Geometry Optimization, Frequency and IR Calculation

Esmaeil Farajpour Bonab, Oct 22, 2019.

Geometry Optimization

- In order to find a minimum energy structure of a molecule
- A diatomic model:

$$A \longrightarrow B \longrightarrow 3N-5 = 1 \xrightarrow{R_{AB}} V(R) = E(R)$$
Potential Energy
Surface (PES) $V(R_1, R_2, R_3, ..., R_N) = E(R_1, R_2, R_3, ..., R_N)$

- In the case of more than two atoms, the minimum condition turns out to be more complex.
- In this case, it needs the Hessian matrix to be calculated.
- 3N × 3N matrix
- Defined as: $H = (\partial^2 V(R_1, R_2, R_3, ..., R_1 / \partial R_1 \partial R_1)$
- It should be calculated and diagonalized (for nonlinear 6 and linear molecules 5 eigenvalues should be zero).
- If all remaining values are positive, the molecule is in a minimum of its PES.
- If one or more eigenvalues are negative, the molecule is in the transition state.

IR spectroscopy

- Infra red (IR) spectroscopy deals with the interaction between a molecule and the IR region of electromagnetic spectrum.
- IR radiation causes the excitation of the vibrations of covalent bonds within a molecules.
- In IR spectrum energy is reported in the scale of wavenumber (1/cm).
- Typical range of experiment for IR region: (400-4000 1/cm)

Wavenumber

Wavenumber: $\tilde{v} = 1/\lambda$ (1/cm)

Wavenumber shows how many waves of the radiation is in one centimeter.

 $E = h\nu = hc/\lambda$ $\tilde{v} = 1/\lambda$

 $\tilde{v} = E /hc$

Therefore, the higher wavenumber equals to higher energy radiation.

Normal modes of vibrations

- IR radiation causes the excitation of the vibrations of a covalent bond
- Two type of vibration modes:
 - Stretching
 - Bending
- Molecule with N atoms:
 - 3N-5 degree of freedom (linear molecule)
 - 3N-6 degree of freedom (non-linear molecule)
- Water:

Symmetrical stretching

asymmetrical stretching

scissoring (bending)

Model for describing vibrations between atoms

- Simple approximation: atoms are connected with springs
- Hook's law: frequency of vibration is given by mass and force constant
 - \circ E = 1/2 kx²

$$\circ$$
 $\tilde{V} = 1/2\pi c (k/m)^{\gamma_2}$

Consideration: The energy is not quantized.

Quantum harmonic oscillator

- Energy is quantized and given by:
 - E = (n + 1/2) hv
 - n = 0, 1, 2,

•
$$v = vibration state (v_0, v_1, v_2, ...)$$

Selection rules: $\Delta v = \pm 1$ For example: $v_0 \rightarrow v_1, v_1 \rightarrow v_2, ...$

Anharmonic oscillator

- Bonds behave like anharmonic oscillator.
- Morse potential: V (r) = $D_e (1 e^{-a(r-r_0)})^2$
- Higher energy levels become closer.

- Selection rules: $\Delta v = \pm 1, \pm 2, ...$
- Fundamental vibration: $v_0 \rightarrow v_1$
- Overtons:
 - First: $v_0 \rightarrow v_2$

• Second:
$$v_0 \rightarrow v_2, \dots$$

• Hot bands:

Diatomic oscillator

- Bonded atoms behave as anharmonic oscillators
- For diatomic oscillator:
 - \circ $\tilde{v} = 1/2\pi c \sqrt{f/\mu}$
 - f is the force constant of the bond.
 - $\mu = m_1 m_2/m_1 + m_2$ reduced mass
- Force constants :
 - Single bond : 5×10^{5} dyn. Cm⁻¹
 - \circ Double bond: 10 × 10 ⁵ dyn. Cm⁻¹
 - Triple bond: 15×105 dyn. Cm⁻¹
 - \circ 1dyn = 1g.cm/s²

Task (I)

Calculate the absorption energy (in wavenumbers) for following groups:

- $C-H, C=O, C\equiv N$
- Compare the results with the experimental values:
 - C-H: 2850- 3000 cm⁻¹
 - \circ C=0: 1670-1820 cm⁻¹
 - C≡N: 2000-2300 cm⁻¹

Task (II)

Perform optimization and frequency calculations for H₂O and CO2 molecules using the following method using B3LYP functional and 6-31G(d) basis set.

- Scaling factor for various levels of theory:
 - <u>https://cccbdb.nist.gov/vibscalejust.asp</u>

Merrick, J.P. et al. J. Phys. Chem. A, 2007, 111, 11683.

Task (III)

Perform opt and frequency calculation for ¹⁰BF₃ and ¹¹BF₃ using following method:

- B3LYP functional
- 6-31G(d,p) basis set extracted from <u>https://www.basissetexchange.org/</u>
- Use gen keyboard to employ the external basis sets

Homework

Perform optimization and anharmonic frequency calculations for CH3F using B3LYP functional and def2-TZVPD basis set (costum basis set extracted from Basis Set Exchange(BSE)) and compare the obtained results with experimental values and calculate the RMSD for this set of calculations.