C7780 Inorganic Materials Chemistry Fall 2019

prof. RNDr. Jiří Pinkas, Ph.D.

Introduction

History of Materials, Materials Science, Materials Engineering, Materials Chemistry Chemical Compounds versus Materials Structure, Properties, Function Traditional Materials: Ceramics, Polymers, Metals New Materials: Composites, Semiconductors, Biomaterials, Hybrid Materials Size Domains, Shape Fabrication, Chemical Synthesis of Materials, Imaging

Basic Structural Chemistry

Basic Inorganic Structure Types
Metals, sc, ccp (fce), hcp, bcc
Ionic and Covalent Compounds, CsCl, NaCl, Cubic and Hexagonal Diamond, Sphalerite, Wurzite, NiAs, WC, CaF2, Rutile, SiO2, BiF3, ReO3, Perovskite, Spinel, Corundum, Graphite, h-BN,
Pauling's Rules, Radius Ratio, Ionicity

Structure and Properties

Real Structure and Defects, Diffusion

Physicochemical Methods of Characterization

Electronic Structure of Solids, Chemical Bonding, Band Theory

Electrical Properties, Metals, Insulators, Semiconductors, Ionic Conductors

Mechanical Properties, Elastic and Plastic Deformation, Stress-Strain, Young Modulus, Bulk Modulus, Hardness Thermal Properties, Melting Point, Thermal Conductivity, Thermal Expansion, Materials with a Negative

Thermal Expansion Coefficient

Optical, Magnetic Properties

Direct Reactions of Solids

Powder Mixing Method, Synthesis of Spinel, Kirkendall Ratio Kinatics of Solid State Reactions, Nucleation, Growth Self-Sustaining Reactions, Combustion Reactions Carbothermal Reduction Fusion-Crystallization from Glass Polymer Pyrolysis Mechanochemical Synthesis Microwave-Assisted Synthesis

Dry High-Pressure Methods

Coordination Number - Bond Length Paradox Belt-Type Apparatus, Diamond Anvil Detonation Reactions Diamond Synthesis, Hard Materials

Gas Phase Reactions

Gas-Solid Reactions- Tarnishing Aerosol Routes, Spray Pyrolysis, Spray Drying Fullerenes, Carbon Nanotubes
Gas-Gas Reactions- Flame Hydrolysis
Vapor Phase Transport
Laser-induced Homogeneous Pyrolysis

Liquid Phase Reactions

Precipitation / Coprecipitation, Precursor Method
Freeze-Drying, Double-Salt Precursor
Pechini and Citrate Method
Flux or Molten Salt Method, Eutectics, Acid-Base Reactions, Lux-Flood Formalism
Ionic Liquids
Sonochemical Synthesis

Sol-Gel Methods

Sol (Colloidal Solution), Gel

Precursors and Their Syntheses

Hydrolysis, Condensation, Drying, Calcination, Sintering

Colloid Processing, Metal Salt Hydrolysis, Keggin Structures

Metal Alkoxide Hydrolysis

Aerogels, Emulsion Method, Inverse Micelles

Non-aqueous Sol-Gel Methods. Hybrid Materials

Spin- and Dip-Coating

Hydrothermal and Solvothermal Synthesis. Reactor, Mineralizers, Solvents, Supercritical State

Zeolites and Zeolitic Materials

Primary and Secondary Building Units, Sodalite Cage, Pores and Channles, Templating, Pauling Rules,

Loewenstein Rule, Acidity, Shape Selectivity, Catalysis

Aluminophosphates

Reticular Chemistry, Metallo-organic Frameworks (MOF), Covalent-organic Frameworks (COF)

Mesoporous Materials

Surfactants, Micelles, Critical Packing Parameter

Liquid Crystalline Phases

Supramolecular Templating Mechanisms

XRD, TEM, Gas Adsorption

Mesoporous Silica, Metal Oxides, Metal Phosphates, Metals

Layered Materials

Intercalation, Layered and Pillared Materials

Graphite, Graphene, Graphene-like Materials

Zirconium Phosphates, Clay Minerals, Layered Double Hydroxides, Li Intercalation Compounds

Growth of Single Crystals

Czochralski/Kyropoulos Method

Stockbarger and Bridgman Methods

Zone Melting

Verneuil Fusion Flame Method

Gel Method, Solution, Flux, and Hydrothermal Methods

Electrochemical Growth

Vapor Phase Transport

Synthesis of Thin Films

Surface Chemistry and Properties

Anodic Oxidation, Porous Alumina

Physical Methods, Sputtering, Vacuum Evaporation, Molecular Beam Epitaxy

Porous Silicon, Chemistry on Si-Surfaces

Self-Assembled Monolayers

Chemical Vapor Deposition and Atomic Layer Deposition

CVD process, Reactions

Precursor Properties and Synthesis, Single-Source Precursor

Metals, Oxides, Nitrides, Semiconductors, Superconductors

Atomic and Molecular Layer Deposition

Nanostructured Materials and Nanochemistry

Nanoscopic Materials, Quantum dots, Nanoparticles, Nanowires, Nanorods, Nanotubes, Nanofibers, Thin films Surface Effects

Quantum-Size Effects

Top-Down and Bottom-Up Preparation Methods

Literature:

SCHUBERT, U. a N. HÜSING. Synthesis of Inorganic Materials. Weinheim: Wiley-VCH

CALLISTER, W.D.J. Materials Science and Engineering, An Introduction. John Wiley and Sons

SMART, L. a E. MOORE. Solid state chemistry: an introduction. 2nd ed. London: Chapman & Hall

Plinio Innocenzi, The Sol to Gel Transition, Springer International Publishing

Mary Anne White, Physical Properties of Materials, 2nd Edition, CRC Press

Ulrich Muller, Inorganic Structural Chemistry, 2nd Edition, Wiley

OZIN, G.A., A.C. ARSENAULT a L. CADEMARTIRI. Nanochemistry: a chemical approach to nanomaterials. 2nd ed. Cambridge: RSC Publishing, 2009. liii, 820. ISBN 9781847558954

CADEMARTIRI, L. a G.A. OZIN. Concepts of nanochemistry. Edited by Jean-Marie Lehn. Weinheim: Wiley-VCH, 2009. xix, 261. ISBN 9783527325979.