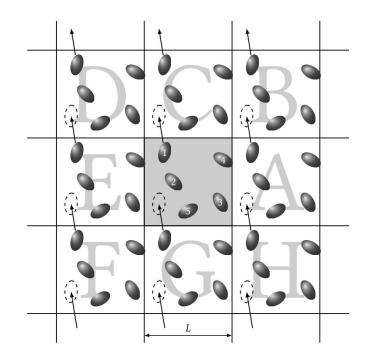
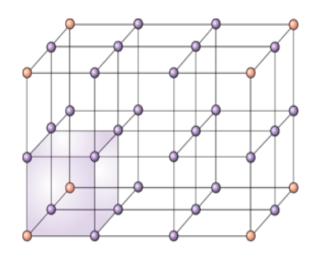
Periodic Boundary Conditions

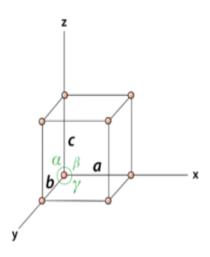

Esmaeil Farajpour Bonab December 10, 2019

Why PBC?

- System $10 \le N \le 10000$; N= total number of particles
- Major part of particles which **lies on the surface** will have experience of acting **force different** than those that are in the **interior part (bulk)** of simulation box.
- For example: in a simple cubic box of 10×10×10 including 1000 particles, 512 molecules are in bulk and the rest 488 are in surface and subsequently we will have inaccurate calculation.
- Even in a very large system, 6% of particles will be in the surface.
- How to overcome this problem: Periodic Boundary Conditions calculation

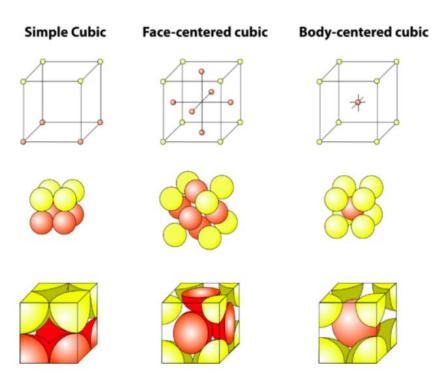

PBC

- Primitive unit cell is replicated in three dimensions and there is no wall to make the possibility of locating particles on the surface.
- Lines between different boxes: arbitrary axes in order to specify the location of each particle at certain point.



Crystal structure

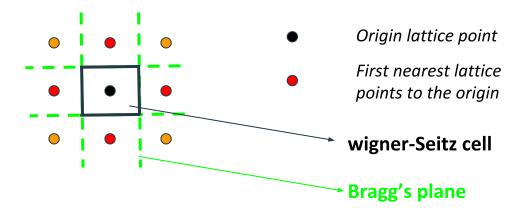
- Description of particles (atoms, ions, or molecules) which are arranged in a particular order (repeating pattern in 1, 2, or 3D).
- The smallest portion of a crystal lattice is called unit cell. Crystal structure is nothing but the replicated unit cell in three dimension.


Crystal Lattice

Unit Cell

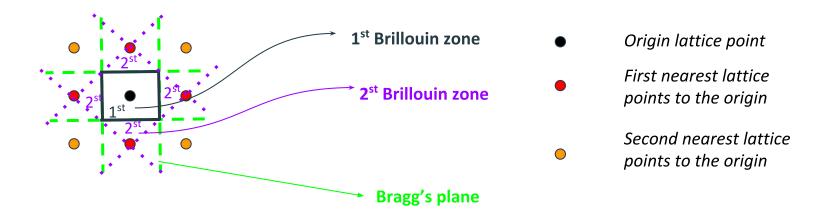
Different unit cells

- Unit cells occur in many different varieties.
- Example: cubic unit cell
 - Simple-cubic
 - Face-centered cubic
 - Body-centered cubic



How to define a crystal structure?

- **Real space**: standard x,y,z (cartesian) coordination of a crystal structure
- Reciprocal space: inverse of real space
 - For a clear description of band structure
 - Diffraction pattern in material science
- It is a better representation of material structure (using reciprocal space). Nevertheless, there is no difference in the fundamental of material.
- $E = h^2 k^2 / 2m$
 - K: wavevector = $2\pi/\lambda$
 - \circ λ : wavelength
- In real space:
 - We have a (lattice vector) while 1/a in reciprocal space
 - We have λ while $2\pi/\lambda$ in reciprocal space


Wigner-Seitz vs Brillouin zone

Wigner-Seitz unit cell: the region in a real space that is closest to a given lattice point than to any other lattice point.

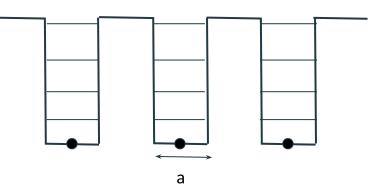
Brillouin Zone (Brillouin zone boundary)

1st Brillouin zone: Wigner-Seitz cell in a reciprocal space

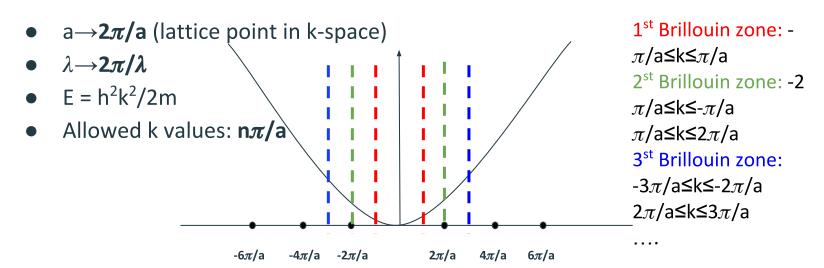
K-space

- Suppose we have a linear lattice in a real space with space **a** and λ :
- In reciprocal space we can represent the mentioned parameters by 1/a and $2\pi/\lambda$. Therefore, we just change the scale of this definition and subsequently we change the 1/a to $2\pi/a$.
- Then, in **k-space a** and λ is defined by $2\pi/a$ and $2\pi/\lambda$, respectively. This representation of parameters in reciprocal space is called k-space.

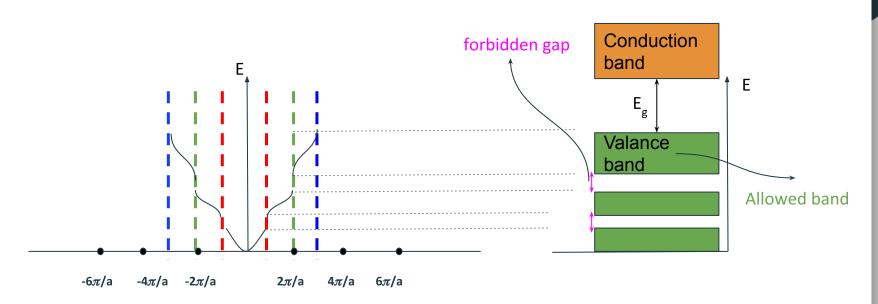
Bloch theorem for simplified model for a periodic system


Bloch theorem:

Electrons description in a periodic system

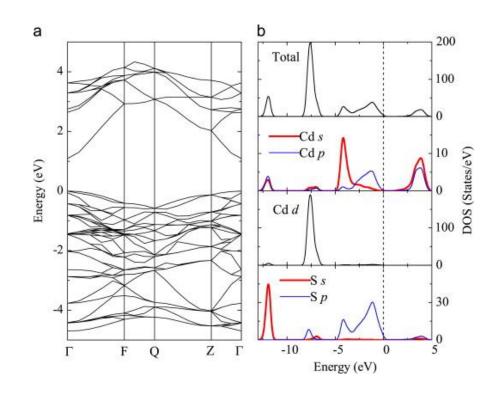

- $\psi(r) = e^{ik.r} u(r)$
 - \circ $\psi \rightarrow bloch wave$
 - K→wave vector
 - \circ r \rightarrow position of the electron
 - \circ u(r) \rightarrow periodic function
- Periodicity of the system should be satisfied:

$$\phi$$
 ψ (r) = Acos(kr) + Bsin(kr)


$$\bullet \quad E = h^2 k^2 / 2m$$

How to define energy of a crystal structure in k-space?

Band gap



Material classification based on the value of E_g

- All electrons are filled in bands and band gaps are defined as forbidden energy values.
- Based on the value of band gap there are three types of materials:
 - \circ Insulator: $E_g > 2 \text{ eV}$
 - **Semiconductor**: $E_g \le 2 \text{ eV}$
 - Metals: there is no band gap.
- Fermi level: the highest occupied energy level in crystal band structure
 - o In metal: Fermi is the HOMO as in molecule structure
 - In semiconductor and insulator: Fermi level is somewhere between HOMO and LUMO as in molecule structure

Example of band structure

- CdS lattice: **hexagonal**
- Greek and Roman letters:
 for the high symmetry
 points for first Brillouin
 zone which is indicated the
 inner and the surface of BZ,
 respectively.
- DOS plot: shows how the electronic levels of a crystal structure are populated.

How to obtain and visualize

How to visualize a crystal structure:

- CrystalMaker
- Mercury
- Gaussview
- VESTA: https://jp-minerals.org/vesta/en/download.html

How to obtain a crystal structure:

- CIF: Crystallographic Information Files
- COD database: Crystallography Open Database for organic, inorganic and metal-organics compounds: http://www.crystallography.net/cod/

Packages for QM calculations of solids

- Packages specially designed for QM calculations of Solid:
 - SIESTA
 - VASP
 - o CP2K
 - 0 ...
- You can find PBC calculations in molecule-based developed packages such as gaussian.
 - There are working based on Gaussian Type basis sets (GTOs) and Slater type basis set (STOs) which is unlikely doing QM calculation for a unit cell including a lot of atoms.

Task (Band gap calculation using Gaussian)

- Go to COD database and download CdS structure.
- Visualize using VESTA and save file as .vasp
- The structure of the system should be like as follows:

```
      Cd
      0.000000038
      2.396003723
      0.000000000

      Cd
      2.075000048
      1.198001742
      3.368499994

      S
      0.000000038
      2.396003723
      2.526375055

      S
      2.075000048
      1.198001742
      5.894875050
```

• Add TV (translational vectors) to the end of this structure. TV is the same as a unit cell.

```
Cd
    0.000000038
                    2.396003723
                                   0.000000000
    2.075000048
                    1.198001742
                                   3.368499994
S
   0.000000038
                   2.396003723
                                  2.526375055
   2.075000048
                   1.198001742
                                  5.894875050
    4.1500000954
                    0.000000000
                                    0.000000000
    -2.0750000477
                     3.5940055083
                                     0.000000000
    0.000000000
                    0.0000000000
                                    6.7369999886
```

- Optimize the system using HSEh1pbe function using def2-svp basis set.
- If you are using **external basis** set, remember to add **Gen** at root section.
- If you want to do **Band structure** or **PDOS** calculations it is necessary to put **pop=regular** at root section.
- For **band structure and PDOS** calculation one should add the following commands at root section:
 - IOp(5/181=10) which means that do PDOS calculations
- In the case of CdS calculation, we know about the space group which is **hexagonal**. It is going to be added as:
 - IOp(5/184=186)

- **IOp**: keyword allows the user to set internal options. for detail information, check the link: https://gaussian.com/iop/
- After fulfilling the all conditions, you will find the band gap at .log file by searching
 "minimum direct gap at k-point".
- The last minimum direct gap is the desire band gap.
- The value for HOCO and LUCO are printed in .log file which related to the Highest
 Occupied Crystal Orbital and the Lowest Unoccupied Crystal Orbital.

Goodluck!