Introduction Reaction Coordinates and Potential Energy Scan, Population Analysis

Introduction Reaction Coordinates and Potential Energy Scan

The most important and basic types of calculations in computational chemistry

- the optimization and
- the frequency calculations.

These methods offer the essential factors for thermodynamic and kinetic information to characterize a chemical reaction.

The first step always **choose an appropriate computational method** since the surface of the Potential Energy Surface (right) is highly dependent on the method.

In chemistry, a reaction coordinate is "representation" of progress along a reaction pathway. It is usually a geometric parameter that changes during the conversion of one or more molecular entities.

In computational chemistry usually is very complex to study the entire surface, also considering that not all points are interesting. For this reason and for the simplicity of working **on 2D the required points for a reaction are the minima, maxima and saddle points** which will no make our Reaction Coordinates.

In chemistry, a reaction coordinate is an abstract coordinate which represents progress along a reaction pathway. It is usually a geometric parameter that changes during the conversion of one or more molecular entities.

In computational chemistry usually is very complex to study the entire surface, also considering that not all points are interesting. for this reason and for the simplicity of working **on 2D the required points for a reaction are the minima, maxima and saddle points** which will make our Reaction Coordinates.

An important fact to model a chemical reaction is to draw "approximate" PES (2 RC) of the system with the objective to start with better structures.

Characterizing the PES

Minima represents stable or quasi-stable species, i.e. reactants and products with finite lifetime.

 $\frac{\partial E}{\partial q_1} = 0 \quad \frac{\partial^2 E}{\partial q_1^2} > 0$

Saddle point represents a maximum along only one direction (that of the reaction coordinate) and is a minimum along all other directions. In other words, a saddle point represents a transition state along the reaction coordinate.

$$\frac{\partial^2 \mathbf{E}}{\partial \mathbf{q}^2} > 0 \quad \frac{\partial^2 \mathbf{E}}{\partial \mathbf{q}_1^2} < 0 \qquad \qquad \frac{d^2 U}{dx^2} = k \qquad f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

An important fact to model a chemical reaction is to draw "approximate" PES (2 RC) of the system with the objective to start with better structures.

Step 1: Optimizations of Initial Geometries (i.e. Reactants and Products)

• Frequency Calculation

Step 2: TS Characterization

- Scan
- Frequency Calculation
- Confirmation (IRC, etc)

Task

 \succ model the reaction of this dimerization.

STEPS:

- 1. Optimize Reactants and Products
- 2. Explore PES by performing a Scan
- 3. Performed an Optimization (TS) calculation on the TS

1. Optimize Reactants and Products

🦻 New 📥 Open 🔚 Save 🦻	Animation	Tool Settings Display Settings	
Display Types	Optimize Geometry Ctrl+Alt+O		
Ø Ball and Stick Cartoon Dipole Force Ø Hydrogen Bond Ø Lahel	GAMESS Abinit Dalton GAMESS-UK Gaussian MOL PRO.		Gaussian Input Title: Title
utoOptimization Settings Force Field: UFF Steps per Update: 4 Algorithm:	MOPAC NWChem PSI4 Q-Chem LAMMPS		Calculation: Geometry Optimization Theory: B3LYP Charge: 0
Steepest Descent	Malandar Oskibula		Output: Standard 🔻
Fixed atoms are movable Ignored atoms are movable	Orca +	1	Format: Z-matrix
Start	QTAIM • GLSL Shaders		#n B3LYP/6-31G(d) Opt Title
	Spectra Create Surfaces		0 1 C C 1B1 H 1B2 2A2 H 1B3 2A3 3D3 H 1B4 2A4 3D4 O 2B5 1A5 3D5 O 2B6 1A6 3D6 H 6B7 2A7 1D7 Variables:

%mei %np %chl #n	m=10 rocs k=cl RMP0	õgb shar nk.c õ Op	ed= hk t f	8 req		
Ace	tic	Aci	d			
0 1 C C H H H O O H Var B1 B2 A3 D3 B4 D5 D5 B6 A6 D6 B7 D7	1 1 2 6 iab	B1 B2 B3 B4 B5 B6 B7 les: 11 11 23 10 11 10 5 10 29 10 16	222112 1.01.1619.93897.6923	A2 A3 A4 A5 A6 A7 2181 1119 4177 1052 0472 9912 1012 3654 8736 9580 7261 5628 9710 9758 3524 9750 2208 3769	3 D3 3 D4 3 D5 3 D6 1 D7	

8 23

Hide Preview

Close

Processors: 1

Multiplicity: 1

Checkpoint: 📃

Basis:

6-31G(d) 🔻

Generate...

STEPS: 1. Optimize Reactants and Products	%mem=16gb %nprocshared=8 %chk=chk.chk #n RMP6 Opt freq
	Acetic Acid
commands:	0 1 C 1 B1 H 1 B2 2 A2 H 1 B3 2 A3 3 D3 H 1 B4 2 A4 3 D4 O 2 B5 1 A5 3 D5 O 2 B6 1 A6 3 D6 H 6 B7 2 A7 1 D7 Variables: B1 1.52181 B2 1.11119 A2 110.04177 B3 1.11052 A3 110.10472 D3 239.69912 B4 1.11012 A4 109.83654 D4 119.98736 B5 1.39580
\$ module add gaussian:09.E1	A5 109.8/261 D5 57.95628
\$ g09 input.com > output.log	A6 109.59758 D6 297.63524
	B7 0.99150 A7 105.22208 D7 163.93769

1. Optimize Reactants and Products

A8	2.27508	0.00000	-0.00000	0.0000	0 0.00000	2.27508	
A9	2.08712	0.00000	0.00000	0.0000	0 0.00000	2.08713	
A10	1.96868	-0.00000	-0.00000	-0.0000	0 -0.00001	1.96867	
D1	2.10652	-0.00000	-0.00000	0.0000	2 0.00002	2.10654	
D2	-1.03507	-0.00000	-0.00001	0.0000	2 0.00001	-1.03506	
D3	-0.00002	0.00000	-0.00000	0.0000	3 0.00002	0.00500	
D4	3.14158	-0.00000	-0.00001	0.0000	2 0.00002	-3.14159	
D5	-2.10656	0.00000	0.00000	0.0000	3 0.00003	-2.10653	
D6	1.03504	0.00000	-0.00000	0.0000	3 0.00003	1.03506	
D7	3.14159	0.00000	-0.00000	0.0000	1 0.00000	3.14159	
D8	-0.00001	0.00000	-0.00000	0.0000	1 0.00001	-0.00000	
	Item	Valu	e Thre	shold C	onverged?		
Maximum	Force	0.0000	02 0.0	00450	YES		
RMS	Force	0.0000	01 0.0	00300	YES		
Maximum	Displacement	0.0000	27 0.0	01800	YES		
RMS	Displacement	0.000	12 0.0	01200	YES		
Predicte	ed change in E	nergy=-4.7	52805D-11				
Optimiza	ation complete	d.					
St	tationary poin	t found.					
		! 0	ptimized P	arameter	s !		
		! (An	gstroms an	d Degree	s) !		
• Name	Definition		llalue	De	rivative Inf		

! Name	Definition	Value	Derivative Info.	•
! R1	R(1,2)	1.4842	-DE/DX = 0.0	•
! R2	R(1,3)	1.1024	-DE/DX = 0.0	•
! R3	R(1,4)	1.1028	-DE/DX = 0.0	•
! R4	R(1,5)	1.1024	-DE/DX = 0.0	•
t R5	R(2,6)	1.3795	-DE/DX = 0.0	•
t R6	R(2,7)	1.2076	-DE/DX = 0.0	•
• R7	R(6,8)	0.994	-DE/DX = 0.0	•
t A1	A(2,1,3)	110.8693	-DE/DX = 0.0	•
t A2	A(2,1,4)	112.4394	-DE/DX = 0.0	•
! A3	A(2,1,5)	110.8685	-DE/DX = 0.0	•

2. Explore PES by performing a Scan

commands:

\$ module add gaussian:09.E1
\$ g09 input.com > output.log

%mei %npi %chl #n l	n=⊥60 rocsi k=chi RPM6	go hareo c.chl scar	ป=3 < า			
Tit	le					
0 H O C O O C O H C H H H C H H H C H H H S 2 A 2 B 3	1 2 3 5 6 7 3 9 9 9 6 13 13 13 13 13 13	B1 B2 B3 B4 B5 B6 B7 B8 B10 B11 B12 B13 B14 B15 ≥5: 0. 1.12. 1.	12115623335666 994	A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 403 7 953 699 766	1 2 2 1 5 1 2 2 2 1 5 5 5 0.1	D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 3
A3		119.	58	346		
D3		359.	. 997	794		
B4		3.	. 95(017		
1 A 4		10	71	507		

2. Explore PES by performing a Scan

Summary of the potential surface scan: N B1 SCF

1	0.9940	-0.33221
2	1.2940	-0.29779
3	1.5940	-0.23958
4	1.8940	-0.19080
5	2.1940	-0.16356
6	2.4940	-0.15121
7	2.7940	-0.14380
8	3.0940	-0.13491

3. Performed an **Optimization (TS) calculation** on the TS

commands:

\$ module add gaussian:09.E1 \$ g09 input.com > output.log

|%mem=16gb %nprocshared=3 %chk=chk.chk #n RPM6 Opt(CalcAll,TS,NoEigenTest,MaxCycle=40) NoSymm freq Title 0 1 н

2 0 3 B3 A3 0 3 В4 C 5 B5 A5 0 6 B6 н в7 6 A7 5 D7 6 В8 5 A8 1 D8 н 9 B9 6 A9 н 9 B10 6 A10 5 D10 н 9 B11 6 A11 C 3 B12 2 A12 1 D12 н 13 B13 3 A13 2 D13 н 13 B14 3 A14 2 D14 13 B15 3 A15 2 D15 н variables: B1 1.26210 B2 1.27210 A2 B3 117.74556 1.27943 A3 122.40418 D3 359,74398 в4 3.33521 Α4 10.67782 D4 180.01226 в5 1 27941 A5 117.77423 D5 180.08064 в6 1.27971 A6 122.40488 D6 B7 359.74533 1.26211

1 B1

2 B2 1 A2

1 D3

2 D4

2 D5

1 D6

5 D11

5 D9

117.74340 0.25340

0

C

A7 D7

3. Performed an Optimization (TS) calculation on the TS

v (cm ⁻¹)	I (km/mol)
-811	.41 0.00
5	i.18 0.52
6	.30 0.04
56	6.77
77	.97 0.00
141	.89 0.00
214	.09 0.00
230	.97 4. <mark>3</mark> 1
340	0.10 0.00
479	0.00
539	0.02 0.72
547	.38 0.00
Sh	ow Spectra
Animation	
Amplitude:	
Vormalize displa	acements
Display force v	ectors
-	
Animation spee	d set by frequency

Task

> model the reaction of this classic SN₂ reaction.

STEPS:

- 1. Optimize Reactants and Products
- 2. Explore PES by performing a Scan
- 3. Performed an Optimization (TS) calculation on the TS

Population Analysis

Population analysis is the study of charge distribution within molecules.

What does a population analysis deliver

- Determination of the distribution of electrons in a molecule
- Describing the shape of orbitals
- Derivation of atomic charges and dipole (multiple) moments

Methods of calculation

- Based on the wave function (Mulliken, NBO)
- Based on the electron density (Atoms in Molecules)
- Fitted to the electrostatic potential (CHELPG, MK)

Mulliken Population Analysis

Advantages

- Available in nearly every software program (most popular method) for molecular modeling.
- Fast and simple method for determination of electron distribution and atomic charged

Disadvantages

• Strong dependence of the results from the level of theory (basis set or kind of calculation)

Example: Li-charge in LiF

Population	basis set	q(Li,RHF)	q(Li,B3LYP)
Mulliken	STO-3G	+0.227	+0.078
	6-31G 6-311G(d)	+0.743 +0.691	+0.593 +0.558
			0.000

Löwdin population analysis

Advantages

- Sought to improve upon the Mulliken method
- More stable than Mulliken with changes in basis set.

Disadvantages

• More computationally expensive

Natural Bond Orbital Analysis

NBO classifies atomic orbitals into two distinct groups: NAOs, NBOs. NAOs are made up of basis sets of single atoms (core, valence and Rydberg) and the NBOs are a combination of basis set atomic orbitals of two atoms.

Two parts of the methods

- NPA ! Natural population analysis to identify the population numbers
- NBO ! Analysis of the bond order based on the electron population obtained by NPA

Natural Bond Orbital Analysis

Advantages

- Smaller dependence on the basis set
- better reproducibility for different molecules
- Orientates itself at the formalism for Lewis formulas

Disadvantages

- More computationally expensive
- tends to predict larger charged.
- best used for comparing differences rather than absolute atomic charges.

AIM (Atoms in Molecules)

The population analysis using Atoms in Molecules theory is requested by keyword AIM in a Gaussian input file. Atoms in Molecules theory bases its calculations on the calculated electron density. The existence of critical points defines the existence of a bond between two nuclei in AIM.

Advantages

• Almost no dependence on the level of basis sets.

Disadvantages

- For a low level of theory mostly inappropriate
- Instability during calculation runs
- relatively computationally expensive.

Task

- 1. Draw HF molecule, optimize the geometry and generate G09 input.
- 2. Use pop=(full) Pop=Full for Mulliken and Pop=NBO

After Pop command, add a space and type "FormCheck"

3. Run the calculation

Visualizing the orbitals

- **1.** Open the *****FChk file in Avogadro
- 2. Click on Extensions ! Create Surface
- **3.** Select "Molecular Orbital" as surface type
- 4. Choose the MO you want to visualize and calculate

You should be able to see something like these that shows the HOMO and LUMO of HF molecules

25

End

Prepared by: Ben Joseph R. Cuyacot