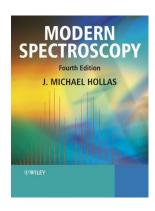

C9550 Quantum Chemistry and Molecular Spectroscopy Syllabus - Fall 2019


1.	Electromagnetic radiation and its interaction with atoms and molecules	
	1.1 Electromagnetic radiation.	Hollas 2.1
	1.2 Absorption and emission of radiation, line intensity.	Hollas 2.2
	1.3 Line width.	Hollas 2.3
	1.4 The electromagnetic spectrum and types of molecular of	excitations. Hollas 3.1
2.	Quantum chemical foundations of molecular spectrosc	юру
	2.1 Principles of quantum mechanics	Atkins-EN 7.3-7.7, Atkins-CZ 7.2+7.3
	2.2 Selection rules for spectroscopy transitions	Atkins-EN 9.3+12.2, Atkins-CZ 9.1.3+12.1.2
3.	Rotational spectra	
	3.1 Rotation in two dimensions: a particle on a ring	Atkins-EN 8.6, Atkins-CZ 8.3.1
	3.2 Rotation in three dimensions: the particle on a sphere	Atkins-EN 8.7, Atkins-CZ 8.3.2
	3.3 Moments of inertia	Atkins-EN 12.3, Atkins-CZ 12.2.1
	3.4 The rotational energy levels	Atkins-EN 12.4, Atkins-CZ 12.2.2
	3.5 Rotational transitions	Atkins-EN 12.5, Atkins-CZ 12.2.3
4.	Vibrational spectra	
	4.1 Harmonic oscillator: the energy levels	Atkins-EN 8.4, Atkins-CZ 8.2.1
	4.2 Harmonic oscillator: the wavefunctions	Atkins-EN 8.5, Atkins-CZ 8.2.2
	4.3 Diatomic molecule vibrations	Atkins-EN 12.8, Atkins-CZ 12.3.1
	4.4 Selection rules	Atkins-EN 12.9, Atkins-CZ 12.3.2
	4.5 Anharmonicity	Atkins-EN 12.10, Atkins-CZ 12.3.3
	4.6 Vibration-rotation spectra	Atkins-EN 12.11, Atkins-CZ 12.3.4
	4.7 Vibration of polyatomic molecules: Normal modes	Atkins-EN 12.13, Atkins-CZ 12.4.1
5.	Electronic spectra	
	5.1 The electronic spectra of diatomic molecules	Atkins-EN 13.2, Atkins-CZ 13.1.2
	5.2 The electronic spectra of polyatomic molecules	Atkins-EN 13.3, Atkins-CZ 13.1.3
6.	The effect of magnetic fields on electrons and nuclei	
	6.1 Angluar momentum and spin	Atkins-EN 8.8, Atkins-CZ 8.3.3
	6.2 The spin-orbit coupling	Atkins-EN 9.9, Atkins-CZ 9.3.4
	6.3 The energies of electrons in magnetic fields	Atkins-EN 14.1, Atkins-CZ 14.1.1
	6.4 The energies of nuclei in magnetic fields	Atkins-EN 14.2, Atkins-CZ 14.1.2
	6.5 Magnetic resonance spectroscopy	Atkins-EN 14.3, Atkins-CZ 14.1.3
7.	Electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR)	
	7.1 EPR g-value and g-tensor	Atkins-EN 14.15, Atkins-CZ 14.4.2
	7.2 EPR Hyperfine structure	Atkins-EN 14.16, Atkins-CZ 14.4.3
	7.3 Hyperfine structure – MO relationships for organic radio	Cals Separate study materials
	7.4 NMR chemical shift	Atkins-EN 14.5, Atkins-CZ 14.2.2
	7.5 NMR fine structure	Atkins-EN 14.6, Atkins-CZ 14.2.3

Literature

and its availibility in University Kampus Library (on August 23rd, 2019)

Atkins' physical chemistry, 9th edition, 2010

Peter Atkins, Julio de Paula

16 items / 2 loans

Fyzikální chemie, překlad 9. vydání, 2013

Peter Atkins, Julio de Paula

98 items / 22 loans

Modern Spectroscopy, 4th edition, 2004

J. Michael Hollas

13 items / 2 loans

Class format

Lectures (100 minutes a week, 10 minutes break) and homeworks.

Voluntary assignments will be given to students every week, can be handed in for correction at next lecture.

Exam

- (1) Written test in Czech or English (on choice). A sample test will be put in IS in the mid-semester at latest. The percent composition: ca 50% of lecture's content and 50% of homework content.6 pages, maximum 10 points for each. A: 60-54 points, B: 53-48 points, etc.
- (2) Oral part in Czech or English (on choice). 2 pages of the test with the lowest scores will be discussed.

 Maximum influence of the oral part result on the final grade: Written A or F: no influence. Written B or E: one grade up or down. Written C or D: two grades up or down.