## Introduction to Computational Quantum Chemistry

#### Intermolecular interactions II: Density-based methods

Jan Novotny (NCBR)

Intermolecular interactions

November 21, 2019 1 / 7

## Electron deformation density(EDD)

 Upon formation of complex redistribution of electron density occurs(polarisation, charge transfer):

$$\Delta 
ho = 
ho_{complex} - \sum 
ho_{fragments}$$

- in inputs of both fragment the atoms of missing partner is represented by ghost centers (indicated by Bq label) ⇒ preservation of occupied space
- cubgen utility produces 3D density output (\*.cube format/xplor) by processing formatted checkpoint file (\*.chk) from Gaussian SP calculation

(1)

# Topological analysis of electron density using QTAIM approach

- molecular space divided in atomic basins bordered by zero-flux surfaces  $\nabla \rho \cdot n = 0$  of gradient of electron density
- Bond critical points (BCPs) = local stationary points of vanishing density gradient and maximized density in two directions perpendicular to interatomic vector A-B ⇒ (3,-1) Hessian tensor
- various density-based descriptors can be analysed to evaluate character of interaction between atoms A and B (local density  $\rho(r)$ ,Laplacian  $\nabla^2 \rho(r)$ , delocalisation index DI(A,B))



イロト イポト イラト イラト

### HOMEWORK: Bifurcated hydrogen bond

- The aim is to analyze set of H-bonded complexes of HF attached to substituted dimethoxybenzene (see attached figure, BLYP/def2TZVPP optimized geometries of -NH<sub>2</sub> and -CHO derivatives available in IS)
- Calculate interaction energies (ΔE for all 6 complexes and for 2 extremes plot the electron deformation energies(Δρ, slide 5) and map of Laplacian of electron density (∇<sup>2</sup>ρ, slide 6).
- 8 Run basic QTAIM calculation for all complexes, extract values of density, Laplacian of electron density and delocalisation index (DI) associated with BCPs between (F)H and O(CH<sub>3</sub>) atoms.
- **3** Try to correlate  $\Delta E$  versus  $\rho$ ,  $\nabla^2 \rho$ ,  $\sum DI$ ,  $\sum DI/r(O-C)$



< ロ > < 同 > < 回 > < 回 > < 回 > <

## Electron deformation density

| Gaussian input for organic fragment                                                  |                                                                                                                                         |                                                                                                       |                                                                            | run script                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>%chk=f1 #p B3LYI Integra SP of f: 0 1 H C C H C C H C C H C C C H C C C C</pre> | chk<br>2/def2TZVPP sc<br>=UltraFine<br>1<br>0.6778488<br>0.1339051<br>-1.2613796<br>-1.7993284<br>-1.9692784<br>-3.3941682<br>3.0768860 | f=conver=6<br>1.2270278<br>1.3019980<br>1.3725016<br>1.3529764<br>1.4687435<br>1.5428919<br>1.2302657 | 2.1895466<br>1.2510536<br>1.2677278<br>2.2128579<br>0.0645759<br>0.0703788 | <pre>module add gaussian #COMPLEX g09 complex.com formchk -3 complex.chk complex.fchk cubgen "ncpus" density=SCF complex.fchk complex.cube -3 #FRAGMENT 1 g09 f1.com formchk -3 f1.chk f1.fchk cubgen "ncpus" density=SCF f1.fchk f1.cube -3 #FRAGMENT 2 g09 f1.com</pre> |
| H-Bq<br>F-Bq<br>N                                                                    | 3.0768960<br>3.8684785<br>-4.5586668                                                                                                    | 1.2302657<br>1.1731588<br>1.6046640                                                                   | -1.6848812<br>-2.2005430<br>0.0695014                                      | <pre>formchk -3 f2.chk f2.fchk cubgen "ncpus" density=SCF f2.fchk f2.cube -3</pre>                                                                                                                                                                                        |

use interactive tool CUBMAN for processing cube files:

1. Add f1.cube and f2.cube to get temporary sum.cube.

SUbstract *complex.cube* minus *sum.cube* to get final difference map.
 Use VMD isosurface representation to show positive and negative regions

of  $\Delta \rho$ .

## OTAIM

Gaussian input: BSSE-corrected interaction energy + generation of wavefunction file \*wfx

```
%chk=complex.chk
#p B3LYP/def2TZVPP scf=conver=6
Integral=UltraFine Counterpoise=2 output=wfx
SP of complex
0 1 0 1 0 1
 Н
        0.6778488
                    1 2270278
                                 2 1895466 1
       0.1339051
                    1.3019980
                                 1.2510536 1
       -1,2613796
                    1 3725016
                                 1 2677278 1
 Н
        3.0768960
                    1.2302657
                                -1.6848812 2
 F
       3.8684785
                    1 1731588
                                -2 2005430 2
 N
       -4 5586668
                    1 6046640
                                 0 0695014 1
complex.wfx
```

#### Commands for performing QTAIM analysis in AIMALL program based on Gaussian wavefunction

```
module add gaussian
# start job
g16 complex.com
formchk -3 complex.chk complex.fchk
```

```
# clean
rm -f core
```

```
# QTAIM
module add aimall
aimqb.ish -nogui -nproc=3
-atlaprhocps=true -encomp=1 -usetwoe=0
complex.fchk
```

#### Plotting the Laplacian using Aimstudio GUI

Run in terminal aimstudio.ish complex.sumviz.
 Use Counters/New 2D Grid option, select Function DelSqRho, copy coordinates of 3 ring atoms(right click on selected atom in structure).
 Open complex.g2dvi in current window and export png picture.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Open *complex.sumviz* and find relevant BCPs (H–O, or O–H), save corresponding values of ρ, ∇<sup>2</sup>ρ.
- Find the section listing delocalisation indexes (table with DI(A,B) heading) and save these values.
- Extract H–O distances from structure.
- Prepare correlation plots.