
Variables
Conditions
Homework

2. Variables and Conditions

Ján Dugá£ek

September 25, 2019

Ján Dugá£ek 2. Variables and Conditions

Variables
Conditions
Homework

Table of Contents

1 Variables
Why we need them
Available types
Usage
Exercises
Shortcuts

2 Conditions
Condition
Exercise

3 Homework

Ján Dugá£ek 2. Variables and Conditions

Variables
Conditions
Homework

Why we need them
Available types
Usage
Exercises
Shortcuts

Advanced exercise

Do this only if you already know how to use variables!

Calculate π using the Monte Carlo method (scatter many

points randomly in a square, calculate the fraction of them

that is closer to its centre than a half of the square's side)

Hint: you may use rand() to generate random numbers

Why is the result so imprecise?

Challenge: Do it without computing any square root (neither

manually nor in the program)

Second powers of the same numbers are computed over and

over. Would it be useful to store the computed second powers

of numbers for later use?

Ján Dugá£ek 2. Variables and Conditions

Variables
Conditions
Homework

Why we need them
Available types
Usage
Exercises
Shortcuts

Variables

Everything in digital format is a number or a group of
numbers (addresses, texts, pictures, programs, ...)

There are several formats for numbers, depending on the
required size and need to support negative numbers and
decimals
Numbers are always binary code, groups of ones and zeroes, a
bit is a single value that can be zero or one, a byte is a group
of eight bits (82 = 256 possible values)

On computers, numbers usually can be saved on 1 byte (256
values), 2 bytes (216 = 65536 values), 4 bytes
(232 = 4294967296 values) or 8 bytes
(264 = 18446744073709551616 = 1.8 · 1019 values)

A number stored someplace with a name is called variable

A single number is called primitive data type

Ján Dugá£ek 2. Variables and Conditions

Variables
Conditions
Homework

Why we need them
Available types
Usage
Exercises
Shortcuts

Usage

#i n c l u d e <ios t r eam>
i n t main (i n t argc , cha r ∗∗ a rgv) {

i n t x ;
x = 2 ;
s t d : : cout << x << std : : e nd l ;
r e t u r n 0 ;

}

We �rst create variable x
The compiler will recognise x as an integer variable

Then we set value 2 to x
We can write its value to the program's output

Ján Dugá£ek 2. Variables and Conditions

Variables
Conditions
Homework

Why we need them
Available types
Usage
Exercises
Shortcuts

Usage #2

#i n c l u d e <ios t r eam>
i n t main (i n t argc , cha r ∗∗ a rgv) {

i n t x = 2 ;
s t d : : cout << x << std : : e nd l ;
r e t u r n 0 ;

}

We can set its value at the same line as when creating it

This is the recommended way to do it, because if you forget to
set it, it will have an unpredictable value

Ján Dugá£ek 2. Variables and Conditions

Variables
Conditions
Homework

Why we need them
Available types
Usage
Exercises
Shortcuts

Available types

int - standard sized integer (usually int32_t, range
-2147483648 to 2147483647)

short int - short sized integer (usually int16_t, range
-32768 to 32767)

char - very short sized integer, often used to store letters
(usually int8_t, range -128 to 127)

long int - short sized integer (usually int64_t, range
-9223372036854775808 to 9223372036854775807)

unsigned int - integer for non-negative values (usually
uint32_t, range 0 to 4294967295)

There are unsigned versions of all other sized integer types

Ján Dugá£ek 2. Variables and Conditions

Variables
Conditions
Homework

Why we need them
Available types
Usage
Exercises
Shortcuts

Available types

float - stores numbers with decimal point (usually 32-bit, 6
decimals, greatest numbers are around 1038)

double - stores numbers with decimal point (usually 64-bit, 15
decimals, greatest numbers are around 10308)

bool - can have only two values, false which is 0 or true
which is 1
std::string - stores text, works quite di�erently

Ján Dugá£ek 2. Variables and Conditions

Variables
Conditions
Homework

Why we need them
Available types
Usage
Exercises
Shortcuts

Usage #3

#i n c l u d e <ios t r eam>
i n t main (i n t argc , cha r ∗∗ a rgv) {

i n t x = −1024 − 2 ;
s h o r t i n t y = x ∗ x ;
i n t z = x / 4 ;
s t d : : cout << y << std : : e nd l ;
s t d : : cout << z << std : : e nd l ;
r e t u r n 0 ;

}

We �rst create variable x and save -1026 into it
Then we create variable y and save the square of x into it,
which does not �t there
After, we create variable z and set its value to x divided by 4,
because both x and 4 are integers, the result is an integer,
rounding the value down
The resulting values of y and z are written into the terminal

Ján Dugá£ek 2. Variables and Conditions

Variables
Conditions
Homework

Why we need them
Available types
Usage
Exercises
Shortcuts

Usage #3

#i n c l u d e <ios t r eam>
i n t main (i n t argc , cha r ∗∗ a rgv) {

f l o a t x = 15 / 2 ;
f l o a t y = 15 .0 / 2 ;
f l o a t z = (f l o a t)15 / 2 ;
f l o a t w = x / 2 ;
s t d : : cout << "Computed x=" << x << " y= " << y

<< " z= " << z " w= " << w << std : : e nd l ;
r e t u r n 0 ;

}

We �rst divide 15 by 2, rounding down because both numbers are integers and
result is integer, recalculate it to �oat and save it into x

Then we divide 15.0 by 2, because 15.0 is a decimal, it is a �oat, arithmetic
between a �oat and an int yields a �oat, the resulting �oat is saved into y

After, we convert the integer 15 to �oat, divide it by 2, the resulting �oat is
saved into z

Next, we divide the �oat x by 2 and save it into variable w

The resulting values of variables are written into the terminal

Ján Dugá£ek 2. Variables and Conditions

Variables
Conditions
Homework

Why we need them
Available types
Usage
Exercises
Shortcuts

Exercises

1 Set 17 to x, divide it by 4 (rounded down), set x2 − 12 to y,
add 18 to the result and write out the result

2 Calculate
(3+ 2− 12) · ((9− 2) · 5) + (3+ 2− 12) · (8+ ((9− 2) · 5))
without writing 3 + 2 - 12 or (9 - 2) · 5 more than once
or calculating anything yourself

3 Calculate 3+2−12
(9−2)· 5 + (3+ 2− 12) · (8+ (9−2)· 5

3+2−12) without

writing 3 + 2 - 12 or (9 - 2) · 5 more than once or
calculating anything yourself

Ján Dugá£ek 2. Variables and Conditions

Variables
Conditions
Homework

Why we need them
Available types
Usage
Exercises
Shortcuts

Shortcuts

Lines like x = x + 4 are used a lot, so they can be shortened
to x += 4
Analogically, you can use x -= y * 2 (subtract 2 multiplied
by y from x and save it into x), x /= 1.5 or x *= 1.01

x += 1 can be further shortened to x++ or ++x
Analogically, there is also x�� or ��x for x -= 1

Ján Dugá£ek 2. Variables and Conditions

Variables
Conditions
Homework

Condition
Exercise

Advanced exercise

Do this only if you already know how to use if, while and
for!
Calculate x in x + 1 = 1

x

You may assume that x is positive

Challenge: Do not calculate anything more than 1000 times,
but limit your precision only by the maximum decimals that
can be stored in primitive types and use no prior knowledge

Ján Dugá£ek 2. Variables and Conditions

Variables
Conditions
Homework

Condition
Exercise

Condition

i n t x ;
s t d : : c i n >> x ;
i f (x < 0)

x ∗= −1;
s t d : : cout << x << std : : e nd l ;

First, we let the user insert a number
Then, we check if x is lesser than 0
Only if x is lesser than 0, multiply by -1

This will replace x by its absolute

x is printed at the end of the program

Ján Dugá£ek 2. Variables and Conditions

Variables
Conditions
Homework

Condition
Exercise

Condition #2

boo l changed = f a l s e ;
i f (x >= 0) {

x ∗= −1;
changed = t r u e ;

}

Here, we check if x is greater than or equal to 0

If the condition is met, multiply x by -1 and set variable
changed to 1

Variables de�ned in a block (the part in curly brackets) are not
available outside of it

Ján Dugá£ek 2. Variables and Conditions

Variables
Conditions
Homework

Condition
Exercise

Condition #3

i n t changed = 0 ;
boo l e qua l s = (x == y) ;
i f (x > y | | x < 2 ∗ y) {

changed = 1 ;
i f (e qua l s) {

changed = 2 ;
}

}

Here, we check if x is greater than y or x is less than two
times y
We also check if x equals y and save the result of the
comparison into variable equals

If the �rst condition is met, 1 is assigned to changed and we
check if x was previously found to be equal to y

The result of comparison can be 1 (true) or 0 (false)

Ján Dugá£ek 2. Variables and Conditions

Variables
Conditions
Homework

Condition
Exercise

Condition #4

i n t z = 0 ;
i f (x > y && x != 1) {

z = 1 ;
i f (x = y − 1) {

z = 2 ;
}

}

Here, we check if x is greater than y and x is not equal to 1

If the condition is met, 1 is assigned to z and y - 1 is
assigned to x and if x is non-zero (true), 2 is assigned to z

Do not confuse = (variable assignment) with ==
(comparison)! It is a huge source of errors!

Ján Dugá£ek 2. Variables and Conditions

Variables
Conditions
Homework

Condition
Exercise

Condition #5

i n t z = 0 ;
i f (x > y && (x = y | | y == 1)) {

z = 1 ;
}

Here, we check if x is greater than y and if that is true, we
assign y into x and if the result is non-zero (true) or y is equal
to 1, the condition is met
If the condition is met, 1 is assigned to z

If x is not greater than y, the condition is never true and the
rest is ignored, thus y is never assigned to x

Do not confuse && and || with & and |, they mean something
else but usually lead to di�erent outcomes, so a program using
& instead of && may seem okay but then behave weirdly

Ján Dugá£ek 2. Variables and Conditions

Variables
Conditions
Homework

Condition
Exercise

Condition #6

i n t z = 0 ;
i f (! (x > y) && (x == 1 | | (x = y))) {

z = 1 ;
}

Here, we check if it's not true that x is greater than y and if
that condition is met, we check if x is equal to one, if that is
false, we assign y into x, check if it's non-zero and go inside
the block if the one of these two conditions is met
If x is equal to 1, the condition is true regardless of the value
of y and the next condition is ignored, thus y is never assigned
to x

Ján Dugá£ek 2. Variables and Conditions

Variables
Conditions
Homework

Condition
Exercise

Inline condition

i n t z = (! (x > y) && (x == 1 | | (x = y))) ? 1 : 0 ;

This does the same as the previous, if the condition is met, z
is initialised with 1, otherwise it's initialised with 0
It is useful only when assigning values into a variable
depending on a condition

i n t z = (x > 1) ? ((y > 1) ? 2 : 1) : 0 ;

It can be nested too
If x is greater than 1, then if y is greater than 1, 2 is set into
z, otherwise 1, if x is not greater than 1, 0 is set into z

Ján Dugá£ek 2. Variables and Conditions

Variables
Conditions
Homework

Condition
Exercise

Exercise

1 Create a program that reads a number and tells if it's even or
odd

2 Create a program that reads a number and reports if it's the
square of an integer (the number will not be greater than 20)

3 Create a program that reads two numbers as coordinates of a
point and prints the point's distance from point (2, 3)

4 Create a program that reads two numbers as coordinates of a
point and determines if the point lies within a circle with
centre at (2, 3) and radius 4

Ján Dugá£ek 2. Variables and Conditions

Variables
Conditions
Homework

Homework

No homework

Ján Dugá£ek 2. Variables and Conditions

	Variables
	Why we need them
	Available types
	Usage
	Exercises
	Shortcuts

	Conditions
	Condition
	Exercise

	Homework

