Expectation value of an operator: How to calculate from the wavefunction (General approach)

(complement to C9550, lecture 3, October 3rd, 2019)

Atkins-EN, 8th Edition (pdf in C9550/um): Justification 8.4

Atkins-EN, 9th Edition (hard copy in KUK Library): **Justification 7.5**

In the Czech translation (Atkins-CZ): Odůvodnění 7.5. In the Slovak translation: (Atkins-SK): Zdôvodnenie 11.2

Justification 8.4 The expectation value of an operator

If ψ is an eigenfunction of $\hat{\Omega}$ with eigenvalue ω , the expectation value of $\hat{\Omega}$ is

$$\langle \Omega \rangle = \int \psi^* \widehat{\Omega} \psi d\tau = \int \psi^* \omega \psi d\tau = \omega \int \psi^* \psi d\tau = \omega$$

because ω is a constant and may be taken outside the integral, and the resulting integral is equal to 1 for a normalized wavefunction. The interpretation of this expression is that, because every observation of the property Ω results in the value ω (because the wavefunction is an eigenfunction of $\hat{\Omega}$), the mean value of all the observations is also ω .

A wavefunction that is not an eigenfunction of the operator of interest can be written as a linear combination of eigenfunctions. For simplicity, suppose the wavefunction is the sum of two eigenfunctions (the general case, eqn 8.33, can easily be developed). Then

$$\begin{split} \langle \Omega \rangle &= \int (c_1 \psi_1 + c_2 \psi_2)^* \hat{\Omega}(c_1 \psi_1 + c_2 \psi_2) \mathrm{d}\tau \\ &= \int (c_1 \psi_1 + c_2 \psi_2)^* (c_1 \hat{\Omega} \psi_1 + c_2 \hat{\Omega} \psi_2) \mathrm{d}\tau \\ &= \int (c_1 \psi_1 + c_2 \psi_2)^* (c_1 \omega_1 \psi_1 + c_2 \omega_2 \psi_2) \mathrm{d}\tau \\ &= c_1^* c_1 \omega_1 \int \psi_1^* \psi_1 \mathrm{d}\tau + c_2^* c_2 \omega_2 \int \psi_2^* \psi_2 \mathrm{d}\tau \\ &+ c_2^* c_1 \omega_1 \int \psi_2^* \psi_1 \mathrm{d}\tau + c_1^* c_2 \omega_2 \int \psi_1^* \psi_2 \mathrm{d}\tau \end{split}$$

The first two integrals on the right are both equal to 1 because the wavefunctions are individually normalized. Because ψ_1 and ψ_2 correspond to different eigenvalues of an hermitian operator, they are orthogonal, so the third and fourth integrals on the right are zero. We can conclude that

$$\langle \Omega \rangle = |c_1|^2 \omega_1 + |c_2|^2 \omega_2$$

This expression shows that the expectation value is the sum of the two eigenvalues weighted by the probabilities that each one will be found in a series of measurements. Hence, the expectation value is the weighted mean of a series of observations.