CG920 Genomics

Lesson 10

Systems Biology

Jan Hejátko

Functional Genomics and Proteomics of Plants,

Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno <u>hejatko@sci.muni.cz</u>, <u>www.ceitec.muni.cz</u>

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Literature

• Literature sources for Chapter 12:

- Wilt, F.H., and Hake, S. (2004). Principles of Developmental Biology. (New York ; London: W. W. Norton)
- Eden, E., Navon, R., Steinfeld, I., Lipson, D., and Yakhini, Z. (2009). GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48.
- The Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815.
- Benitez, M. and Hejatko, J. Dynamics of cell-fate determination and patterning in the vascular bundles of Arabidopsis thaliana (submitted)
- de Luis Balaguer MA, Fisher AP, Clark NM, Fernandez-Espinosa MG, Moller BK, Weijers D, Lohmann JU, Williams C, Lorenzo O, Sozzani R. 2017. Predicting gene regulatory networks by combining spatial and temporal gene expression data in Arabidopsis root stem cells. Proc Natl Acad Sci U S A 114(36): E7632-E7640.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Outline

- Definition of Systems Biology
- Tools
 - Gene Ontology Analysis
 - Bayesian Networks
 - Molecular/Gene Regulatory Networks Modeling
 - Inferring Gene Regulatory Networks from Large Omics Datasets

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Definition

Systems biology is the computational and mathematical analysis and modeling of complex biological systems. It is a biology-based interdisciplinary field of study that focuses on complex interactions within biological systems, using a holistic approach (holism instead of the more traditional reductionism) to biological research (Wikipedia).

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Definition

Systems biology is the study of biological systems whose behaviour cannot be reduced to the linear sum of their parts' functions. Systems biology does not necessarily involve large numbers of components or vast datasets, as in genomics or connectomics, but often requires quantitative modelling methods borrowed from physics (Nature).

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Definition

Nice explanatory video by Dr. Nathan Price,

associate director of the Institute for Systems Biology at https://www.youtube.com/watch?v=OrXRI_8UFHU.

ZVOJE VZDĚLÁVÁNÍ

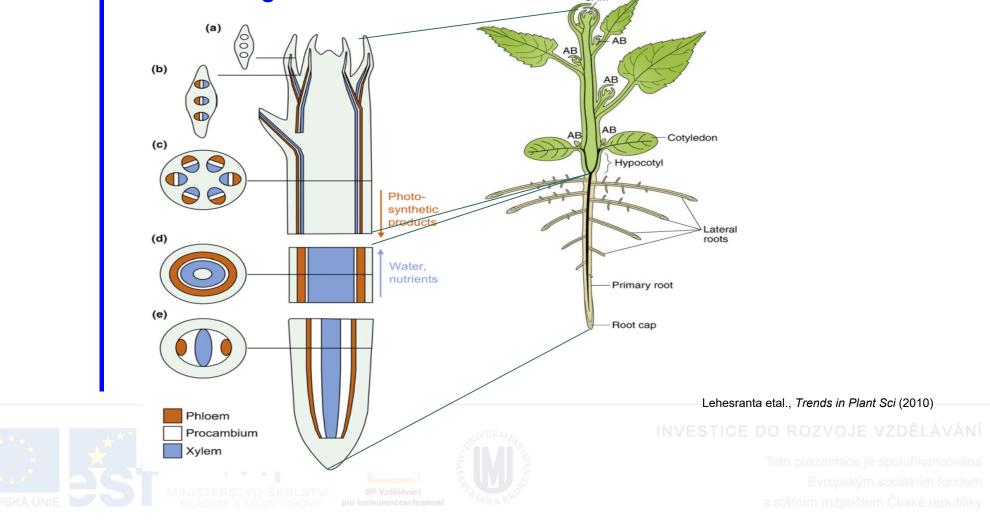
zentace je spolufinancována zvropským sociálním fondem n rozpočtem České republiky

Outline

- Definition of Systems Biology
- Tools
 - Gene Ontology analysis

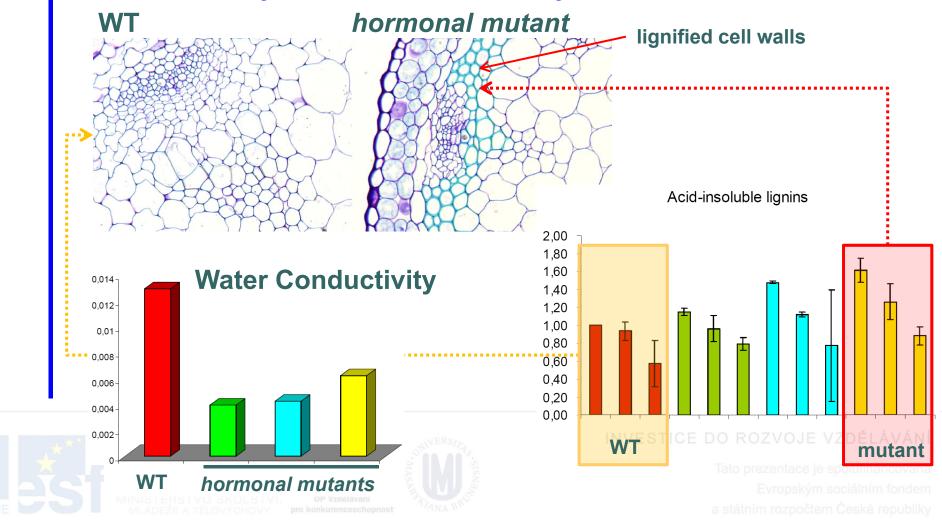
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Results of –omics Studies vs Biologically Relevant Conclusions

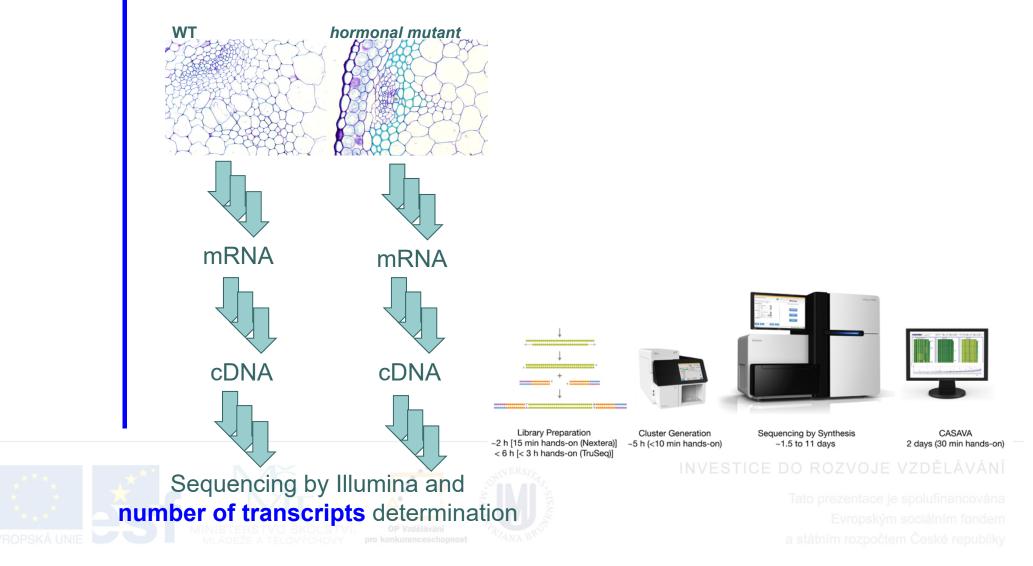

Results of -omics studies represent huge amount of data, e.g. genes with differential expression. But how to get any biologically relevant conclusions out of it?

Ddii et al.. unpublished

gene	locus	sample_1	sample_2	status v	alue_1	value_2	log2(fold_change)	test_stat			significar
								1.79769e+		0,0003918	
AT1G07795	1:2414285-2414967	WT	MT	OK	(0 1,1804	1.79769e+308	308	6.88885e-05		1 yes
								1.79769e+		4.67708e-	
HRS1	1:4556891-4558708	WT	MT	OK	(0,696583	1.79769e+308	308	6.61994e-06		yes
								1.79769e+		0,0005350	
ATMLO14	1:9227472-9232296	WT	MT	OK	(0,514609	1.79769e+308	308	9.74219e-05		5 yes
								1.79769e+		3.50131e-	
NRT1.6	1:9400663-9403789	WT	MT	OK	(0,877865	1.79769e+308	308	3.2692e-08	07	yes
								1.79769e+			
AT1G27570	1:9575425-9582376	WT	MT	OK	(2,0829	1.79769e+308	308	9.76039e-06		yes
	1:22159735-							1.79769e+		9.84992e-	
AT1G60095	22162419	WT	MT	OK	(0,688588	1.79769e+308	308	9.95901e-08	07	yes
								1.79769e+			
AT1G03020	1:698206-698515	WT	MT	OK	(1,78859	1.79769e+308	308	0,00913915	0,027795	8 yes
								1.79769e+			
AT1G13609	1:4662720-4663471	WT	MT	OK	(3,55814	1.79769e+308	308	0,00021683	8 0,0010807	9 yes
								1.79769e+			
AT1G21550	1:7553100-7553876	WT	MT	OK	(0,562868	1.79769e+308	308	0,00115582		7 yes
								1.79769e+		1.91089e-	
AT1G22120	1:7806308-7809632	WT	MT	OK	(0,617354	1.79769e+308	308	2.48392e-06		yes
	1:11238297-							1.79769e+		0,0002851	
AT1G31370	11239363	WT	MT	OK	(1,46254	1.79769e+308	308	4.83523e-05		3 yes
	1:13253397-							1.79769e+		5.46603e-	
APUM10	13255570	WT	MT	OK	(0,581031	1.79769e+308	308	7.87855e-06		yes
	1:18010728-							1.79769e+		0,00037473	
AT1G48700	18012871	WT	MT	OK	(0,556525	1.79769e+308	308	6.53917e-05	i (6 yes
	1:21746209-							1.79769e+			
AT1G59077	21833195	WT	MT	OK	(138,886	1.79769e+308	308	0,00122789	0,0049681	6 yes
	1:22121549-							1.79769e+			
AT1G60050	22123702	WT	MT	OK	(0,370087	1.79769e+308	308	0,00117953	0,004800	1 yes
171015010	1 0705700 0700007	14/7		01/	0.000074	47.0050	10,0000	4 40500	4 0 5 0 7 0 0 5	7 40000	
AT4G15242		WT	MT	OK	0,00930712	2 17,9056	10,9098	-4,40523	31.05673e-05	7.13983e-0	05 yes
	5:12499071-			01/	0.040007		10.0010	0.0440			
AT5G33251	12500433	WT		OK	0,049837	- ,	.,	-9,8119			0 yes
AT4G12520		WT	MT	OK	0,019511	1 15,8516	9,66612	-3,90043	9.60217e-05	0,0005289	04 yes
	1:22100651-										
AT1G60020	22105276	WT		OK	0,011837	,	,		26.19504e-14		
AT5G15360	5:4987235-4989182	WT	MT	OK	0,0988273	3 56,4834	9,1587	-10,4392	2 0)	0 yes


Plant Vascular Tissue Development

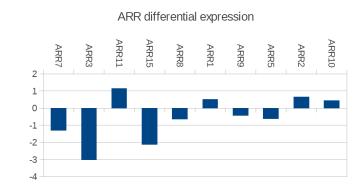
Vascular tissue as a developmental model for GO analysis and MRN modeling


Hormonal Control Over Vascular Tissue Development

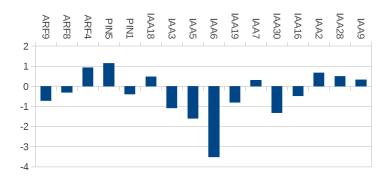
Plant Hormones Regulate Lignin Deposition in Plant Cell Walls and Xylem Water Conductivity

Hormonal Control Over Vascular Tissue Development

Transcriptional profiling via RNA sequencing

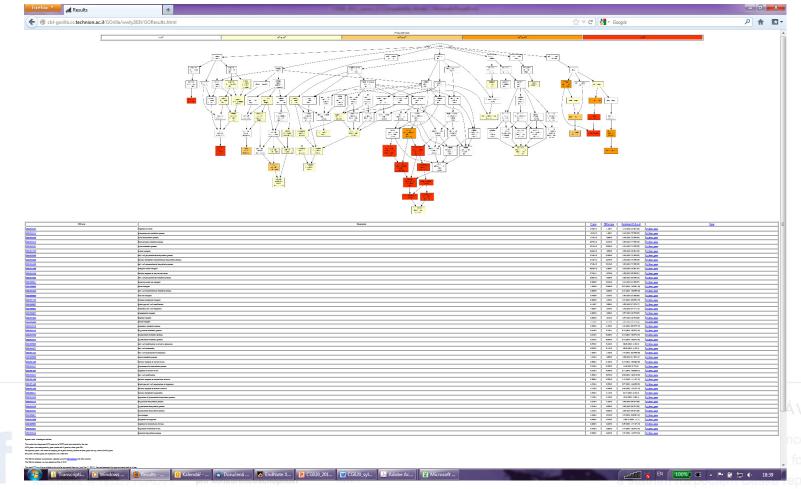

Results of –omics Studies vs Biologically Relevant Conclusions

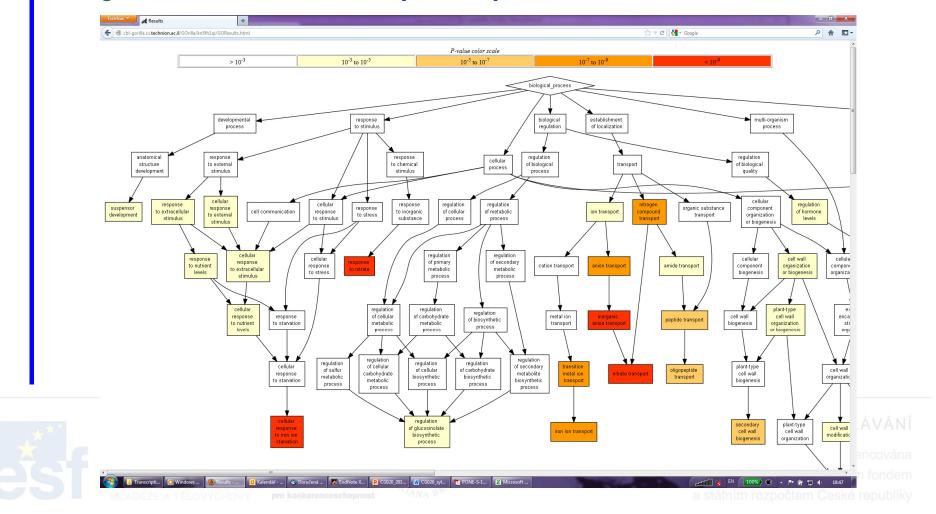
Transcriptional profiling yielded more then 9K differentially regulated genes...

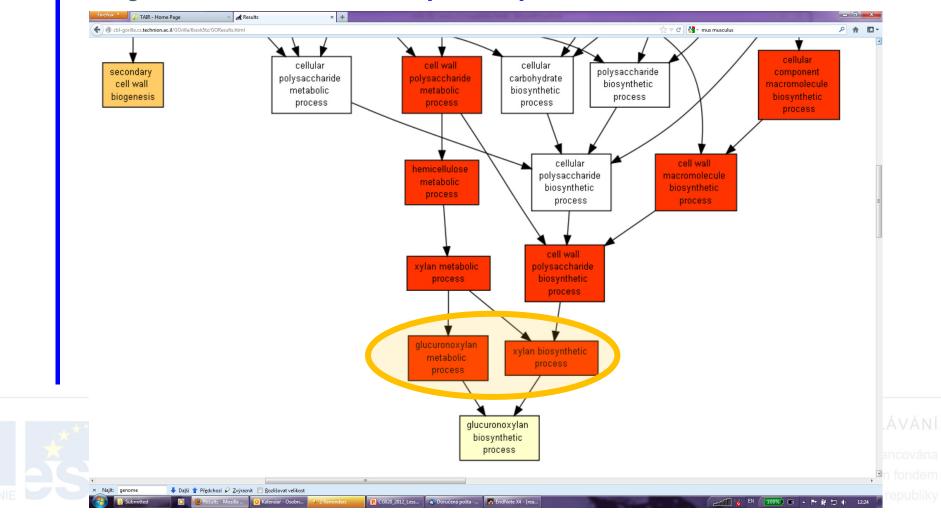

Ddii et al., unpublished

gene	locus	sample_1	sample_2	status	value_1	value_2	log2(fold_change)	test_stat			significa
474007705	4 0 4 4 4 0 0 5 0 4 4 4 0 0 7	NA/T					4 70700 .000	1.79769e+		0,00039180	
AT1G07795	1:2414285-2414967	VVI	MT	OK		0 1,1804	1.79769e+308	308 1.79769e+	6.88885e-05	1 4.67708e-	yes
HRS1	1:4556891-4558708	wт	МТ	ОК		0 0 696583	1.79769e+308	308	6.61994e-06		yes
	1.4000001-4000700	** 1	1011	OIX		0 0,00000	1.101000.000	1.79769e+		0,00053505	
ATMLO14	1:9227472-9232296	WT	MT	ОК		0 0,514609	1.79769e+308	308	9.74219e-05	,	yes
								1.79769e+		3.50131e-	,
IRT1.6	1:9400663-9403789	WT	MT	OK		0 0,877865	1.79769e+308	308	3.2692e-08	07	yes
								1.79769e+			
T1G27570	1:9575425-9582376	WT	MT	OK		0 2,0829	1.79769e+308		9.76039e-06		yes
T1000005	1:22159735-	\A/T	мт			0 0 000500	4 70700- 1000	1.79769e+		9.84992e-	
T1G60095	22162419	WT	MT	ОК		0 0,688588	1.79769e+308	308 1.79769e+	9.95901e-08	07	yes
AT1G03020	1:698206-698515	wт	мт	ок		0 1.78859	1.79769e+308	308	0,00913915	0 0277958	Nes
	1.000200 000010			on		1,10000	1.101000.000	1.79769e+	0,00010010	0,0211000	,,
T1G13609	1:4662720-4663471	WT	MT	ОК		0 3,55814	1.79769e+308	308	0,00021683	0,00108079	yes
								1.79769e+			
NT1G21550	1:7553100-7553876	WT	MT	OK		0 0,562868	1.79769e+308	308	0,00115582	0,00471497	'yes
								1.79769e+		1.91089e-	
T1G22120	1:7806308-7809632	WT	MT	OK		0 0,617354	1.79769e+308	308	2.48392e-06		yes
T1021270	1:11238297- 11239363	\A/T	мт			0 1 46054	1 70760 - 200	1.79769e+ 308		0,00028514	
AT1G31370	1:13253397-	WT	МТ	ОК		0 1,46254	1.79769e+308	1.79769e+	4.83523e-05	5.46603e-	³ yes
VPUM10	13255570	wт	МТ	ОК		0 0 581031	1.79769e+308	308	7.87855e-06		yes
	1:18010728-			OIT		0,001001	1.101000.000	1.79769e+		0,00037473	
T1G48700	18012871	WT	MT	ОК		0 0,556525	1.79769e+308	308	6.53917e-05	,	yes
	1:21746209-							1.79769e+			
NT1G59077	21833195	WT	MT	OK		0 138,886	1.79769e+308	308	0,00122789	0,00496816	6 yes
	1:22121549-							1.79769e+			
AT1G60050	22123702	WT	MT	OK		0 0,370087	1.79769e+308	308	0,00117953	0,0048001	yes
T4G15242	4:8705786-8706997	WT	MT	OK	0,0093071	2 17,9056	10,9098	-1 10523	1.05673e-05	7 130830-0	5 100
14013242	5:12499071-	VV I		OR	0,0033071	2 17,3000	10,3030	-4,40020	1.000706-00	1.109006-0	0 yes
AT5G33251	12500433	WT	MT	ок	0,049837	5 52,2837	10,0349	-9,8119	0		0 yes
T4G12520		WT		OK	0,019511	,		-)	9.60217e-05		,
	1:22100651-										
NT1G60020	22105276	WT	MT	OK	0,011837	7 7,18823	9,24611	-7,50382	6.19504e-14	1.4988e-12	yes
AT5G15360	5:4987235-4989182	WT	MT	OK	0,098827	3 56,4834	9,1587	-10,4392	0		0 yes

One of the possible approaches is to study **gene ontology**, i.e. previously demonstrated association of genes to biological processes




Several tools allow statistical evaluation of enrichment for genes associated with specific processes


Eden et al., BMC Biinformatics (2009)

Children action		
		٩
	GO RILLA	
	Gene Ontology enRIchment anaLysis and visuaLizAtion tool	
GOrilla is a tool for identifying and visualizing enriched GO terms in ranked lists of gen It can be run in one of two modes:	es.	
 Searching for enriched GO terms that appear densely at the top of a ranked list of genes Searching for enriched GO terms in a target list of genes compared to a background list 	or of genes.	
For further details see <u>References</u> .		
	Running example Usage instructions GOrilla News(Updated December 3rd 2012) References	
Step 1: Choose organism		
Arabidoosis thaliana 👻		
Step 2: Choose running mode		
Step 2: Choose running mode ® Single ranked list of genes © Two unranked lists of genes (target and backgro	und lists)	
Step 2: Choose running mode Single ranked list of genes Two unranked lists of genes (target and backgrossing step 3: Paste a ranked list of gene/protein names.) 	und lists)	
Step 2: Choose running mode Single ranked list of genes Two unranked lists of genes (target and backgro Step 3: Paste a ranked list of gene/protein names Names should be separated by an <enter>. The preferred format is gene symbol. Other supported formats are: gene and protein ReSeq. Uniprot, Unigene</enter>	und lists)	
Step 2: Choose running mode Single ranked list of genes Single ranked list of genes Step 3: Paste a ranked list of gene/protein names Names should be separated by an <enter>. The preferred format is gene</enter>	und lists)	
Step 2: Choose running mode Single ranked list of genes Two unranked lists of genes (target and backgro Step 3: Paste a ranked list of gene/protein names Names should be separated by an <enter>. The preferred format is gene symbol. Other supported formats are: gene and protein ReSeq. Uniprot, Unigene</enter>	und lists)	
Step 2: Choose running mode Single ranked list of genes Two unranked lists of genes (target and backgro Step 3: Paste a ranked list of gene/protein names Names should be separated by an <enter>. The preferred format is gene symbol. Other supported formats are: gene and protein ReSeq. Uniprot, Unigene</enter>	und lists)	
Step 2: Choose running mode Single ranked list of genes Two unranked lists of genes (target and backgro Step 3: Paste a ranked list of gene/protein names Names should be separated by an <enter>. The preferred format is gene symbol. Other supported formats are: gene and protein RefSeq. Uniprot, Unigene</enter>	und lists)	
Step 2: Choose running mode Single ranked list of genes Two unranked lists of genes (target and backgro Step 3: Paste a ranked list of gene/protein names Names should be separated by an <enter>. The preferred format is gene symbol. Other supported formats are: gene and protein ReSeq. Uniprot, Unigene</enter>	und lists)	
Step 2: Choose running mode Single ranked list of genes Two unranked lists of genes (rarget and backgrossing and stander) Single ranked list of gene/protein names. Names should be separated by an <enter>. The preferred format is gene symbol. Other supported formats are: gene and protein RefSeq. Uniprot, Unigene and Ensembl. Use WebGestalt for conversion from other identifier formats.</enter>	und lists)	
Step 2: Choose running mode Single ranked list of genes Single ranked list of genes Single ranked list of genes Single ranked list of genes/protein names Step 3: Paste a ranked list of gene/protein names Mames should be separated by an <enter>. The preferred format is gene symbol. Other supported formats are: gene and protein RefSeq. Uniprot, Unigen and Ensembl. Use WebGestalt for conversion from other identifier formats. Or upload a file: D:Results/2012/Mariane Procházet</enter>	und lists)	
Step 2: Choose running mode Single ranked list of genes Two unranked lists of genes (rarget and backgrossing and stander) Single ranked list of gene/protein names. Names should be separated by an <enter>. The preferred format is gene symbol. Other supported formats are: gene and protein RefSeq. Uniprot, Unigene and Ensembl. Use WebGestalt for conversion from other identifier formats.</enter>	und lists)	
Step 2: Choose running mode Single ranked list of genes Single ranked list of genes Single ranked list of genes Single ranked list of genes/protein names Step 3: Paste a ranked list of gene/protein names Mames should be separated by an <enter>. The preferred format is gene symbol. Other supported formats are: gene and protein RefSeq. Uniprot, Unigen and Ensembl. Use WebGestalt for conversion from other identifier formats. Or upload a file: D:Results/2012/Mariane Procházet</enter>	und lists)	
Step 2: Choose running mode Single ranked list of genes Two unranked lists of genes (larget and backgrossing stressing strespating stressing stressing stressing stressing	und lists)	
Step 2: Choose running mode Single ranked list of genes Two unranked lists of genes (larget and backgro Step 3: Paste a ranked list of gene/protein names) Mames should be separated by an <enter>. The preferred format is gene symbol. Other supported formats are: gene and protein RefSeq. Uniprot, Unigene and Ensembl. Use Web/Cestait for conversion from other identifier formats. Or upload a file: D'Results/2012/Marians Prochazet Step 4: Choose an ontology Process Function Component All </enter>	und lists)	

Firefox Image: Contract of the second s	+ .html#0045492		ରୁ ⊽ ୯ <mark>3</mark> - ଜେ	ogle P A C
glucuronoxylan metabolic process	1.01E-12	1.6E-9	3.43 (6331,72,999,39)	[+] Show genes
xylan biosynthetic process	1.77E-12	1.86E-9	3.39 (6331,73,999,39)	[+] Show genes
hemicellulose metabolic process	2.97E-12	2.34E-9	3.29 (6331,77,999,40)	[+] Show genes
xylan metabolic process	3.21E-12	2.03E-9	3.34 (6331,74,999,39)	[+] Show genes
nitrate transport	3.64E-12	1.92E-9	3.92 (6331,58,891,32)	[+] Show genes
cell wall polysaccharide biosynthetic process	5.74E-12	2.59E-9	3.30 (6331,75,999,39)	[+] Show genes
cellular component macromolecule biosynthetic process	5.74E-12	2.27E-9	3.30 (6331,75,999,39)	[+] Show genes

cbl-gorilla.cs.technion.ac.il/GOrilla/kn5fh1qi/GOResults.html#0045492				☆ マ C Soogle	۹ م
Description	P-value	FDR q-value	Enrichment (N, B, n, b)	Genes	
esponse to nitrate	4.76E-13	1.5E-9	4.13 (6331,55,891,32)	[+] Show genes	
lucuronoxylan metabolic process	1.01E-12	1.6E-9	3.43 (6331,72,999,39)	[+] Show genes	
ylan biosynthetic process	1.77E-12	1.86E-9	3.39 (6331,73,999,39)	[-] Hide genes GUT2 - putative glycosyltransferase PGSIP3 - plant glycogenin-like starch initiation protein 3 FRA8 - exostosin-like protein GAUT2 - zahpa - 1 ₂ egalecturonosyltransferase AT4G22460 - bifunctional inhibitor/lipid-transfer protein/seed storage 2s albumin-like protein AT5G42180 - peroxidase 64 AT3G10910 - ring-h2 finger protein at172 LAC17 - laccase 17 KNA77 - homeobox protein knotted-1-like 7 NAC012 - nac domain-containing protein 12 IRX9 - nucleotide-diphospho-sugar transferases-like protein AT1G70500 - pectin lyase-like protein CESA4 - cellulose synthase a catalytic subunit 4 [udp-forming] AT1G70500 - pectin byase-like protein with pak-box/p21-rho-binding domain CTL2 - chtimase-like protein 2 IRX6 - cobra-like protein 63 PGSIP1 - plant glycogenin-like starch initiation protein 1 AT5G40340 - putative o-acetyltransferase AT3G0210 - aspartyl proteas-like protein AT1G09400 - protein kinase family protein AT5G4020 - aspartyl protein AT3G5230 - thypoz domain-containing prot	
amigallulara matahalia pragaga	2 07E 12	2 24E 0	2 20 (6221 77 000 40)		

Outline

- Definition of Systems Biology
- Tools
 - Gene Ontology analysis
 - Bayesian Networks

Bayesian Networks

- What are Bayesian networks?
 - Probabilistic Graphical Model that can be used to build models from data and/or expert opinion

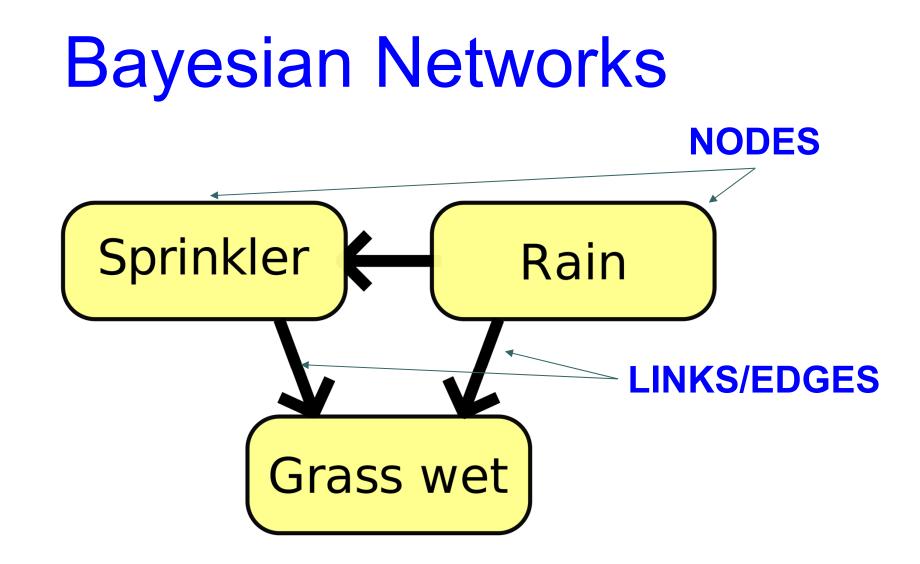
IN	

Bayesian Networks

What are **Bayesian Networks**?

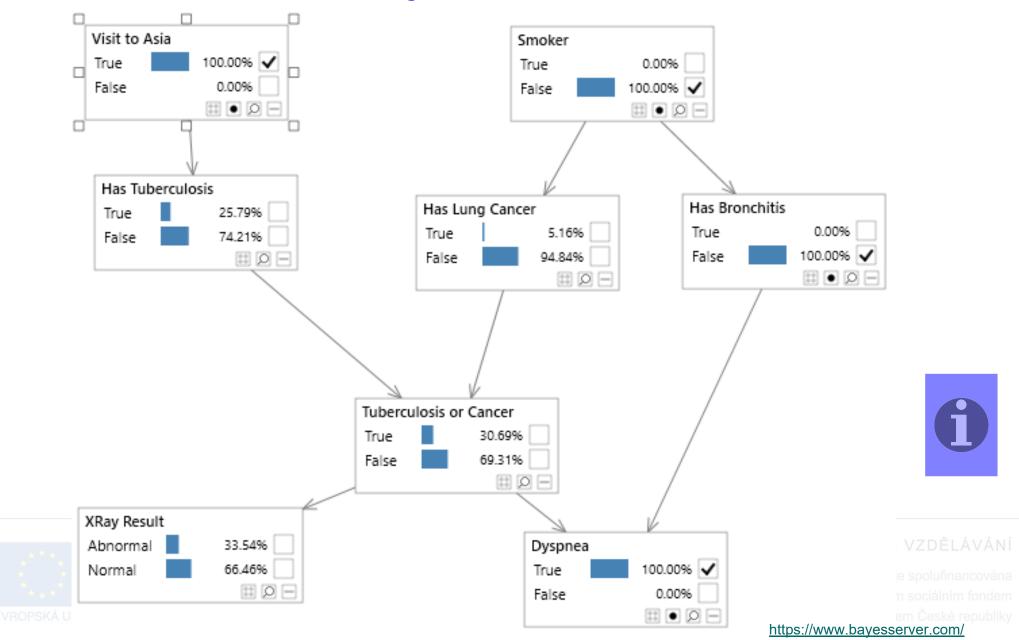
- Probabilistic Graphical Model that can be used to build models from data and/or expert opinion
- can be used for a wide range of tasks including prediction, anomaly detection, diagnostics, automated insight, reasoning, time series prediction and decision making under uncertainty

NODES


 each node represents a variable such as someone's height, age or gender. A variable might be discrete, such as Gender = {Female, Male} or might be continuous such as someone's age

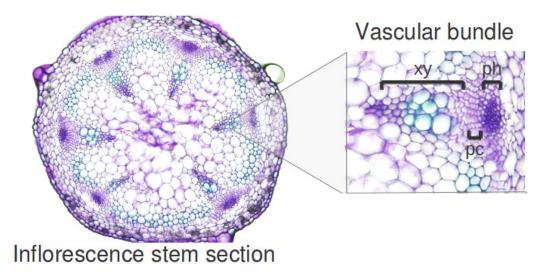
LINKS

added between nodes to indicate that one node directly influences the other


INVESTICE DO ROZVOJE VZDĚLÁVÁN

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Asia Bayesian Network


Outline

- Definition of Systems Biology
- Tools
 - Gene Ontology analysis
 - Bayesian Networks
 - Molecular/Gene Regulatory Networks Modeling

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

□ Vascular tissue as a developmental model for MRN modeling

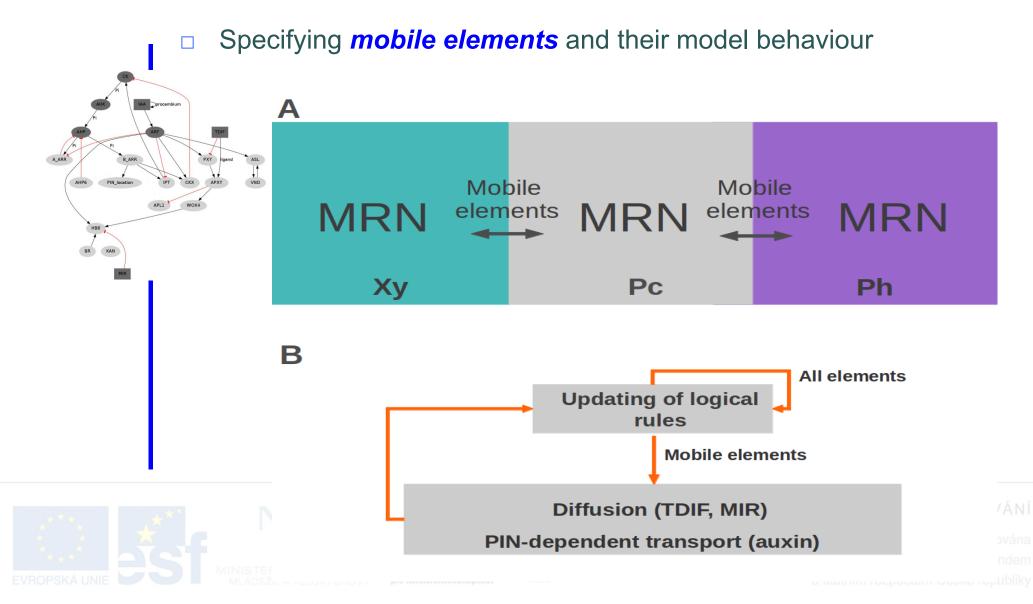
Benitez and Hejatko, PLoS One, 2013

)ĚLÁVÁNÍ

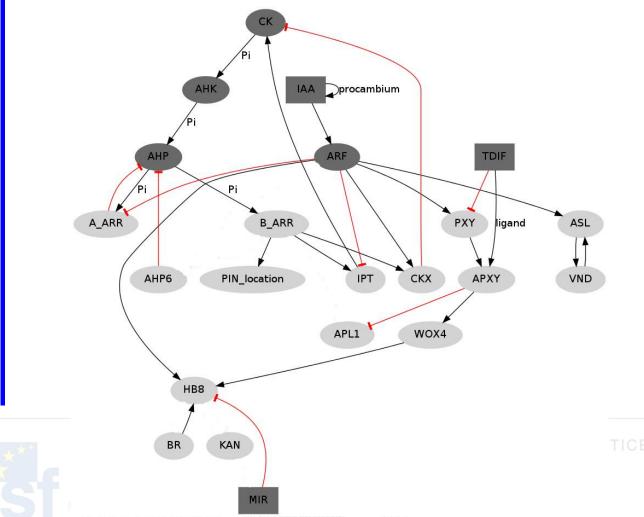
ufinancována álním fondem tem České republiky

Literature search for published data and creating small database

Interaction	Evidence	References
A-ARRs – CK signaling	Double and higher order type-AARR mutants show increased sensitivity to CK.	[27]
	Spatial patterns of A-type ARR gene expression and CK response are consistent with partially redundant function of these genes in CK signaling.	[27]
	A-type ARRs decreases B-type ARR6-LUC.	[13]
	Note: In certain contexts, however, some A-ARRs appear to have effects antagonistic to other A-ARRs.	[27]
AHP6 – AHP	ahp6 partially recovers the mutant phenotype of the CK receptor WOL.	[9]
	Using an in vitro phosphotransfer system, it was shown that, unlike the AHPs, native AHP6 was	[9]
	unable to accept a phosphoryl group. Nevertheless, AHP6 is able to inhibit phosphotransfer from other AHPs to ARRs.	
Benitez and Hejatko, PLoS	One, 2013 OP Vzdělávání	

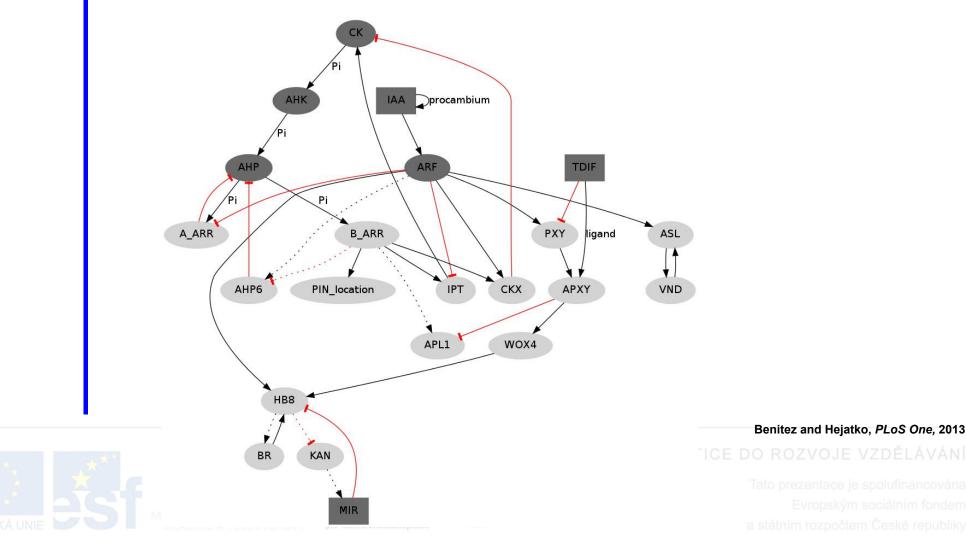

Formulating *logical rules* defining the *model dynamics*

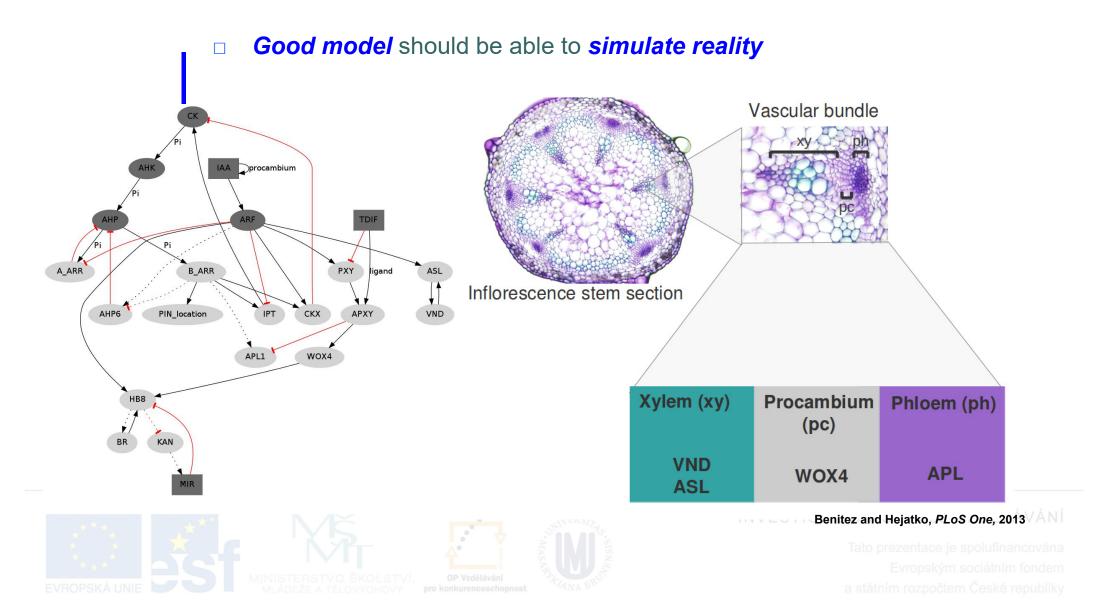
Network node	Dynamical rule
СК	2 If ipt=1 and ckx=0 1 If ipt=1 and ckx=1 0 else
СКХ	1 If barr>0 or arf=2 0 else
AHKs	ahk=ck
AHPs	2 If ahk=2 and ahp6=0 and aarr=0 1 If ahk=2 and (ahp6+aarr<2) 1 If ahk=1 and ahp6<1 0 else
B-Type ARRs	1 If ahp>0 0 else
A-Type ARRs	1 If arf<2 and ahp>0 0 else

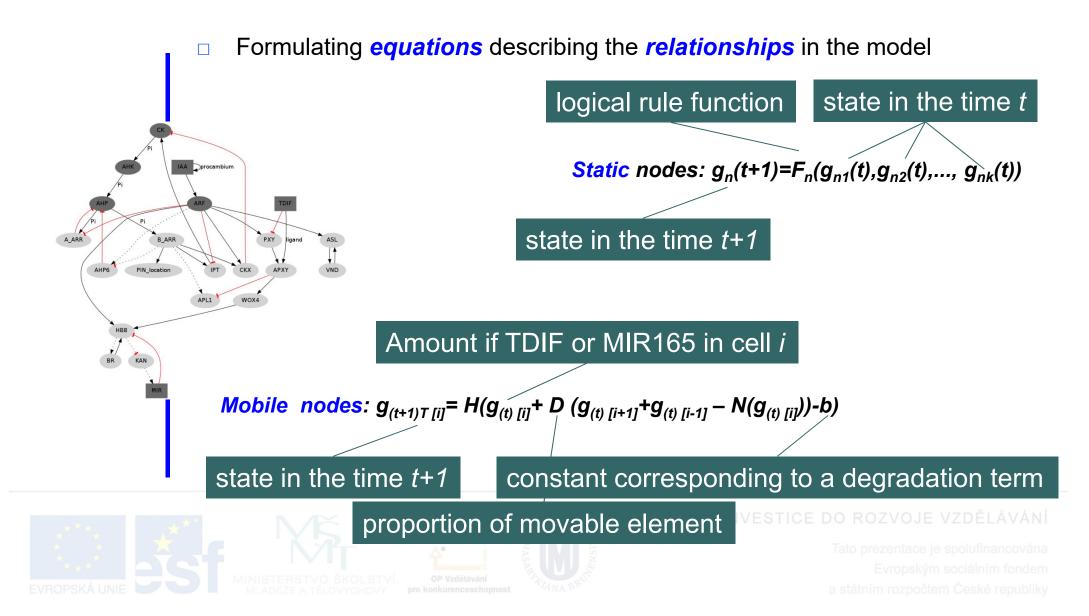

Benitez and Hejatko, PLoS One, 2013

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

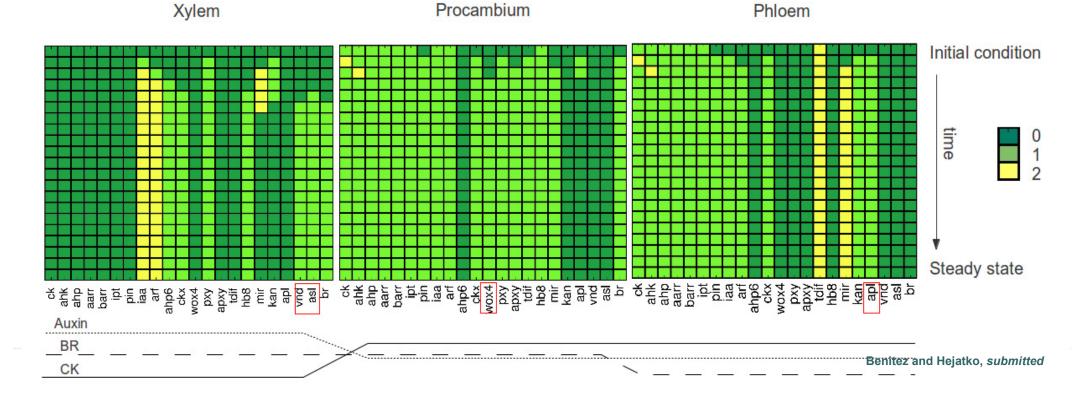
Preparing the *first version* of the model and its *testing*

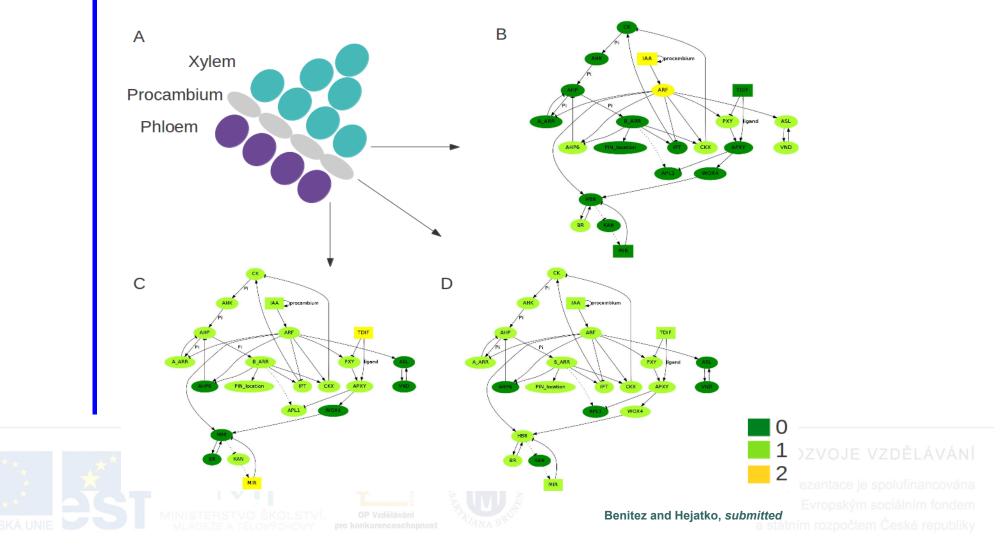

TICE DO ROZVOJE VZDĚLÁVÁNÍ


Specifying of missing interactions via *informed predictions*


Interaction	Evidence	References
$CK \rightarrow PIN7$ radial localization	Predicted interaction (could be direct or indirect)	
	Informed by the following data:	
	During the specification of root vascular cells in Arabidopsis thaliana, CK regulates the radial localization of PIN7.	[18]
	Expression of PIN7:GFP and PIN7::GUS is upregulated by CK with no significant influence of ethylene.	[18,20]
	In the root, CK signaling is required for the CK regulation of PIN1, PIN3, and PIN7. Their expression is altered in wol, cre1, ahk3 and ahp6 mutants.	[19]
$CK \rightarrow APL$	Predicted interaction (could be direct or indirect)	
	Consistent with the fact that APL overexpression prevents or delays xylem cell differentiation, as does CKs.	[21]
		(TAIR,
	Partially supported by microarray data and phloem-specific expression patterns of CK response factors.	ExpressionSet:1 005823559, [22])

Preparing the *next version* of the model and its *testing*

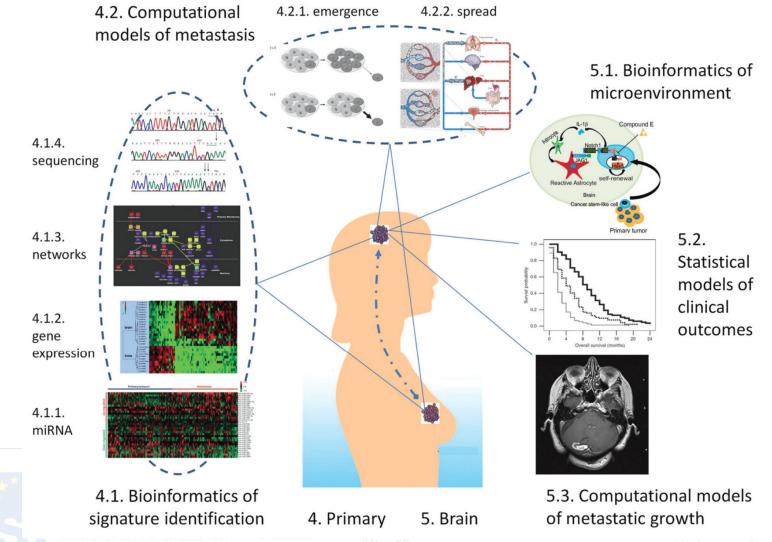





□ Good model should be able to simulate reality

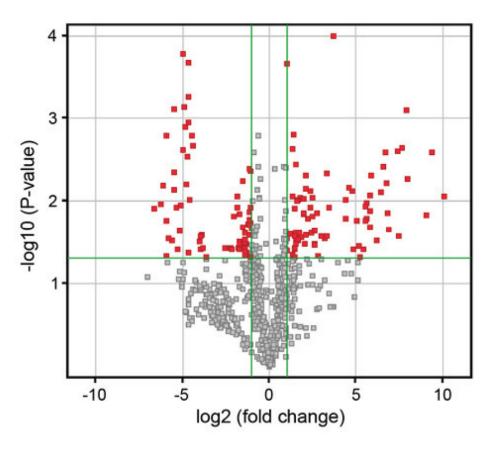
Static nodes: $g_n(t+1) = F_n(g_{n1}(t), g_{n2}(t), ..., g_{nk}(t))$ Mobile nodes: $g_{(t+1)T[i]} = H(g_{(t)[i]} + D(g_{(t)[i+1]} + g_{(t)[i-1]} - N(g_{(t)[i]}))-b)$

□ The good model should be able to simulate reality

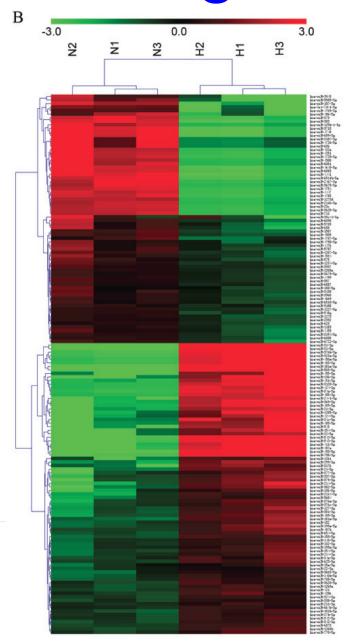

Outline

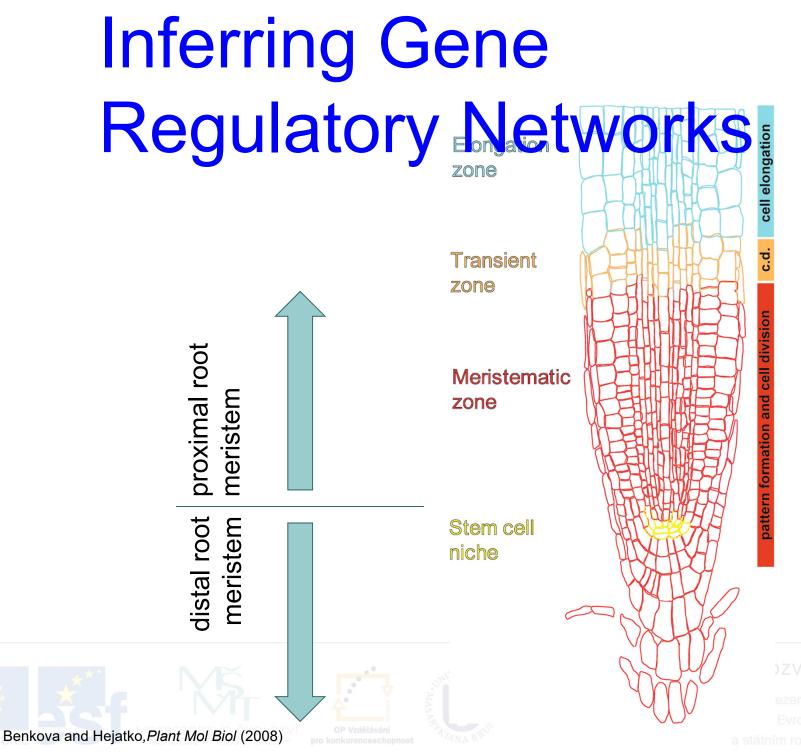
- Definition of Systems Biology
- Tools
 - Gene Ontology analysis
 - Bayesian Networks
 - Molecular/Gene Regulatory Networks Modeling
 - Inferring Gene Regulatory Networks from Large Omics Datasets

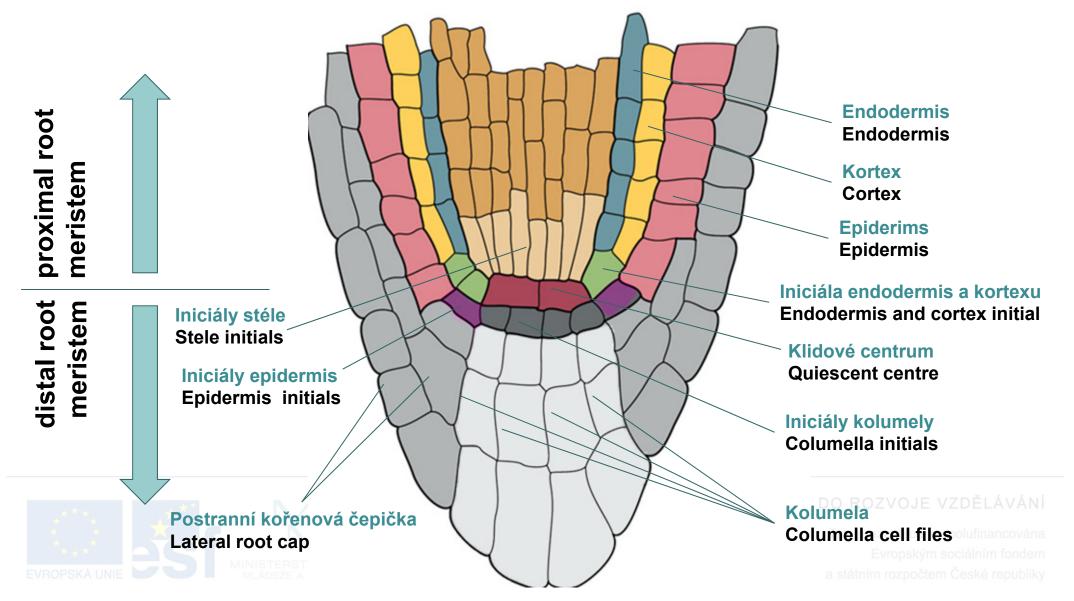
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

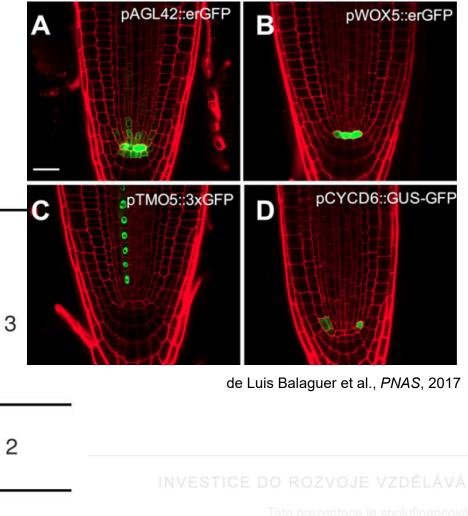

Systems Biology in Cancer Research

ZDĚLÁVÁNÍ


spolutinancovana sociálním fondem

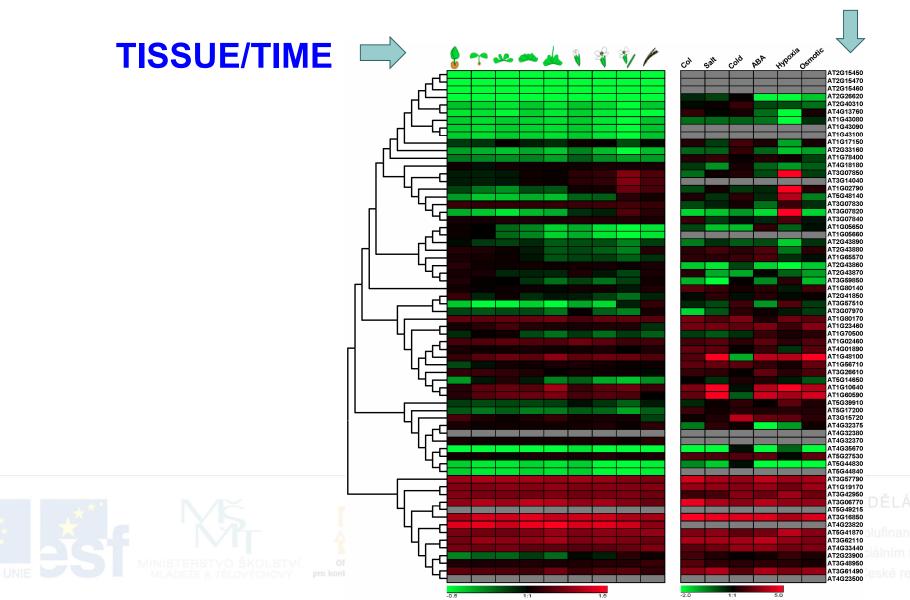

miRNA/mRNA Profiling



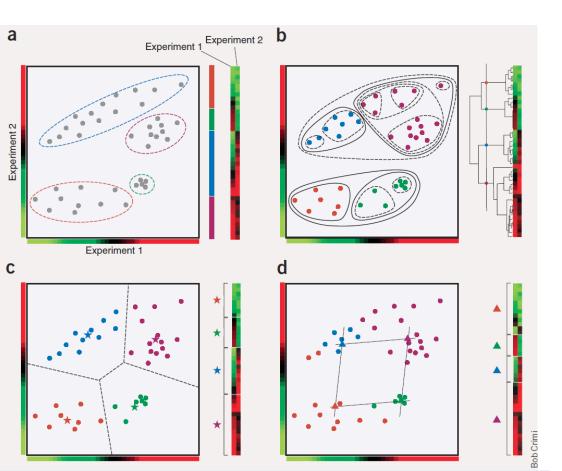

)ZVOJE VZDĚLÁVÁNÍ

Gene Regulatory Networks

Inferring GRNs via GENIST GEne regulatory Network

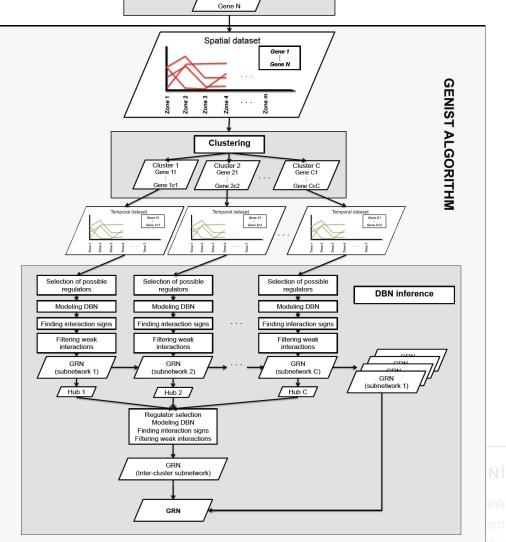

- Inference from SpatioTemporal data algorithm
- Combining spatial- and timespecific gene expression profiles

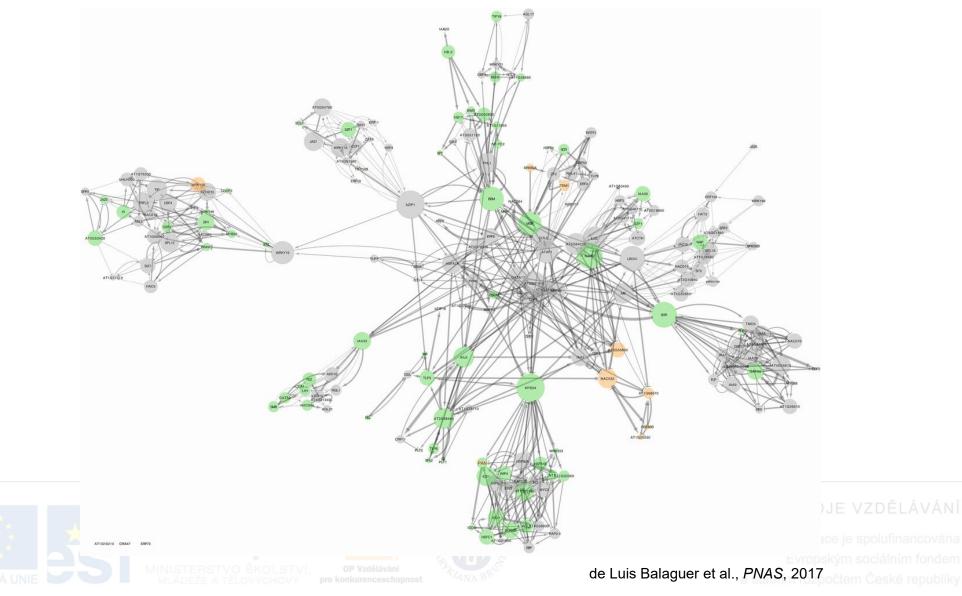
Birnbaum et al., Science, 2003

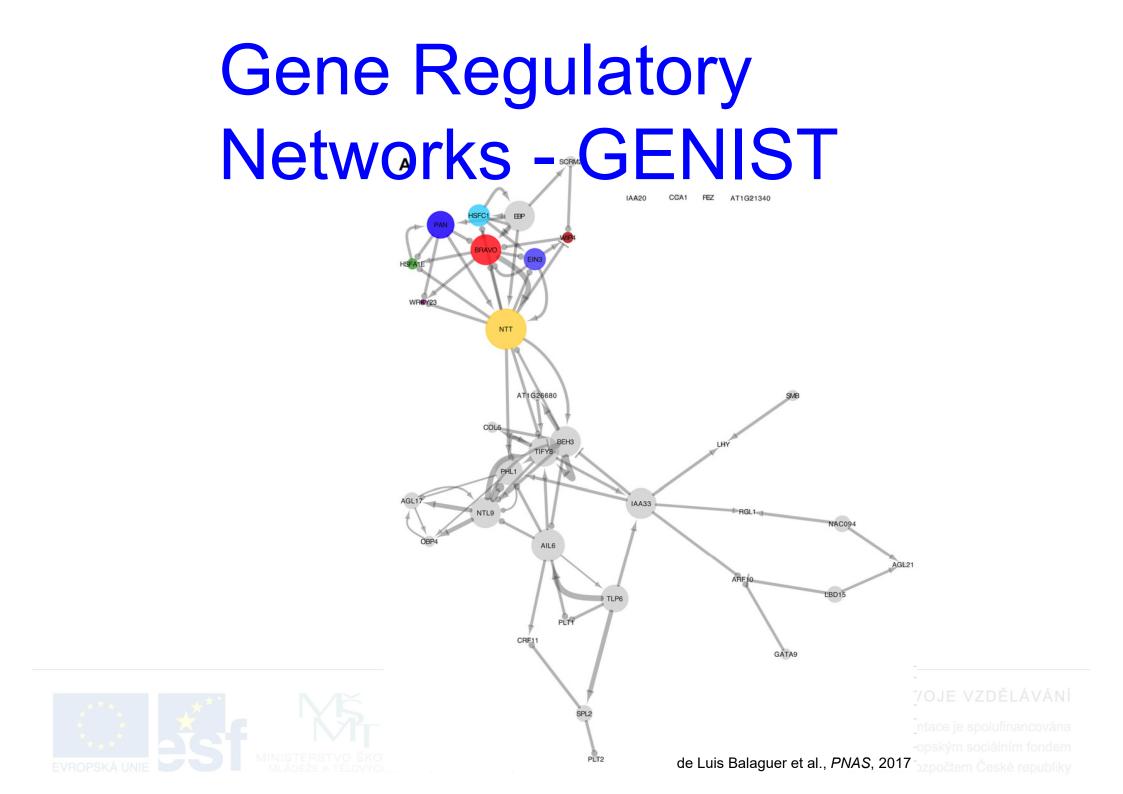

a státním rozpočtem České republiky

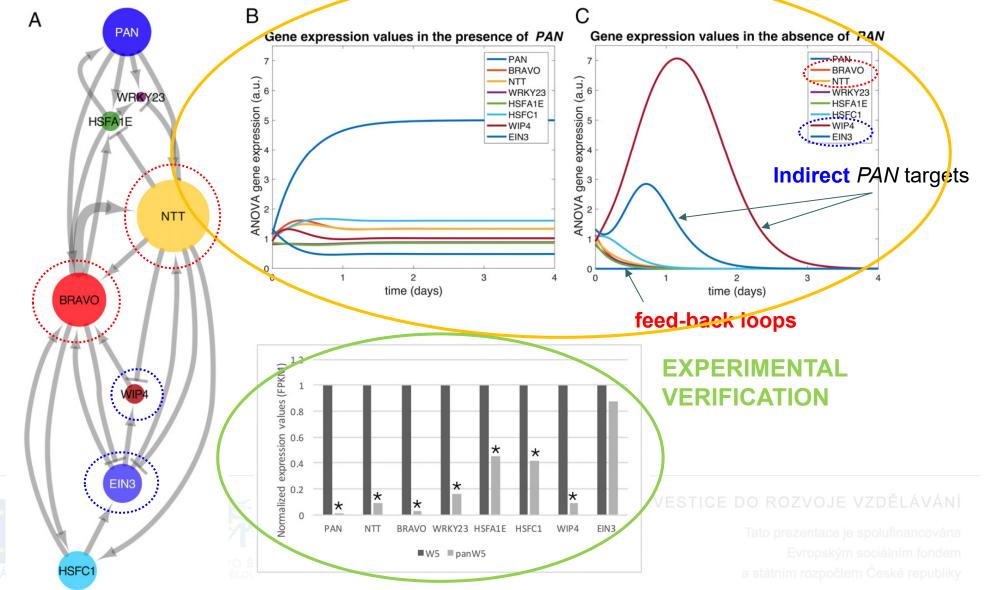
Combining Large Omics Datasets GENES

- Inferring GRNs via GENIST
 - Clustering of genes
 - Expression similarity under various conditions/genetic backgrounds, time points, …
 - Inferring intra-cluster connections
 - Selection of potential regulators and coregulators
 - Based on the time correlation in the change of expression and/or user specification




Haeseleer, *Computational Biology*, 2005


- Inferring GRNs via GENIST
 - Clustering of genes
 - Expression similarity under various conditions/genetic backgrounds, time points, ...
 - Inferring intra-cluster connections
 - Selection of potential regulators and coregulators
 - Based on the time correlation in the change of expression and/or user specification



Gene

Gene Regulatory Networks - GENIST MODEL PREDICTION

Summary

- Definition of Systems Biology
- Tools
 - Gene Ontology analysis
 - Bayesian Networks
 - Molecular/Gene Regulatory Networks Modeling
 - Inferring Gene Regulatory Networks from Large Omics Datasets

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Discussion

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ