Introduction to Computational Quantum Chemistry

Lesson 9: Response properties: NMR

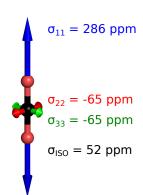
NMR

- Widely used structure determination method
- Uses very high magnetic fields to probe magnetically active nuclei
- Typical nuclei: ¹H, ¹³C, ¹⁵N, ³¹P
- Each type of nucleus gives specific signal in spectrum
- Position and shape of the signal is given by electronic and nuclear structure surrounding the nucleus

What can be obtained

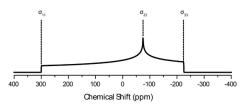
- Izotropic chemical shifts
- Chemical shielding tensors
- *J*-coupling
- g and A-tensors (EPR, paramagnetic NMR)

Properties


- NMR properties are very sensitive to:
 - Chosen geometry
 - Wavefunction (tighten convergence criteria, if possible)
 - Solvent effects/crystal effects (especially exchangeable moieties)
 - Dynamic effects

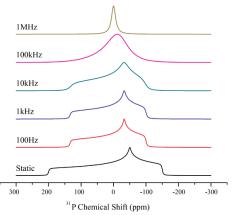
Energy levels

- Difference between states is $\Delta E = \gamma h B_0 = -\gamma \omega$
- Where:
 - ullet γ is the magnetogyric ratio of a nucleus
 - h is Planck's constant
 - B₀ is the external magnetic field
 - \bullet ω is the Larmor precession frequency
- Small energies for excitations perturbation to the wavefunction


Chemical shielding tensor (σ)

- Difference in frequency of bare nucleus and nucleus under investigation
- Magnetic field felt by the nucleus is $(1 \sigma) * B_0$
- IUPAC convention:
 - $\sigma_{11} \ge \sigma_{22} \ge \sigma_{33}$
- σ_{11} : direction of least shielding
- σ_{33} : direction of highest shielding

Powder pattern


- IUPAC convention:
 - $\sigma_{11} \ge \sigma_{22} \ge \sigma_{33}$

- σ_{11} : direction of least shielding
- σ_{33} : direction of highest shielding

Isotropic tumbling

- Due to fast tumbling in solution, the shielding gets isotropically distributed
- In solid state the anisotropy is reduced by magic angle spinning (MAS)

Chemical shift (δ)

- Difference between the shielding of nucleus under investigation and nucleus in reference compound:
- $\delta(ppm) = 10^6 * (\sigma_{COM} \sigma_{STD})/(1 \sigma_{STD})$

Methods

- Improved results with climbing Jacob's ladder (DFT and ab initio)
- Always try to use as high basis set as possible
- STO are superior to GTO
- Make sure you wavefunction is well converged
- Increase the SCF convergence criteria
- Calculate the chemical shifts against well-behaving reference

Practical task

- Calculate the NMR properties of acetic acid
- Consider
 - Equilibrium geometry
 - Dimer
 - Microsolvated acetic acid with 2 water molecules
 - Use the preoptimized geometries distributed in IS
 - Calculate the spin-spin J-couplings as well

Input

- In your input files include:
 - b3lyp 6-311++g(d,p) method
 - Tighten the SCF convergence to 10^{-8}
 - D3 dispersion correction
 - Ultrafine integration grid
 - PCM water solvation model
 - Calculation of only *J*-couplings for nonoxygen atoms of acetic acid (see documentation of NMR in Gaussian, do NOT calculate for dimer)

Reference compound

- Good reference from computational point of view:
 - Small and symmetric
 - Rigid molecule (elimination of dynamic effects)
 - Only electrostatic interactions with surroundings (elimination of charge transfer effects)
- Benzene in benzene
- Use the very same setup as for acetic acid (except PCM), use "tight" convergence for optimization
- δ^{13} C = 127.83, δ^{1} H = 7.15
- $\delta_{COM}(ppm) = \sigma_{STD} \sigma_{COM} + \delta_{STD}$

Results

- Compare the experimental values with predicted ones:
- ¹*H*: 2.08 and 11.7 ppm
- ¹³C: 20.0 and 180.0 ppm
- Why some geometries give better results?