_{2}, \mathrm{VBr}_{2}$, $\mathrm{TiBr}_{2}, \mathrm{MnBr}_{2}, \mathrm{FeBr}_{2}, \mathrm{CoBr}_{2}, \mathrm{TiCl}_{2}, \mathrm{TiS}_{2} ., \mathrm{TaS}_{2}$.
CdCl_{2} Cubic close packing of anions with $\mathbf{1 / 2}$ octahedral holes filled by cations
$\mathbf{C d C l}_{2}, \mathrm{CdBr}_{2}, \mathrm{CoCl}_{2}, \mathrm{FeCl}_{2}, \mathrm{MgCl}_{2}, \mathrm{MnCl}_{2}, \mathrm{NiCl}_{2}, \mathrm{NiI}_{2}, \mathrm{ZnBr}_{2}, \mathrm{ZnI}_{2}$, $\mathrm{Cs}_{2} \mathrm{O}^{*}$ (anti-CdCl 2 structure)

CdCl_{2} Cubic Close Packing

$\mathbf{C d C l}_{2}$ Cubic Close Packing

Strukturbericht Symbols

A partly systematic method for specifying the structure of a crystal A - monatomic (elements), B - diatomic with equal numbers of atoms of each type (AB), C - a 2-1 abundance ratio (AB_{2}), D0-3-1, etc.

Structure type	Struktur bericht	Space group (S.G. No.)	Lattice
Cu	A1	$\mathrm{Fm}-3 \mathrm{~m}(225)$	fcc
W, Fe	A2	$\mathrm{Im}-3 \mathrm{~m}(229)$	bcc
Mg	A3	$\mathrm{P} 6_{3} / \mathrm{mmc}(194)$	hcp
$\mathrm{C}-$ diamond	A4	$\mathrm{Fd}-3 \mathrm{~m} \mathrm{(227)}$	diamond
NaCl	B1	$\mathrm{Fm}-3 \mathrm{~m} \mathrm{(225)}$	
CsCl	B2	$\mathrm{Pm}-3 \mathrm{~m}(221)$	
ZnS	B3	$\mathrm{F} 43 \mathrm{~m} \mathrm{(216)}$	Zincblende
ZnS	B4	$\mathrm{P} 6_{3} / \mathrm{mc} \mathrm{(186)}$	Wurtzite
CaF_{2}	C1	$\mathrm{Fm}-3 \mathrm{~m}(225)$	Fluorite

Pearson Symbols

Indicate the crystal symmetry and the number of atoms in the unit cell e.g.: NaCl - a face-centered (\mathbf{F}) cubic (c) structure with 8 atoms in the unit cell $=\mathrm{cF} 8$ monoclinic (\mathbf{m}), hexagonal (h), orthorhombic (o), asymmetric (a), primitive (\mathbf{P}) the Pearson symbol does not necessarily specify a unique structure (see cF8)

Structure type	Pearson Symbol	Struktur bericht	Space group (S.G. No.)
Cu	cF4	A1	Fm-3m (225)
W, Fe	cl2	A2	Im-3m (229)
Mg	hP2	A3	$\mathrm{P6}_{3} / \mathrm{mmc}$ (194)
C - diamond	cF8	A4	Fd-3m (227)
NaCl	cF8	B1	Fm-3m (225)
CsCl	cP2	B2	Pm-3m (221)
ZnS (zb)	cF8	B3	F43m (216)
ZnS (w)	hP4	B4	$\mathrm{P6}_{3} / \mathrm{mc}(186)^{43}$
CaF_{2}	cF12	C1	Fm-3m (225)

Space Group Symbols

primitive (\mathbf{P}), face-centered (\mathbf{F}), body-centered (\mathbf{I}), base-centered ($\mathbf{A}, \mathbf{B}, \mathbf{C}$), rhombohedral (\mathbf{R})

S. G. Class	Centering	Symbol syntax (examples)
Triclinic	P	P1, P-1
Monoclinic	P, C, B	Paxis, Pplane, Paxis/plane (P2 $\left.{ }_{1}, \mathbf{C m}, \mathbf{P 2} \mathbf{1}_{1} / \mathbf{c}\right)$
Orthorhombic	P, F, I, C, A	Paxisaxisaxis, Pplaneplaneplane (Pmmm, Cmc2 ${ }_{\mathbf{1}}$)
Tetragonal	P, I	P4, P4axisaxisaxis, P4planeplaneplane (I4/m, P4mm)
Trigonal	P, R	P3axis, P3plane (R-3m)
Hexagonal	P	P6, P6axisplane (P6 $/ \mathbf{m m c}$)
Cubic	P, F, I	Paxis3plane, Pplane3plane (Pm-3m, Fm-3m)

Bonding models for covalent and ionic compounds

G. N. Lewis 1923

Electron pair sharing Orbital overlap
Chemical bond
Number of bonds $=$ atomic valence

Benzene
Molecular formula

Born, Lande, Magelung, Meyer 1918
Electrostatic attraction (Coulomb) Repulsion

Organic vs inorganic bonding

Lattice Enthalpy, L

The lattice enthalpy change, L , is the standard molar enthalpy change ΔH_{L}^{0} for the process:

$$
\mathrm{M}_{(\text {gas })}^{+}+\mathrm{X}_{\text {(gas) }}^{-} \rightarrow \mathrm{MX}_{\text {(solid) }}
$$

The formation of a solid from ions in the gas phase is always exothermic Lattice enthalpies are usually negative

The most stable crystal structure of a given compound is the one with the highest (most negative) lattice enthalpy.
(entropy considerations neglected)

Lattice Enthalpy, L, kJ/mol

	F^{-}	Cl^{-}	Br^{-}	I^{-}	O^{2-}
Li^{+}	1049.0	862.0	818.6	762.7	2830
Na^{+}	927.7	786.8	751.8	703	2650
$\mathrm{~K}^{+}$	825.9	716.8	688.6	646.9	2250
Rb^{+}	788.9	687.9	612	625	2170
Cs^{+}	758.5	668.2	635	602	2090
Mg^{2+}		2522			3795
Ca^{2+}		2253			3414
Sr^{2+}		2127			3217

Born-Haber cycle

Lattice Enthalpy

$\mathbf{L}=\mathbf{E}_{\text {coul }}+\mathbf{E}_{\text {rep }}$

One ion pair $\quad E_{\text {coul }}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Z_{A} Z_{B} e^{2}}{d}$
$\mathbf{E}_{\text {coul }}=\left(1 / 4 \pi \varepsilon_{0}\right) \mathrm{z}_{\mathrm{A}} \mathrm{z}_{\mathrm{B}} / \mathrm{d}$
(calculated exactly)

n = Born exponent
(experimental measurement of compressibilty)
B = a constant

Lattice Enthalpy

1 mol of ions

$$
\mathbf{E}_{\text {coul }}=\mathrm{N}_{\mathrm{A}} \mathrm{~A}\left(\mathrm{e}^{2} / 4 \pi \varepsilon_{0}\right)\left(\mathrm{z}_{\mathrm{A}} \mathrm{z}_{\mathrm{B}} / \mathrm{d}\right)
$$

A = Madelung constant -a single ion interacts with all other ions

$$
\begin{aligned}
& \mathbf{E}_{\text {rep }}=\mathrm{N}_{\mathrm{A}} \mathrm{~B} / \mathrm{d}^{\mathrm{n}} \\
& \mathbf{L}=\mathbf{E}_{\text {coul }}+\mathbf{E}_{\text {rep }} \\
& \text { Find minimum dL/d(d)=0 }
\end{aligned}
$$

Calculation of Lattice Enthalpies

Coulombic contributions to lattice enthalpies

$$
E_{C o u l}=-N_{A} A\left(\frac{z_{+} z_{-} e^{2}}{4 \pi \varepsilon_{0} d} \sim_{c}^{\substack{\text { Coulomb potential of } \\ \text { an ion pair }}}\right.
$$

$\mathbf{E}_{\text {Coul }}$: Coulomb potential (electrostatic potential)
A: Madelung constant (depends on structure type)
N_{A} : Avogadro constant
z: charge number
e: elementary charge
ε_{0} : dielectric constant (vacuum permittivity)
d : shortest distance between cation and anion

Madelung Constant

Count all interactions in the crystal lattice

The simplest example : 1D lattice

$$
\mathbf{E}_{\text {coul }}=\left(\mathrm{e}^{2} / 4 \pi \varepsilon_{0}\right) *\left(\mathrm{z}_{\mathrm{A}} \mathrm{z}_{\mathrm{B}} / \mathrm{d}\right) *[+2(1 / 1)-2(1 / 2)+2(1 / 3)-2(1 / 4)+\ldots .]
$$

$$
\mathrm{E}_{\text {coul }}=\left(\mathrm{e}^{2} / 4 \pi \varepsilon_{0}\right)^{*}\left(\mathrm{z}_{\mathrm{A}} \mathrm{z}_{\mathrm{B}} / \mathrm{d}\right)^{*}(2 \ln 2)
$$

Madelung constant $\mathrm{A}=1.3863 .$. . for an infinite linear chain of ions
$=$ sum of convergent series

Madelung Constant

Count all interactions in the crystal lattice of one ion with all others

The simplest example : 1D lattice

$$
E_{\text {coul }}=\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{Z_{A} Z_{B}}{d}\left[+2 \frac{1}{1}-2 \frac{1}{2}+2 \frac{1}{3}-2 \frac{1}{4}+\ldots .\right]=\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{Z_{A} Z_{B}}{d} 2 \ln 2
$$

Madelung constant $\mathrm{A}=1.3863 .$. . for an infinite linear chain of ions
$=$ sum of convergent series

Madelung Constant for $\mathbf{N a C l}$

3D ionic solids:
Coulomb attraction and repulsion
a single ion interacts with all other ions

$$
E_{\text {coul }}=\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{Z_{A} Z_{B}}{d}\left[+6 \frac{1}{1}-12 \frac{1}{\sqrt{2}}+8 \frac{1}{\sqrt{3}}-6 \frac{1}{\sqrt{4}}+24 \frac{1}{\sqrt{5}}+\ldots .\right]=\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{Z_{A} Z_{B}}{d} M
$$

$$
\mathrm{E}_{\text {coul }}=\left(\mathrm{e}^{2} / 4 \pi \varepsilon_{0}\right) *\left(\mathrm{z}_{\mathrm{A}} \mathrm{z}_{\mathrm{B}} / \mathrm{d}\right) *[6(1 / 1)-12(1 / \sqrt{ } 2)+8(1 / \sqrt{ } 3)-6(1 / \sqrt{ } 4)+24(1 / \sqrt{ } 5) \ldots]
$$

convergent series

$$
\mathrm{E}_{\text {coul }}=\left(\mathrm{e}^{2} / 4 \pi \varepsilon_{0}\right) *\left(\mathrm{z}_{\mathrm{A}} \mathrm{z}_{\mathrm{B}} / \mathrm{d}\right) * A \text {. } A=6-\frac{12}{\sqrt{2}}+\frac{8}{\sqrt{3}}-\frac{6}{2}+\frac{24}{\sqrt{5}} \ldots=1.747{ }^{154} 6
$$

Madelung Constants for other Structural Types

Structural Type	A
NaCl	1.74756
CsCl	1.76267
CaF_{2}	2.519
ZnS Sfalerite	1.63805
ZnS Wurtzite	1.64132
Linear Lattice	1.38629
Ion Pair	$?$

Born repulsion $\mathbf{E}_{\text {rep }}$

Repulsion arising from overlap of electron clouds

Because the electron density of atoms decreases exponentially towards zero at large distances from the nucleus the Born repulsion shows the same behavior
approximation:

B and n are constants for a given atom type; n can be derived from compressibility measurements ($\sim 8)_{156}$

Total lattice enthalpy from Coulomb interaction and Born repulsion

$$
\Delta \underset{\substack{\text { set first derinative of fics sum to o ere) }}}{0}=\min \left(E_{\text {rep }}\right)
$$

$$
\Delta \mathrm{H}_{L}^{0}=-A \frac{z_{+} z_{-} e^{2}}{4 \pi \varepsilon_{0} d} N_{A}\left(1-\frac{1}{n}\right)
$$

Measured (calculated) lattice enthalpies ($\mathrm{kJ} \mathrm{mol}^{-1}$):
NaCl: -772 (-757)
CsCl: -652 (-623)
(measured from Born Haber cycle)

The Kapustinskii equation

Kapustinskii found that if the Madelung constant for a given structure is divided by the number of ions in one formula unit (v) the resulting values are almost constant:

Structure	Madelung constant (A)	\mathbf{A} / v	Coordination
CsCl	1.763	0.88	$8: 8$
NaCl	1.748	0.87	$6: 6$
CaF_{2}	2.519	0.84	$8: 4$
$\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$	4.172	0.83	$6: 4$

\rightarrow general lattice energy equation that can be applied to any crystal regardless of the crystal structure

$$
L=K \times v \times \frac{Z_{A} Z_{B}}{r_{+}+r_{-}} \times\left(1-\frac{G}{r_{+}+r_{-}}\right) \quad K, G=\text { constants }
$$

Kapustinski

structure	\boldsymbol{M}	$\mathbf{C N}$	stoichm	$\boldsymbol{M} / \boldsymbol{v}$
CsCl	1.763	$(8,8)$	AB	0.882
NaCl	1.748	$(6,6)$	AB	0.874
ZnS sfalerite	1.638	$(4,4)$	AB	0.819
ZnS wurtzite	1.641	$(4,4)$	AB	0.821
CaF_{2} fluorite	2.519	$(8,4)$	AB_{2}	0.840
TiO_{2} rutile	2.408	$(6,3)$	AB_{2}	0.803
CdI_{2}	2.355	$(6,3)$	AB_{2}	0.785
$\mathrm{Al}_{2} \mathrm{O}_{3}$	4.172	$(6,4)$	$\mathrm{A}_{2} \mathrm{~B}_{3}$	0.834

$\mathrm{v}=$ the number of ions in one formula unit

Most important advantage of the Kapustinski equation

\rightarrow it is possible to apply the equation for lattice calculations of crystals with polyatomic ions (e.g. $\mathrm{KNO}_{3},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \ldots$).
\rightarrow a set of „thermochemical radii" was derived for further calculations of lattice enthalpies

Table 1.13 Thermochemical radii of polyatomic ions*

Ion	$p m$	Ion	pm	Ion	$p m$
NH_{4}^{+}	151	ClO_{4}^{-}	226	MnO_{4}^{2-}	215
$\mathrm{Me}_{4} \mathrm{~N}^{+}$	215	CN^{-}	177	O_{2}^{2-}	144
PH_{4}^{+}	171	CNS^{-}	199	OH^{-}	119
AlCl_{4}^{-}	281	CO_{3}^{2-}	164	PtF_{6}^{2-}	282
BF_{4}^{-}	218	IO_{3}^{-}	108	PtCl_{6}^{2-}	299
BH_{4}^{-}	179	$\mathrm{~N}_{3}^{-}$	181	PtBr_{6}^{2-}	328
BrO_{3}^{-}	140	NCO^{-}	189	PtI_{6}^{2-}	328
$\mathrm{CH}_{3} \mathrm{COO}^{-}$	148	NO_{2}^{-}	178	SO_{4}^{2-}	244
ClO_{3}^{-}	157	NO_{3}^{-}	165	SeO_{4}^{2-}	235

*J.E. Huheey (1983) Inorganic Chemistry, 3rd edn, Harper and Row, London, based on data from H.D.B. Jenkins and K.P. Thakur (1979) J. Chem. Ed., 56, 576.

Born-Lande

Lattice Enthalpy

Born-Mayer

$$
L=N_{A} A \frac{Z_{A} Z_{B} e^{2}}{4 \pi \varepsilon_{0} d}\left(1-\frac{d^{*}}{d}\right) \quad \mathrm{d}^{*}=0.345 \AA
$$

Lattice Enthalpy of $\mathbf{N a C l}$

Born-Lande calculation $\mathrm{L}=-765 \mathrm{~kJ} \mathrm{~mol}^{-1}$ Only ionic contribution

Experimental Born-Haber cycle $\mathrm{L}=-788 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Lattice Enthalpy consists of ionic and covalent contribution

Applications of lattice enthalpy calculations:

\rightarrow thermal stabilities of ionic solids
\rightarrow stabilities of oxidation states of cations
\rightarrow solubility of salts in water
\rightarrow calculations of electron affinity data
\rightarrow lattice enthalpies and stabilities of „non existent" compounds

Pauling's Rules

Five principles which could be used to determine the structures of complex ionic/covalent crystals

Pauling's Rule no. 1 Coordination Polyhedra

A coordinated polyhedron of anions is formed about each cation.
Cation-Anion distance is determined by sums of ionic radii.
Cation coordination environment is determined by radius ratio.

Coordination Polyhedra

Different Types of Radii

1 Metallic radius

2 Covalent radius

3 lonic radius

Variation of the electron density along the $\mathrm{Li}-\mathrm{F}$ axis in LiF

P - Pauling radius
G - Goldschmidt radius
S - Shannon radius

Variation of ionic radii with coordination number

3 lonic radius

The radius of one ion was fixed to a reasonable value $\left(r\left(O^{2-}\right)=140 \mathrm{pm}\right)$ (Linus Pauling)
That value is then used to compile a set of self consistent values for all other ions.

Variation of atomic radii
 through the Periodic table

Ionic Radii

R.D. Shannon and C.T. Prewitt, Acta Cryst. B25, 925-945 (1969)
R.D. Shannon, Acta Cryst. A32, 751-767 (1976)

As the coordination number (CN) increases, the lonic Radius increases

Sr ${ }^{2+}$				
CN	Radius, Å			
6	1.32			
8	1.40	As the oxidation state increases, cations get smaller		
9	1.45	(6-fold coordination, in Å)		
10	1.50			
12	1.58	Mn^{2+}	0.810	
		Mn^{3+}	0.785	
		Mn^{++}	0.670	
		Ti^{2+}	1.000	
		Ti^{3+}	0.810	
		Ti ${ }^{4+}$	0.745	170

Ionic Radii

The radius increases down a group in the periodic table.
The exception $-4 d / 5 d$ series in the transition metals - the lanthanide contraction
(6 -fold coordination, in \AA)
$\mathrm{Al}^{13+} \quad 0.675$
$\mathrm{Ga}^{3+} \quad 0.760$
$\mathrm{In}^{3+} \quad 0.940$
$\mathrm{Tl}^{3+} \quad 1.025$
Right to left across the periodic table the radius decreases.
$\mathrm{Ti}^{4+} \quad 0.745$
$\mathrm{Zr}^{4+} \quad 0.86$
$\mathrm{Hf}^{4+} \quad 0.85$
(6 coordinate radii, in \AA)
$\mathrm{La}^{3+} \quad 1.172$
$\mathrm{Nd}^{3+} \quad 1.123$
Gd $^{3+} 1.078$
$\mathrm{Lu}^{3+} \quad 1.001$

General trends for ionic radii

1. Ionic radii increase down a group.
(Lanthanide contraction restricts the increase of heavy ions)
2. Radii of equal charge ions decrease across a period
3. Ionic radii increase with increasing coordination number
the higher the CN the bigger the ion
4. The ionic radius of a given atom decreases with increasing charge $\left(r\left(\mathrm{Fe}^{2+}\right)>r\left(\mathrm{Fe}^{3+}\right)\right.$)
5. Cations are usually the smaller ions in a cation/anion combination (exceptions: $\mathrm{r}\left(\mathrm{Cs}^{+}\right)>\mathrm{r}\left(\mathrm{F}^{-}\right)$)
6. Frequently used for rationalization of structures:

Cation/anion Radius Ratio

Limiting Radius Ratios

ZnS 4:4

face diagonal $a \sqrt{2}$ body diagonal $a \sqrt{3}$

$$
r_{4}+r_{x}=\frac{1}{2} r_{x} \sqrt{6}
$$

$$
r_{u} / r_{x}=\frac{1}{2} \sqrt{6}-1
$$

$$
=0.225
$$

$$
\begin{gathered}
8 \% \\
88 \\
888
\end{gathered}
$$

Structure Map

Dependence of the structure type on parameters, such as ionic radii, ionicity, electronegativity etc.

Structural map as function of radius ratios for $A B$ compounds.

Structural map as function of radius ratios for $\mathrm{A}_{2} \mathrm{BO}_{4}$ compounds.

Structure Map

Dependence of the structure type (coordination number) on the electronegativity difference and the average principal quantum number (size and polarizability)
$A B$ compounds

Pauling's Rules

Pauling's Rule no. 2 Bond Strength

The strength of an electrostatic bond = valence / CN
The bond valence sum of each ion equals its oxidation state.
The valence of an ion (V_{i}, equal to the oxidation state of the ion) is equal to a sum of the valences of its bonds (s_{ij}).
In a stable ionic structure the charge on an ion is balanced by the sum of electrostatic bond strengths (s_{ij}) to the ions in its coordination polyhedron.
TiO_{2} (Rutile) Ti - oxidation state of +4 , coordinated to 6 oxygens.
$\mathrm{V}_{\mathrm{Ti}}=+4=6\left(\mathrm{~s}_{\mathrm{ij}}\right) \quad \mathrm{s}_{\mathrm{ij}}=+2 / 3$
The bond valence of oxygen, coordinated by 3 Ti atoms $\mathrm{Vo}=3\left(\mathrm{~s}_{\mathrm{ij}}\right)=3(-2 / 3)=-2$

Each bond has a valence of s_{ij} with respect to the cation

$$
\text { and }-\mathrm{s}_{\mathrm{ij}} \text { with respect to the anion. }
$$

Bond Strength

Brown, Shannon, Donnay, Allmann:
Correlation of the valence of a bond s_{ij} with the (experimental) bond distance d_{ij}.

$$
s_{i j}=\exp \frac{R_{i j}-d_{i j}}{b}
$$

$\mathrm{R}_{\mathrm{ij}}=$ standard single bond length - determined empirically from (many) structures where bond distances and ideal valences are accurately known.

Tables of R_{ij} values for given bonding pairs (i.e. $\mathrm{Nb}-\mathrm{O}, \mathrm{Cr}-\mathrm{N}, \mathrm{Mg}-\mathrm{F}$, etc.) have been calculated, just as tables of ionic radii are available.

A constant $b=0.37$
$R=d \quad s=e^{0}=1$
$R<d \quad s=e^{-1}<1$ a bond longer than R is weaker than 1
$R>d \quad s=e^{1}>1$ a bond shorter than R is stronger than 1

Bond Strength

Correlation of the valence of a bond s_{ij} with the (experimental) bond distance d_{ij}.

$$
s_{i j}=\exp \frac{R_{i j}-d_{i j}}{b} \quad v_{i}=\Sigma s_{i j}=\Sigma \frac{z_{i}}{C N}
$$

Use of the bond valence concept
A) To check experimentally determined structures for correctness, or bonding instabilities
B) To predict new structures
C) To locate light atoms such as hydrogen or Li ion, which are hard to find experimentally
D) To determine ordering of ions which are hard to differentiate experimentally, such as Al^{3+} and $\mathrm{Si}^{4^{++}}$, or O^{2-} and F^{-}
E) To check/confirm oxidation states of atoms $\left(\mathrm{Co}^{2+} / \mathrm{Co}^{3+}, \mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}\right)$

Bond Strength

Correlation of the valence of a bond s_{ij} with the (experimental) bond distance d_{ij}.

$$
s_{i j}=\exp \frac{R_{i j}-d_{i j}}{b} \quad v_{i}=\Sigma s_{i j}=\Sigma \frac{z_{i}}{C N}
$$

FeTiO_{3} (mineral Ilmenite) possesses the corundum structure - an hcp array of oxides with cations filling $2 / 3$ of octahedral holes.

Decide which oxidation states are present: $\mathrm{Fe}(\mathrm{II}) \mathrm{Ti}(\mathrm{IV})$ or $\mathrm{Fe}(\mathrm{III}) \mathrm{Ti}(\mathrm{III})$
Bond Distances $\left(\mathrm{d}_{\text {exp }}, \AA\right.$) Tabulated R_{ij} values Constants
$\mathrm{Fe}-\mathrm{O}=3 \times 2.07$ and 3×2.20
$\begin{array}{ll}\mathrm{R}_{0}(\mathrm{Fe}-\mathrm{O})=1.795 \AA & \mathrm{~b}=0.30 \\ \mathrm{R}_{0}(\mathrm{Ti}-\mathrm{O})=1.815 \AA & \mathrm{~b}=0.37\end{array}$
$\mathrm{Ti}-\mathrm{O}=3 \times 1.88$ and 3×2.09
Oxygen valence and coordination number O ?
Each oxygen is bound to Fe and Ti with both bond distances.

Pauling's Rules

Pauling's Rule no. 3 Polyhedral Linking

The presence of shared edges, and particularly shared faces decreases the stability of a structure. This is particularly true for cations with large valences and small coordination number.

Avoid shared polyhedral edges and/or faces.

Polyhedral Linking

Polyhedral Linking

The Coulombic interactions - maximize the cation-anion interactions (attractive), and minimize the anion-anion and cation-cation interactions (repulsive).
The cation-anion interactions are maximized by increasing the coordination number and decreasing the cation-anion distance. If ions too close - electronelectron repulsions.

The cation-cation distances as a function of the cation-anion distance ($\mathrm{M}-\mathrm{X}$)

Polyhedron/Sharing	Corner	Edge	Face
2 Tetrahedra	$2 \mathrm{M}-\mathrm{X}$	1.16 MX	0.67 MX
2 Octahedra	$2 \mathrm{M}-\mathrm{X}$	1.41 MX	1.16 MX

The cation-cation distance decreases, (the Coulomb repulsion increases) as the
-degree of sharing increases (corner < edge < face)
-CN decreases (cubic < octahedral < tetrahedral)
-cation oxidation state increases (this leads to a stronger Coulomb repulsion)

Pauling's Rules

Pauling's Rule no. 4 Cation Evasion

In a crystal containing different cations those with large valence and small coord. number tend not to share polyhedral elements (anions).

Perovskite, CaTiO_{3}
Ca" 12-coordinate $\mathbf{C a O}_{12}$ cuboctahedra share FACES

Tilv 6-coordinate TiO_{6} octahedra share only VERTICES

Pauling's Rules

Pauling's Rule no. 5 Environmental Homogeneity

 the rule of parsimonyThe number of chemically different coordination environments for a given ion tends to be small.

Once the optimal chemical environment for an ion is found, if possible all ions of that type should have the same environment.

High Pressure Transformations

-high pressure phases
-higher density
-higher coodination number
-higher symmetry
-transition to from nonmetal to metal
-band mixing
-longer bonds
Pressure/Coordination Number Rule: increasing pressure - higher $\mathbf{C N}_{188}$ Pressure/Distance Paradox: increasing pressure - longer bonds

