1. Introduction

= OH, a prominent flame emitter, absorber.
Useful for T, X,y measurements.
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The vibrational structure of the system was gradually recognized.?—4 It is given in
Table 1 which lists the heads of all the bands found until now with an estimate of their
intensities according to TANAKA and KoANA@, For the bands that are underlined, new
measurements and a revision of the analysis are given in this report. For the other bands
the references indicate where the most complete data can be found. More accurate data
on the intensities of a number of bands are given further on in this report (Table 6).

TABLE 1
NG
Vv’ 0 1 2 3 4
0 306410 3428 (7
1 WI1©)  31220) 3185 (6)
2 2609 (4 28TSOF 3185 (653
3 2444 (1)%3 2677 (5)>3 29_45_ (73 @ (€Y

4 2517 (2)® 2753 (4 3022 (5)3 3331 (42




2. Energy levels

Term energies
Angular momentum energy (nuclei + electrons)

E (n, v,J )+ F (J )
elec. g. no. 1 |
vib. g. no. Electronlc V|brational
ang. mom. g. no. energy energy

=  Separation of terms: Born-Oppenheimer approximation
m G(V) = we(v+ 1/2) — wx (v + 1/2)?
= Sources of T,, w,, WX, ® Herzberg

= Qverall system : A2X*«—X?T]

in [cm™]
A2X+ Te W, WX, ‘ X2 Te W, WX,
32682.0 3184.28 97.84 ‘ 0.0 373521 82.21

Let’s first look at the upper state ®» Hund'’s case b!



2. Energy levels

= Hund’s case b (A=0, S#0) — more standard, especially for hydrides
Recall:
= 2, Qnotrigorously defined
= N =angular momentum without spin
= S =1/2-integer values
= J=N+S, N+S-1, ..., [N-S]

= i=1,2, .. J

F.(N) = rotational term energy

Now, specifically, for OH?



2. Energy levels

= The upper state is A?2*
For OH:
= A=0, 2 notdefined » use Hund’'s case b
= N=0,1,2,...
= S=1/2
= J=N=X1/2

= F,denotesJ=N +1/2 ’

F, denotes J =N —1/2

Common to write either F,(N) or F,(J)



2. Energy levels

= The upper state: A?2*

= |F(N)=BN(N+1)-D,[NN+1)] +y N for pure case b
F,(N)=BN(N+1)-D [N(N+1)f -y, (N +1)
(splitting constant y, ~0.1cm™ for OH A22+)

= .~ the spin-splitting is y,(2N+1) = function of v; increases with N
?(2N+1) ~ 0.1(5) ~ 0.5cm-" for N ]
Compare with Avy(1800K) = 0.23cm-" # Notes:
N J p
, J s2r + "  Progression for A2x+
32 F, +
T =  “+” denotes positive
“parity” for even N [wave
1 32 F function symmetry]
12 F, -
= |mportance? Selection
rules require parity
. — change in transition




2. Energy levels

= The ground state: X1 (A=1, S=1/2)

Hund’s case a Hund’s case b

N#0,S #0, 2 defined A=0,S #0, 2 not defined

# Note:

1.
2.

Rules less strong for hydrides

OH behaves like Hund’'s a @ low N

like Hund’s b @ large N
» at large N, L couples more to N, Ais less defined, S
decouples from A-axis

Result? OH X2 is termed “intermediate case”




2. Energy levels

= The ground state: X°[1
# Notes:

3. For “intermediate/transition cases”

A= {3417 - - 2alv2F 1,0 -] b vy 0

F,(N)

BV{NZ ANy, —4)A2]“2}—DV[N(N+1)]2

where Y, = A/B, (< 0 for OH); A is effectively the moment of inertia
Note: F,(N) < F,(N)

For small N

=) Behaves like Hund’s a, i.e., symmetric top, with spin splitting AA
m Behaves like Hund'’s b, with small (declining) effect from spin

F, - B|(N+1F = A= (N +1)

F,— B,[N>~A*+ N|

) F—F, > B|(N+1f -N? (2N +1)| >0




2. Energy levels

= The ground state: X?[1

T, =T, +AAS
J For OH, A=-140 cm™!
5/2 » T, =T, + (-140)(1)(1/2), Z = 1/2

# Notes:
4. Some similarity to symmetric top
J N
3 .-
[£7 R —

5/2 |
Hund's a — 2|(A-B,)|
l 1 I 130
3/2 AN, 2
Fi:d=N+1/2 FxJ=N-1/2
Q=3/2 0Q=1/2

Showed earlier that F, < F,

+ (-140)(1)(-1/2), £ = -1/2
=» AT, =140 cm™!

Not too far off the 130 cm! spacing
for minimum J

1/2 Recall: Hund'’s case a has
constant difference of 2(A-B,) for same J

F(J) = BJ(J+1) + (A-B)Q?
(A-B)Q2? = -158.50)2
(A for OH~ -140, B ~ 18.5), Q = 3/2, 1/2
=» (= 3/2 state lower by 316 cm"

Actual spacing is only 188 cm-', reflects
that hydrides quickly go to Hund’s case b 10

3/2
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2. Energy levels

= The ground state: X?[1
# Notes:
5. Role of A-doubling

P N P R =R)+8(+1)

- Ed < Ec

3. + 52 | F,=F(J)+5,J(J+1)
72 + ————— "
.~ 32
P - = F.(J)-F4W{)=0.04 cm* for

5/2 T =" typical J in OH

+

1/2 = c and d have different parity
(p)

. Splitting decreases with
F:Jd=N+1/2 F:J=N-1/2 increasing N

’
’
’
’
d
,/
’

+

3/2

Now let’s proceed to draw transitions, but
first let’s give a primer on transition notation.

11

Showed earlier that F, < F,



3. Allowed radiative transitions

= [ransition notations
Full description: A2Z* (v')«=X2TT (v") X (N" or J")
where Y — AN (O, P, Q, R, S for AN = -2 to +2)
X-AJ (P, Q, RforAd =-1,0, +1)
a=iinF/;ie., 1forF,, 2forF,
B=iinF"; ie., 1forF,, 2forF,

"X,;(N"orJ")

# Notes: Example: SR,;:
Strongest trans.{ 1. Y suppressed when AN = AJ AJ=+1 AN = +2
€g.Ry(7orRy7 L2 B suppressed when a =3 F = F,(N)
3. Both N" and J" are used F" = F,(N")

= General selection rules
= Parity must change + - —or— — +
= AJ=0, +1
= No Q (J =0) transitions, J = 0 — J = 0 not allowed

12
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012(K) = Fi(K-2)—f"«(K) J—-1—->J
P(K) = Fi(K-1)-fi(K) J—1—->J
Py(K) = F(K—1)—f2(K) J—-1->J
Pis(K) = Fi(K—1)—fa(K) J—>J

Q1(K) = F(K)—f"1(K) J—>J
Qa1(K) = F(K)—f"1(K) J—-1—>J
0xK) = Fa(K)—f"2(K) J—>J

Q12(K) = Fi(K)—f'ao( K) J+1=>J
R(K) = F(K+1)—fi(K)  J+1-J
Ra(K) = F(K+1)—fi(K) J—>J

Ro(K) = Fa(K+1)—fa(K)  J+1—>J
S21(K) = F(K+2)—f'(K) J+1—>J

(5a)
(5b)
(59)
(5d)
(5¢)
(5£)
(52)
(5h)
(51)
(59
(5k)
(5D

The following remarks will make it easier to utilize the results of the earlier papers.
In the previous publications often different notations were used. In the papers by
HEURLINGER®), WATSON 10, 14 FoRTRAT 13, DIEKE®), the numbering of the lines is K+ 1
of the final state and the indices 1 and 2 of the levels are interchanged, e.g. Ra(5) of the

present paper was Ri(6).

MULLIKEN®7 uses the notation for case (@), i.e. he numbers the lines, and names the
branches by their J values. He indicates by a prefixed superscript the type of branch as

follows:

Present paper O12 P1 P2 P12 Q1 Q21 Q2 Q12 R1 Rz1 Rz Sa1

Mulliken PPP P Py PQ (19 Q29 R8¢ RRER

The later papers usually use a notation similar to Mulliken’s notation or the one

adopted in the present paper.



3. Allowed radiative transitions

s Allowed transitions

Allowed rotational transitions from N"=13 in the A2X*«X2[1 system
ap J N ap JI N
1 - 15.5 15 2 - 14.5 15

1+14.5141 l2+13'514

State or level 1-13.513 — op 2 - 12.5 13
' 2.5 12 = 1 2 11.5 12
1l + 12. 1 ' P + .
Q
o 1-11.5 11 \12 2 - 10.5 11
a specific P
V"’J"’N"’and
N\-coupling
B P A J" N B P A J" N
F..(13 ]
FEE'IS; 1(13) % T§13.513 L kN KN a + § 12.5 13

= 12 bands possible (3 originating from each lambda-doubled, spin-split X state)
= Main branches: a = [3; Cross-branches: a # f3

= Cross-branches weaken as N increases



3. Allowed radiative transitions

= Allowed transitions
Allowed rotational transitions from N"=13 in the A2X*«X2[1 system

cp J N ngl ap J N
1 - 15.5 15 R, R, 2 - 14.5 15
1+ 14.5 14 2 + 13.5 14
| o) A
1
1 - 13.5 13 y 2 - 12.5 13
1+ 12.5 12 2 + 11.5 12
1 - 11.5 11 2 - 10.5 11

BpA I W BpA I N

1 +513.513 4 . §12.5 13

Notes:

A given J" (or N") has12 branches (6 are strong; AJ = AN)

+ < — rule on parity

F,—F:4= 0.04N(N+1) for OH » for N~10, A-doubling is ~ 4cm', giving clear separation
If upper state has A-doubling, we get twice as many lines!



3. Allowed radiative transitions

Allowed transitions

Allowed rotational transitions from N"=13 in the A2X*«X2%* system
ap J N’

ap J N
R
|—‘!I QQI RQ
1+14514 = / T 2+ 135 14
1-135 13 > / > 2 -125 13
1 2
1+125 12 I > 1 2+ 11.5 12
Q
12
Bp J N Bp J° N
1-135 13 2 -125 13
= Note:

1. The effect of the parity selection rule in reducing the number of

allowed main branches to 4

2. The simplification when A=0 in lower state, i.e., no A-doubling

15



4.1. Oscillator strengths

Absorption oscillator strength
elec. osc. strength F-C factor H-L factor

t s
J"J' +
fn RV A A n RV A A) fn"n'QV"v' 2.]"-|—1 For OH A2>*—X?[1
|lT rl ' A-d : bli (Vv fo
elec. Vi Spln ang. mom. oubling SJJ (0,0) 0.00096

or in shorthand notation f,.,. = f,..q,., —
2J"+1 (1,0) | 0.00028

= f... = band oscillator strength

# Notes: q,,, and S,.,, are normalized

] qu"v' :1 1 f _ .
~ I~ or A= 0 (Z state), 2 otherwise
= 8. =/ +1) (28 +1)0
! T " =4for X°I1
&g el or

this sum includes the S values for all states with J"

17



4.1. Oscillator strengths

Is S;y =S, .2 ® Yes, for our normalization scheme!

« From g,f,, = g,f,4, and recognizing that 2J+1 is the ultimate (non removable) degeneracy at
the state level, we can write, for a specific transition between single states

. S S,
2L040)- £ g =2l = (2°F1)- £, L
(, >3 3 / 21"”]? ,(, ) [ ’Z’qu:Iv
In this way, there are no remaining electronic degeneracy and we require, for detailed
balance, thatf,,"= f,,".q,, =q¢,,»and S,.,. =S ...

Do we always enforce ZS e =(2J"+1) for a state? » No!
. But note we do enforce ZSJ o=, +1) 25 +1)5 (14.17)
and ZS” (27'+1)2S +1)5 (14.19)

where, for OH A2Z<—X2I'I, (2S+1)=2and d = 2.

When is there a problem?

= Everything is okay for >-> and l1-1, where there are equal “elec. degeneracies’, i,e., " =
g'y- But for Z-1 (as in OH), we have an issue. In the X?[1 state, g, = 4 (2 for spin and 2 for /-
doubling), meaning each J is split into 4 states. Inspection of our H-L tables for S ., for OH
A?Z—X?I1 (absorption) confirms XS ., from each state is 2J"+1. All is well. But, in the upper
state, 2%, we have a degeneracy g',, of 2 (for spin), not 4, and now we will find that the sum
of ZSJJ is twice 2J'+1 for a single J' when we use the H-L values for S;.; for S, ;.. However,
as there are 2 states with J', the overall sum ZS“ (2J'+1)4 as required by (14.19)

18



4.1. Oscillator strengths

= Absorption oscillator strength for f,, in OH A2Z*—X2[1

Source
Oldenberg, et al. (1938)
Dyne (1958)
Carrington (1959)
Lapp (1961)
Bennett, et al. (1963)
Golden, et al. (1963)
Engleman, et al. (1973)
Bennett, et al. (1964)
Anketell, et al. (1967)

fOO
0.00095 + 0.00014

0.00054 + 0.0001

0.00107 + 0.00043
0.00100 + 0.0006
0.00078 + 0.00008
0.00071 + 0.00011

0.00096

0.0008 + 0.00008
0.00148 + 0.00013

19



4.1. Oscillator strengths

= Absorption oscillator strength
Transition S,.,./(2J"+1) EIF,(J) ZF,(J) Z[F,(J)+F,(J)]  Transition S,.,/(2J"+1) EF,(J) ZF,(J) Z[F,(J)+F,(J)]

Q,,(0.5) 0.667 0 2 2 P,(3.5) 0.515 2 2 4
Q,(0.5) 0.667 P,,(3.5) 0.056

R,»(0.5) 0.333 P,,(3.5) 0.167

R,(0.5) 0.333 P,(3.5) 0.405

P,(1.5) 0.588 2 2 4 Q,(3.5) 0.790

P,,(1.5) 0.078 Q,,(3.5) 0.195

P,,(1.5) 0.392 Q,(3.5) 0.170

P,(1.5) 0.275 Q,(3.5) 0.814

Q,(1.5) 0.562 R,(3.5) 0.316

Q,,(1.5) 0.372 R,5(3.5) 0.131

Q,,(1.5) 0.246 Ry(3.5) 0.044

Q,(1.5) 0.678 R,(3.5) 0.402

R,(1.5) 0.165 P,(9.5) 0.511 2 2 4

R,,(1.5) 0.235 P,,(9.5) 0.016

R,,(1.5) 0.047 P,,(9.5) 0.038

R,(1.5) 0.353 P,(9.5) 0.488

P,(2.5) 0.530 2 2 4 Q,(9.5) 0.947

P,,(2.5) 0.070 Q,,(9.5) 0.050

P,,(2.5) 0.242 Q,,(9.5) 0.048

P,(2.5) 0.358 Q,(9.5) 0.950

Q,(2.5) 0.708 R,(9.5) 0.441

Q,,(2.5) 0.263 R,»(9.5) 0.035

Q,,(2.5) 0.214 R,,(9.5) 0.014

Q,(2.5) 0.757 R,(9.5) 0.462

R,(2.5) 0.256

R,,(2.5) 0.173 . "

R(2.5) B Honl-London factors for selected OH transitions
21\&- 0

R,(2.5) 0.379 20





