Definition of Star Clusters

Star clusters are physically related groups of stars held together by mutual gravitational attraction.

The number of all star clusters in the Milky Way is about 10 000 but only 3000 in catalogues. From these, about 170 Globular Clusters ("old", Population II).

Working Hypothesis

All members of an individual Star Cluster are born within one Giant Molecular Cloud (GMC) over a time scale of some few Myrs.

What are the immediate conclusions?

All members of an individual star cluster have:

- Identical distance from the Sun: +- The volume expansion of the cluster (diameters < 25 pc)
- Identical age: +- Time scale of star formation (a few Myrs)
- Identical metallicity: +- Inhomogeneities of the initial GMC and the chemical evolution of the giant branch
- Identical kinematical characteristics: Intrinsic spread
 - Radial velocity
 - Proper motion

Characteristics – Open Clusters

- Age: 1 Myr 5 Gyr (Population I)
- Metallicity: -1.0 to +0.6 dex (factor 10 to 4) compared to the Sun
- Distance from the Sun: > 45 pc
- Mass range of the members: 0.08 to 100 M(sun)
- Total masses: up to 40000 M(sun)
- Absolute linear diameter: 2 to 25 pc

The cluster parameters

- 1. Reddening
- 2. Distance modulus
- 3. Age
- 4. Metallicity

Determination in the order: Reddening, age, distance modulus simultaneously, metallicity with possible iterations

Color – Magnitude - Diagram

Different CMDs for one open cluster

Glushkova et al., 2013, MNRAS, 429, 1102

Grocholski & Sarajedini, 2003, MNRAS, 345, 1015

Maeder & Mermilliod, 1981, A&A, 93, 136

Different treatment of convection

von Hippel, 1998, AJ, 115, 1536

Cluster (1)	Alias (2)	N s (3)	Reference (4)	N 5	Reference (6)	N e (7)	Mass (8)	Reference (9)	Age (10)	Reference (11)
Hyades	CAR IN SPECIAL	7	1, 2	3	9, 14		410-480	16	0.63	21
Pleiades	M45	1	3, 4, 5			1-2	1000-2000	17, 18	0.07	22
NGC 2168	M35	2	3,6				≥1600-3200	19	0.09	3,6
NGC 2287	M41	2	4						0.18	4
NGC 2420		4	7				≥4000	20	2.4	23
NGC 2451		1	3, 8						0.07	8
NGC 2477		4	7			12.20			1.2	7
NGC 2516		4	9	22.0					0.14	24
NGC 2632	M44	4	10				(3.4.4)		0.7	25
NGC 2682	M67	1	11	2	11, 15				4.0	24
NGC 3532		6	3, 12, 13		352011	12.2	≥ 600	13	0.17	13
Total		36		5						

WHITE DWARFS IN OPEN CLUSTERS

NOTE.-NGC 2632 = Praesepe.

Single Multiple

In total, 41 WDs until 1998 found, no firm improvement after that

Fellhauer et al., 2003, ApJ, 595, L53: The White Dwarf Deficit in Open Clusters: Dynamical Processes

Parameter	N = 2000	N = 10,000
Total mass (M_{\odot})	1317.1	6668.1
Crossing time (Myr)	6.2	2.7
Relaxation time (Myr)	180.7	109.1
Tidal radius (pc)	15.6	26.7
Half-mass radius (pc)	2.5	2.4
Core radius (pc)	0.9	1.0
Velocity dispersion (km s ⁻¹)	0.8	1.8

Ν	f_b	$v_{ m kick}$	$\mathrm{WD}_{\mathrm{tot}}$	WD _r	$f_{\rm WD}$	f_N	Run
2000	0.0	0	8	8	1.00	0.99	1
	0.0	1	8	8	1.00	0.99	1
	0.0	2	8	4	0.50	0.98	1
	0.0	5	8	1	0.13	0.98	1
	0.2	1	6	5	0.83	0.98	3
	0.2	2	6	1	0.17	0.98	1
	0.2	5	6	1	0.09	0.98	2
	0.4	1	5	5	1.00	0.98	3
	0.4	2	5	4	0.80	0.98	3
	0.4	5	5	1	0.20	0.98	1
	0.8	1	3	3	1.00	0.98	1
	0.8	2	3	3	1.00	0.99	1
	0.8	5	1	0	0.00	0.97	1
10,000	0.0	1	43	43	1.00	1.00	2
	0.0	2	43	42	0.98	1.00	1
	0.0	5	43	38	0.88	0.99	2
	0.2	2	39	38	0.97	0.99	1
	0.2	5	39	37	0.95	0.99	1
	0.4	2	27	27	1.00	0.99	1

RESULTS OF OUR SIMULATIONS AFTER 100 MYR OF EVOLUTION

Our models suggest that almost all white dwarfs would be lost from the cluster if the average recoil speed were to exceed twice the velocity dispersion of the cluster.