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A Monte Carlo method, based on the classical null collision technique, is developed and applied for
electron swarm simulation in weakly ionized gases at low E /N values (E being the electric field and N
the background gas density). The dominant low energy collisional processes (elastic, inelastic, and su-
perelastic collisions) are properly considered. The influence of the thermal motion of background gas
(target not assumed at rest) on electron kinetics, which can play an important role at very low E /N, is
also taken into account. At zero field and low E /N conditions, the influence of low energy collision pro-
cesses on space and time evolution of electron swarm parameters is emphasized in atomic (He) and
molecular (H,0) gases. Then, the present Monte Carlo method is adapted to the low E /N cases in
strongly electronegative gases such as SF4 to overcome the problem of the vanishing of seed electrons by
attachment processes which can stop the simulation. In that case, an additional fictitious ionization pro-
cess with constant collision frequency is considered to obtain hydrodynamic electron swarm parameters

in SFg at low E/N.

PACS number(s): 52.20.Fs, 51.50.+v

I. INTRODUCTION

Swarm characteristics (distribution functions and
transport coefficients) of electrons moving in a weakly or
partially ionized gas under the influence of an accelerat-
ing electric field can be numerically obtained either from
the direct Boltzmann equation solution or from Monte
Carlo simulation. Solution of the Boltzmann equation in
a nonhydrodynamic regime involving time and in partic-
ular space variation of distribution functions constitutes a
numerical challenge, while the Monte Carlo method is
easier to develop in hydrodynamic as well as nonhydro-
dynamic regimes. However, the well known Monte Carlo
drawback concerns the prohibitive computing time. But,
due to progress in computer technology, calculation time
is less and less a constraint. Monte Carlo methods can
thus be considered as well adapted for numerical simula-
tions of electron swarm motion in gas discharges whatev-
er the geometry (one, two, or three dimensions), the re-
gime (transient or steady, homogeneous or not), and the
applied electric field. Concerning the applied electric
field E/N (N being the gas density), there are some
specific problems in Monte Carlo simulation which de-
pend, in particular, on E /N magnitude.

At high E /N values, the large electron amplification
due to ionizing collisions obviously enhances the number
of electrons treated with Monte Carlo method and can
considerably increase computing time. Such a
problem—not emphasized in this paper—could be
solved by using appropriate weighting techniques.

At low E /N values, in the case of electron-molecule
collisions, the first problem concerns the correct treat-
ment of collision kinematics. This must include the
motion of projectile electrons as well as the thermal
motion of target molecules. The motion consideration of
both projectile and target particles is important for low
impact energy, i.e., at low E /N values when energies of

1063-651X/94/49(4)/3264(10)/$06.00 49

impinging electrons and target molecules are practically
of the same order of magnitude. This is what happens at
low electron energy not only during elastic collisions but
also during inelastic and superelastic collisions involving
rotational and vibrational energy levels of target mole-
cule. For these cases, the correct treatment of the col-
lision kinematics (i.e., without assuming molecule at rest)
can avoid some errors physically not acceptable in swarm
parameter determination at low E /N such as an electron
mean energy lower than gas energy. These kinds of non-
physical Monte Carlo results must also be avoided or
minimized because electron swarm data can be used ei-
ther as input data in fluid equations for discharge model-
ing or in methods for fitting electron-molecule collision
cross sections by unfolding swarm parameters.

At low E /N, there is another problem which can ap-
pear in the case of highly electronegative gases such as
SF,. The strong electron attachment occurring at low en-
ergy (lower than 0.5 eV for SF¢ ion formation by elec-
tron impact) can absorb enough initial seed electrons to
stop Monte Carlo code.

The purpose of this paper is to present a Monte Carlo
method available whatever E /N, but which is more
adapted for low E /N values (from 0 Td up to some tens
of Td). In this method, described in Sec. II, the energy
exchanged between electrons and molecules during elas-
tic, inelastic, and superelastic impacts is properly taken
into account. Then, the cross sections used and the
analysis of corresponding results, showing the validity of
the present methods at low E /N, are given in Sec. III in
the case of electropositive (He) and slightly electronega-
tive gases (H,0O). Finally, in the particular case of a
strongly electronegative gas (SFy), electron swarm param-
eters are calculated using an improved Monte Carlo
method based on an additional fictitious ionization pro-
cess in order to avoid the problem of the vanishing of
seed electrons due to the high electron attachment
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efficiency in SF¢ at low E /N. It is to be noted that a sym-
metric idea (based on fictitious attachment process) was
already applied to N, at high E /N strength by Li, Pitch-
ford, and Moratz [1] in order to reduce the number of
simulated electrons and therefore the computing time.

II. MONTE CARLO METHOD

The electron transport in a gas under the influence of
an electric field E can be simulated with the help of a
Monte Carlo method from an initially great number of
seed electrons. These primary electrons are treated one
by one from their creation until their disappearance out
of the domain of the simulation or by specific collisional
processes (e.g., attachment). Every electron, during its
transit in the gas, performs a succession of free flights
punctuated by elastic, inelastic, or superelastic collisions
with molecules of gas defined by collision cross sections.
During the successive collisions for every electron, cer-
tain information (velocity, position, etc.) is stored in or-
der to calculate, from appropriate sampling methods, dis-
tribution functions and transport coefficients. The simu-
lation is stopped when all the primary electrons as well as
the secondary electrons (created, for example, by ioniza-
tion) are treated.

The flow chart of Monte Carlo method described here-
after is shown in Fig. 1. As it can be seen, after
definitions of the simulation parameters, the gas, and the
initial conditions, it is necessary to know first the time of
free flight.

A. Time of free flight # ;.

The time of free flight is calculated by using the null
collision method initially developed by Skullerud [2] for
simulation of ion motion in gases and then used by
numerous authors [3]:

In(7gigpn, )
g =~ <1>
Utot

where 7y, is a random number uniformly distributed in
the [0,1] range and v, is the total collision frequency in-
cluding total electron-molecule collision frequency v and
a null collision frequency v,,; chosen in order to have al-
ways v, constant:

Vit =V F v =const . (2)

null

B. Trajectory between two successive collisions

The trajectory between two successive collisions is ob-
tained from the classical mechanic equations. In the
framework of this paper, the electric field accelerating
electrons (with charge —e, mass m, position r, and veloc-
ity v) is assumed to be antiparallel to the z axis. Under
these conditions, the components v,,, v,;, and v,, in the
laboratory frame of velocity v,(z,) at time ¢, at the end of
the free flight can be written as a function of velocity
vo(Zo) (at initial time ¢, and with components v,q, V0,
and v, in the laboratory frame). Then, new coordinates
ri(x,y1,z;) of electron at time ¢, can be calculated from
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coordinates ry(X,¥0,2o) Of an electron at time #;:
X1 =XotVxolgight »

Y1=YotVyolsignt » (3)

_ 1 €E; ,
2, =2yt Vol ight T ?_’n_tﬂight >
with tgn =1, — 1.

So, starting from the electron parameters #g,v, Ty at
the beginning of the free flight, the new electron parame-
ters t,,v,,r, at the end of the free flight are obtained, re-
spectively, from relations (1) and classical mechanic
equations. Then just after collision occurring at time ¢,
electron parameters become t},v},r;. However, it is
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FIG. 1. Flow chart for Monte Carlo simulation of electron
swarm motion in a gas under action of an accelerating electric
field E (velocity v,,, position r,,, and time ¢,,, correspond to
the possible limits of the simulation domain: see Sec. II for an
explanation of the other notations used).
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necessary to calculate only electron velocity v because
the electron-molecule interaction is assumed to be instan-
taneous (¢} =¢,) and local (rj=r,). In order to calculate
the velocity v}, it is necessary to know the collision type.

C. Type of collision

The collision type necessitates knowledge of the likeli-
hoods (pcol,el’ Pcol,in» Peol,sups OT pcol,null) of the occurrence
of every collision kind (elastic, inelastic, superelastic, or
null):

_ Vel _ Vin
DPeolel — > Pcoljin— ’
Utot tot
(4)
_ Uswp _ Vna
pcol,sup - " ’ pcol,null - v

tot tot

with
Peol,el +pcol,in +pcol,sup +pcol,null =1.

In fact, collision frequencies for the different processes
(V15 Vin» Vsup ) depend on the relative velocity v, before the
collision, which is defined as v,=|v,—V,|; V, is the
known velocity of target molecule having a Maxwellian
distribution.

The collision type is then determined from a random
number r., uniformly distributed between 0 and 1.
Several types of collision are possible: (i) if it is a null col-
lision, velocities before and after the collision are the
same; (ii) if it is, for instance, an attachment, the next pri-
mary electron is treated; and (iii) if it is another real col-
lision, the velocity v after interaction depends on the
collision type; the components of electron velocity v are
given hereafter.

D. Velocity v after a real collision

Let m and M be electron and molecule masses, v, and
V, their respective velocities in the laboratory frame be-
fore the collision, and v and V| after the collision. Un-
known velocities ¥; and V| can therefore be determined
from the classical conservation equation of momentum
transfer, yielding

., M l+mv1+MV1 (52)
oMY T M a
m mV1+MV1
Vi=— 5
T AMY T T M (55)

Of the right-hand term of relations (5), only the velocity
(mv,+MV,)/(m +M) of the center-of-mass frame is al-
ready known. The unknown vector v, (v,=v{—V}])
represents the relative velocity after the collision. The
modulus v, and the direction of vector v, are given here-
after.

The relative speed v,, which is obtained from the clas-
sical conservation equation of total energy, depends on
collision type. For an elastic collision

"=y . (6a)

r r

For an excitation of rotational, vibrational, or optical lev-
el from the lower level i with potential energy ¢; to the
upper level j with energy €;

172

vi= |vi— —Z—Asﬁ (6b)

1,

For a superelastic processes corresponding to deexcita-
tion from the upper level j with potential energy €; to the
lower level i with energy €;

5 172
v, = v3+—A£ﬁ (6¢)
u, is the reduced mass: pu,=mM/(m+M), and
Agj;=¢g; ;.

Then the knowledge of the scattering angle y and the
azimuthal angle 7 can give the direction of the vector v,
in the center-of-mass frame. The deflection angle Y, be-
tween the relative velocity v, before and v, after a col-
lision, varies between O and 7. It depends on the
differential cross section o(v,Y) and is determined from a
uniform random number 7, belonging to the [0,1] range:

fﬂxo( v, X' )siny'dy’
r,=—L .
o [Totv,x)siny'dy’

0
When an isotropic scattering is assumed, this relation be-
comes cosy =1—2r,. The azimuthal angle 7 can be also

assumed to be uniformly distributed in the [0,27] range
and is calculated from a uniform random number 7,

(7a)

n=2mr, . (7b)

So, as the relative speed v, is determined from relations
(6) of the conservation of total energy and the y and 7 an-
gles from relations (7), the vector v, is therefore com-
pletely defined in the center-of-mass frame. But in rela-
tions (5), the vector v, is needed in the laboratory frame;
such a transformation is undertaken using the classical
Euler relations

’

v, =v,(—siny sin7 sing, +siny cosn cosf,cosd,

~+cosy sinf,cos¢, ) ,
v,, =v,(siny sinn cos$, +siny cosn cosb,sind,

+cosy siné,sing, ) ,

v, =v,(—siny cosn sind, +cosy cosb, ) ,

where 6, is the polar angle and ¢, the azimuthal angle in
the laboratory frame of vector v,. Then, from relation
(5a), it is possible to calculate electron velocity v} in the
laboratory frame without neglecting, as usual the velocity
V, of target molecule; the vector V, is of course com-
pletely defined because the distribution of background
molecular gas is a known Maxwellian. Noting that if the
target molecule is considered to be at rest (V;=0) and m
negligible in comparison to M (i.e., m +M = M), relations
(5a) and (6) reduce to the classical relations usually used
in the literature for collision treatment in Monte Carlo
method.
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Concerning ionization processes, the previous relation
(6b) used for excitation processes is still valid, but is not
necessary. The reason is that ionization processes involve
generally an energy amount much higher than the energy
gas, so that the assumption of a background molecule at
rest can be considered as a good approximation. Follow-
ing this approximation, the residual energy, after a simple
ionization process with threshold ¢,,,, is shared between
scattered (€}) and ejected (g,;) electrons following the re-
lation &} +€,;=1mvi—g;,. The energy sharing depends
on the knowledge of the differential ionization cross sec-
tion o;,,(€,€). As ejected and scattered electrons are not
discernable, the energy of one of the two electrons (eej,
for instance) can be obtained from a uniform random
number r;,, from

€j
fn Oionl(€p,E)dE

ion

r

o ion( € ) ’

where o;,,(€,) is the integral ionization cross section and
€, the incident energy (g;=1m v3). The scattered elec-
tron, after an ionizing collision, is then deflected follow-
ing an angle Y, assumed to be isotropic, and the ejected
electron is deflected following an angle }’, assumed to be
orthogonal to the y direction (Y'=y+7/2). Previous re-
lations give the components of the velocity vectors of
scattered v) (v,X,7) and ejected v,;(v,;, X', 1) electrons
in the center-of-mass frame. The corresponding com-
ponents in the laboratory frame are then determined us-
ing the classical Euler transformation, which can be writ-
ten in the case of, for example, the scattered electron with
velocity v.

v =v{( —siny sin7) sing, +siny cosn cosf,cos¢d,
+cosy sinf;cosg,) ,
v e . .
vy =v(siny sin7 cosé, +siny cosn cosb;sing,

+cosy sinf;sing,) ,
v,; =v( —siny cos7 sinf; +cosy cosb,) ,
where 0, is the polar angle and ¢, the azimuthal angle in
the laboratory frame of the incident vector v,.

E. Distribution functions and transport coefficients

From previous relations, it is possible to calculate elec-
tron parameters ¢, v, and r for every collision. These
then enable the determination of electron distribution
functions and transport coefficients (swarm parameters
and reaction rates) from an appropriate sampling
method.

In the case considered in this paper of an electric field
antiparallel to z axis, the electron distribution function
f(t,v,z) can be decomposed (due to the symmetry revolu-
tion around the z axis) in series of polynomial Legendre
P;(cos@), where 0 is the angle between electron velocity v
and direction of electric field acceleration:

flt,v,z)=7 ¢,(t,v,z)P;(cosh) , (8)
0
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#,(t,v,2), representing the isotropic part (/=0) and suc-
cessive anisotropies (I >0) of the distribution function
f(t,v,2), is directly obtained from a Monte Carlo simula-
tion similarly to Penetrante, Bardsley, and Pitchford [4].
In other words, the energy € domain [0,€,,], where € is
the electron incident energy (e= 7mv2) and €, its max-
imum value, is first divided into nv regular intervals:
[0,€max ) =[€0=0s€1s - -+ s €4 —1 € Bk +1> -+ - Eny  —Emax]
with constant energy step Ae=¢, ., —¢€;. Then a discrete
function ®,(t,€; 4 ,2) is defined such as

"j n,-
D,(t,6441,22)= 3 3, 8(g;)P)(cosb;;) , 9)
j=ti=1
with 8(g;;)=1 if g, <g;; <g; 4+, and 8(g;;)=0 elsewhere;
the indices i and j correspond to electron number j just
before undergoing collision number i. n; is the collision
number per electron at time ¢ and in the plane z and n;
the number of corresponding electrons. The isotropic
part @y(t,€,2) of the distribution function and anisotropy
#,(t,v,z) of order I can then be obtained from the follow-
ing relation [4]:

2041 Pilt,8411,02)

\/Ek+1/2

¢[(t,8k+1/2,z)= ’ (10)

n,(t,z)

where n,(t,2) is the electron number density used as nor-
malization quantity for the distribution function
Gi(t,€4 41/22)-

Concerning transport coefficients such as drift velocity
W, longitudinal D; or transverse Dy diffusion
coefficients, mean energy (&), ionization (v,) or at-
tachment frequency v, ), etc., they are then calculated
using a statistical mean based on conventional formulas.
For instance, the time evolution of transport coefficients
is obtained by first discretizing the time domain [0,7,, ]
in nt regular intervals: [0,z . ]=[t,=0, ¢;,...
with constant time

’ t m-—1
by Ematse ooty =lmax) step
At=t, 1 —t,.

Then the relations for transport coefficients such as
(e), W, {v,,,), or {v,,) can have the following form in

each time step (¢, 1 —¢,,):

1 im+1/2 1 im+1/2
(&) ps1p= Eijm+1/2 >
Rim+172  j=1 Mim+12 i=1
(11a)
1 Pim+1/2 1 Bim+1/2
Wot12= I Vaijm+1/2
Nim+172  j=1 Mim+172 =1
(11b)
<Vionoratt>m+l/2
= 1
~ Ytot
nim+172
Rim+1/2 1 Bim+1/2
X z 2 nionoratt,ij,m+l/2 .
j=1 Mim+12  i=1

(11c)
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€jm+1s2and v, ;. 4y, correspond to the kinetic energy
and the velocity component along the z axis of electron
number j undergoing collision number i in the interval
[tmstm+1], While Rign i1 OF Ny jmi1s) is the
number of ionizations (or attachments) per electron in the
same time interval and total collision frequency v, is al-
ready defined in relation (2). n;, ., represents the elec-
tron number counted in the time interval [7,,,¢,, ;] and
n; m +1,2 the number of collisions undergone by electron j
in the same time interval.

Previous relations (11) give the time dependence of
macroscopic coefficients, while their space dependence,
along the z axis, for example, can be obtained by discre-
tizing the space domain [0,z,,,] in nz regular intervals:
[Orzmaxlz [20 =O,Zl, s Zg— l,zs’zs+l’ s Zyg :zmax]
with constant space step Az=2z; . | —z,. Then space vari-
ation of, for example, mean energy {e),,,,, in each
space step z, —z, is obtained from

1 Mis+1/2 1 Mis+1/2

(e)s412= > >

Ris+172 j=1 Mis+12 (=1

Eijs+1/2
(12)

where €;; ., is the kinetic energy for an electron num-
ber j undergoing collision number i in the space interval
(25,2, +1], while n;; ,,,, represents the electron number
counted in the interval 2,2z, ] and n; ; .|/, the collision
number undergone by the electron j in the same space in-
terval.

ITI. RESULTS AND DISCUSSIONS

In Secs. III A and III B, calculations of distribution
functions and transport coefficients are carried out in
molecular gases (H,0) and atomic gas (He) chosen in or-
der to check first the validity of the present Monte Carlo
method and then to give insight into electron swarm data
in the case of dominant low E /N collisional processes
(i.e., thermal motion of target, inelastic, and superelastic
collisions). Section III C is devoted to the case of strong-
ly attaching gases.

The set of electron-He cross sections is taken from the
literature (see, e.g., [5]). Collision cross sections chosen
for H,O are already partly fitted elsewhere [6] by com-
paring measured and calculated transport coefficients us-
ing a multiterm Boltzmann equation solution [8]. This
set of electron-H,O cross sections includes elastic
momentum transfer, excitations of ten rotational, two vi-
brational, and nine optical levels, and also ionization and
attachment processes. Each electron-molecule collision
cross section o ;;(€) for deexcitation (superelastic process-
es) through the upper level j to the allowed lower level i is
determined from the excitation cross section o;;(€) by us-

ij
ing the well known principle of detailed balance (see, e.g.,

[9):

g; et+Ag;

o 2 o;(et+Ag;),

Ji

E = —

&j
where g; and g; denote the statistical weight of the levels
i and j, respectively [Ag;; is already defined in relations
(6)].

A. Zero-field electron swarm results

Probably one of the most convincing validity tests of
the treatment of low energy electron-molecule collisions
with the Monte Carlo method is to determine distribution
functions and transport coefficients under zero-field con-
ditions. Indeed, for an electron swarm or beam released
(with known initial energetic and angular distributions)
through a gas under zero-electric field conditions, it is
well established that this electron swarm relaxes after a
greater or lesser period of time (depending on initial con-
ditions and background gas) towards an equilibrium dis-
tribution, whatever the initial distribution or the nature
of the background gas [10]. Such an equilibrium is obvi-
ously characterized by a classical behavior: the electron
distribution function becomes Maxwellian at the back-
ground gas temperature, there is no more electron drift,
and diffusion becomes completely isotropic (i.e., longitu-
dinal and transverse diffusion coefficients are identical).

Such a behavior is perfectly illustrated in Figs. 2(a) and
2(b) showing electron mean energy, drift velocity, and
also longitudinal and transverse diffusion coefficients in
the case of an energetic electron swarm released in H,0
background gas. Figure 2(a), showing an electron mean
energy which relaxes towards gas energy whatever the in-
itial electron energy (lower or higher than gas energy),
corresponds to a long time scale. In Fig. 2(b), corre-
sponding to shorter time scale, electrons emitted along
the forward direction, after a relatively few collisions,
lose their initial anisotropic angular distribution so that
the initial directed velocity becomes rapidly negligible.
In this short time scale, the longitudinal diffusion
coefficient, after an overshoot effect due to the anisotropy
of the initial distribution, tends towards transverse
diffusion. Figure 3 shows another validity test corre-
sponding to the zero-field electron mean energy in He
calculated with and without including the thermal
motion of background gas. Figure 3 clearly illustrates
the consequence for assuming a target at rest since the
electron mean energy tends towards zero energy instead
of to gas energy (i.e., 3k7). These results, completed with
further validity tests not reported in this paper and un-
dertaken in other gases, give us a good reliability con-
cerning the Monte Carlo method described in Sec. II for
the treatment of low energy collision processes (energy
exchange during elastic, inelastic, and superelastic col-
lisions).

B. Low E /N electron swarm results

Figures 4(a) and 4(b) show the electron mean energy
(e) and drift velocity W as a function position z along
the direction of the electric field acceleration in the case
of two relatively low E /N values [31 and 93 Td (10717v
cm?)] background gas. Such Monte Carlo calculations,
which can correspond to the simulation of the classical
steady-state Townsend experiment (see, e.g., [8]) are un-
dertaken with and without including the effects of supere-
lastic collisions in order to emphasize the influence of
these low energy processes on electron transport. So,
starting from the cathode (z =0) with an initial mono-



49 MONTE CARLO SIMULATION OF ELECTRON SWARMS ...

kinetic energy (0.038 eV) along the forward direction,
electrons are accelerated by the electric field and undergo
collisions with the background gas at the same time.
Then, after a certain interelectrode distance, where an
equilibrium between collisions and electric field can be (or
not) reached depending on discharge conditions, elec-
trons arrive at the anode (assumed to be completely ab-
sorbing), which breaks down the eventual equilibrium
phase.

For E /N =31 Td [Fig. 4(a)], after a short nonequilibri-
um distance near the cathode, W and (&) reach their
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FIG. 2. (a) Zero-field electron mean energy in H,O for p =1
Torr and T =300 K in the case of two initial electron beam en-
ergies g, distributed along the forward direction: (..A..A...)
€=0.01eVand(..+..+...) g,=0.2 eV. (b) Zero-field directed
velocity W(— — —) and longitudinal ND; (- - . .) and trans-
verse NDy (— — —) diffusion coefficients in H,O for p =1
Torr, T=300 K, and an initial electron beam with energy
£0=0.2 eV distributed along the forward direction.

3269

equilibrium values, which are not the same, according to
whether superelastic collisions are considered or not.
Naturally, when superelastic collisions are not included
in Monte Carlo simulation, the mean energy values are
not realistic (lower than gas energy) and the drift velocity
is overestimated because, as is known, superelastic col-
lisions which increase the total frequency collision lead to
a more isotropic electron swarm and therefore to a lower
drift velocity. For E/N =93 Td [Fig. 4(b)], electron
transport cannot really reach an equilibrium regime since
more particularly the mean energy continually increases
from the cathode until the anode; however, this slope,
which is perturbed by the electrode effect, increases faster
near the anode. This is due to the gap distance (0.5 cm
for 1 Torr gas pressure) chosen not large enough to en-
able an equilibrium regime for electron mean energy.
However, the drift velocity, which has a momentum ex-
change time shorter than its energy exchange time (e.g.,
Kunhardt, Wu, and Penetrante [11]) reaches an equilibri-
um value during a short distance (from about 0.2 up to
0.35 cm) before being perturbed by the presence of the
anode. In these cases, the influence of superelastic col-
lision is also not negligible.

Figure 5 shows longitudinal D; /u (u is electron mobil-
ity) and transversal Dy /u characteristic energies in H,O
as a function of E/N. D; /u and Dy /p values are ob-
tained in the case of an unbounded system (i.e., electrons
are assumed quite far from electrodes and sources) when
the memory of the initial conditions of electrons is lost.
This means that these Monte Carlo calculations corre-
spond to the simulation of the classical time of flight ex-
periment (see, e.g. [8]), which give us the usual hydro-
dynamic swarm parameters such as drift velocity,
diffusion coefficients, and reaction rates. In Fig. 5, the
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FIG. 3. Zero-field electron mean energy in He for p =1 Torr,
T =300 K, and an initial electron beam energy €,=0.1 eV dis-
tributed along forward direction: (..+..+...) including
thermal motion of targets and (..A. . .A...) target assumed to
be at rest.
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D, /p and Dy /u data, calculated from two different sets
of H,O cross sections (Yousfi and co-workers [6] and
Hayashi [7]), are compared to measurements (Ref. [12]
for D; /u and Ref. [13] for Dy /u). It should be known

that the main differences between the two cross section
sets are situated in the low kinetic energy range:
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FIG. 4. (a) Variation between cathode (z=0) and anode
(z=0.1 cm) of electron mean energy ( and - - - .) and
drift velocity (— — — and —.-) in H,O for p =1 Torr, T =300
K, V,=1V, and an initial low energy electron beam (g,=0.038
eV) emitted at the cathode along the forward direction with and
without including superelastic collisions: with ( ),
(= — =) and without ( . . .), (-.-). (b) Variation between
cathode (z =0) and anode (z =0.5 cm) of electron mean energy
( and ...) and drift velocity (— — — and -.-) in H,O for
p=1Torr, T=300K, V,=5V, and an initial low energy beam
€0=0.038 eV) emitted at the cathode along the forward direc-
tion with and without including superelastic collisions: with
( ), (— — —) and without (- - - .), (-.-).
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— — —) characteristic energies in H,O for T=294 K. Sym-
bols: measurements (+, Wilson et al. [12]; A and O, Elford and
co-workers [13]). Lines: Monte Carlo simulations using Yousfi
and co-workers [6] cross sections (- - - - and — — —) and
Hayashi [7] cross sections (- - - - and — — —) (eD/u data are
multiplied by 10).

Hayashi’s set does not include rotational excitation cross
sections (i.e., for energy range from about 1073 eV up to
107! eV), which are correctly considered in the set of
Yousfi and co-workers (see also Ness and Robson [14]).
In fact, at the low energy range, classical crossed beam
experiments for cross sections measurements are not reli-
able enough due mainly to the difficulty of maintaining
low energy beams. So it is usual in that case to confirm
the calculated cross sections (using the Born approxima-
tion for H,O rotational cross sections) by comparing cal-
culated and measured swarm parameters. It is thus easy
to observe in Fig. 5 the good agreement between mea-
surements and Monte Carlo calculations using H,O set of
cross sections taken from Yousfi and co-workers [6] and
the rather great sensitivity of electron swarm parameters
(about 50% of deviation) due to the difference between
cross sections at low kinetic energy dominated by rota-
tional excitation, superelastic collisions, and also energy
exchange and thermal motion of molecules which are
properly considered in present Monte Carlo method.

C. Low E /N swarm parameters
in strongly electronegative gases

It is known that the electron distribution function and
swarm parameters are calculated from the Monte Carlo
method by following seed electrons from initial condi-
tions until they vanish either by collisions (e.g., attach-
ment) or by passing beyond the limits of the simulation
domain (arrival at anode or reaching maximum time al-
lowed for simulation, etc.).
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At low E /N values in gases such as SF, having high
attachment cross sections at low energy (for reaction
e +SF¢—SFg ), most seed electrons, after a few free
flights, can be attached. In this case, the classical Monte
Carlo simulation is not able to calculate hydrodynamic
electron swarm parameters with enough precision. This
corresponds to the case where electron current measured,
for example, using the classical time resolved experiment
(see, e.g. [18]), which is too low to be accurate.

At very E /N values, the Monte Carlo simulation can
be completely stopped as all seed electrons are attached
to SF¢. Under the same conditions, there is no arrival of
electrons at the anode in swarm experiments. In that
case, it is known that swarm experiments are undertaken
not in pure SF, but in gas mixture including a buffer gas
(e.g., N,) and a small admixture of SFq.

In this section, an improved Monte Carlo method is
proposed (see Yousfi and Hennad [15]) in order to obtain
swarm parameters with a better accuracy in the first case
(low E /N values). It is based on an additional fictitious
ionization process with a constant ionization frequency
Vgic,ion» Which artificially increases the number of simulat-
ed electrons. Therefore, the total collision frequency v,
defined by relation (2) becomes v, =v+v,;+ Vg ion
=const. The collision probability of this new fictitious
Process is Py fic.ion — Vfic,ion /Vtot- Lhen, for every ficti-
tious ionization collision a new electron is created. In
that case, the primary (or scattered) and new (or ejected)
electrons are not deflected during this fictitious ionization
and both keep the velocity of the incident electron. As
all electrons (primary or secondary created either by real
ionization or fictitious ionization) are treated, the elec-
tron distribution, density, and swarm parameters thus ob-
tained are those of the fictitious gas (including the addi-
tional ionization process). Therefore, the problem is to
calculate the electron swarm data for the real gas. In the
case of spatially infinite medium, it is easy to establish a
simple relation between the electron distribution function
Sr(v,1) of the fictitious gas and f(v,?) of the real gas:

fvt)=fp(v,ne "o’ (13)

A similar relation can be written between electron num-
ber density n,(z) of the fictitious gas and n (¢) of the real
gas:

n()=ny(te "’ (14)

Therefore, Monte Carlo calculations will be performed in
the fictitious gas including the additional ionization pro-
cess in order to overcome the problem of the extensive
vanishing of seed electrons due to the strong attachment
processes. This leads to the calculation of the electron
distribution function f, and the density n s of the ficti-
tious gas. Then the distribution function f and the num-
ber density n of the real gas will be deduced using rela-
tions (13) and (14).

In the following this improved Monte Carlo method is
applied to SF¢ at low E /N values. Collision cross sec-
tions of SF¢ are taken from Phelps and Van Braunt [16]
for excitation processes and from Yousfi [17] for the oth-
er collision processes (elastic momentum transfer, attach-

ment, vibration, and ionization). Monte Carlo calcula-
tions are performed in the case of an unbounded system
(i.e., 8/0r=0) for which relations (13) and (14) are valid
and which corresponds (when the memory of initial con-
ditions is lost) to the simulation of classical time of flight
or time resolved swarm experiments (see, e.g., [8]).

Figure 6 shows the electron drift velocity and the mean
energy in SF¢ for E/N =10 Td [Fig. 6(a)] and 2 Td [Fig.
6(b)] with and without using fictitious ionization. The
chosen initial energy distribution is monokinetic along

2 ITTIIIIII[IIII]IIIT—[IIII
- (0)—
U
\
£
wn
+
(0]
T 1
>
[1)]
N
W
0 -~'i'.'-1".‘1[|||Lll|1|:"'l.|1-:n5:1||1|:';11
0 10 20 30 40 50
t (ns)
Z IIIII!IIIIlllllllllllll(t;)-
0
\ 1
£
n
+
O
= o
> - 4
0 r 1
« -1 F —
_.2 -lllllllllllllllllllllilll_
0 10 20 30 40 50
t (ns)
FIG. 6. (a) Electron mean energy (— — —) and drift velocity
(- - - -) in SF¢ with ( ) and without (— — — and - - - .)

fictitious ionization: E/N =10 Td, 5000 seed electrons, initial
electron beam with 2 eV emitted along the forward direction
and v jon =2X 108 s™1. (b) Electron mean energy (— — —) and
drift velocity (- - - -) in SF¢ with ( ) and without (— — —
and - - - .) fictitious ionization: E/N =2 Td, 10000 seed elec-
trons, initial electron beam with 1 eV emitted along the forward
direction and vy ;o =3X 108571
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the forward direction and the number of seed electrons
considered for the simulation is 5000 for 10 Td and
10000 for 2 Td. Starting from their initial values, energy
and drift velocity relax towards their equilibrium values
in both cases (i.e., with and without using fictitious ion-
ization). However, the statistical fluctuations are far
from negligible when the fictitious ionization is not used
to improve Monte Carlo results. It is to be noted that,
due to the large fluctuations, the drift velocity can be-
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FIG. 7. (a) Reduced electron number density n(¢)/n(0) in
SF¢ with ( ) and without (- -) fictitious ionization and also
ne(t)/n(0) (- . . .): E/N =10 Td, 5000 seed electrons, initial

electron beam with 2 eV emitted along the forward direction,
and vg ;op =2X 108 s71. (b) Reduced electron number density
n(t)/n(0) in SF¢ with ( ) and without (- -) fictitious ion-
ization and also n,(¢)/n(0) (- - - .): E/N =2 Td, 10000 seed
electrons, initial electron beam with 1 eV emitted along the for-
ward direction, and vg jo, =3X 108 57!

come negative for a lower E /N value (2 Td) while the im-
proved Monte Carlo method avoids this problem [see
Fig. 6(b)]. As expected, statistical fluctuations are more
pronounced in the case of the drift velocity, which is a
statistical mean only of component v, of the velocity
along the z axis [see relation (11b)], contrary to the mean
energy value, which is an average of the square of the
three components v,, v,, and v, [see relation (11(a)].
Thus, for the same number of collisions, the electron
mean energy is necessarily more accurate than the drift
velocity. Furthermore, the choice of the collision fre-
quency vg. ;,, of the fictitious ionization depends on E /N
values. As the E /N value decreases, the attachment
efficiency in SF¢ increases (see, e.g., the time resolved
measurements of the attachment coefficients in SF¢ of As-
chwanden [18]), thus necessitating a larger value of vy ;,,
in order to compensate for the vanishing of seed electrons
by attachment. For example, the chosen values of vg o,
are 2X10% s7! for E/N=10 Td and 3X10® s™' for
E/N =2Td.

Figures 7(a) and 7(b) show the electron number densi-
ties n(¢) and n,(t) [see relation (14)] in SF¢ including the
additional fictitious ionization process for E /N =10 and
2Td. The electron number density calculated without in-
cluding fictitious ionization is also shown in these figures.
First, the electron number densities calculated with and
without using fictitious ionization are, as expected, in
good agreement. Concerning the fluctuations, a similar
behavior to the swarm parameters shown in Fig. 6 is ob-
served. Indeed, the density calculated with the classical
Monte Carlo method shows statistical fluctuations due to
the decrease of electron number density. For a lower
E /N value [Fig. 7(b)], the decrease of the number density
n(t) is more pronounced due to the higher attachment
efficiency. Figure 7 also shows the density n,() calculat-
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ed with the improved Monte Carlo method using ficti-
tious ionization. In fact, the density n ¢(2) varies follow-
ing the relation n f(t)=n(0)e(vﬁ°‘i°“ 't where (v,,)
is the macroscopic attachment frequency of real gas
(SF,), already defined in relation (11c).

Therefore, for a given E /N value, it is better to choose
a Vg o, value higher than the attachment frequency
(v, to be sure to compensate for electron attachment
efficiency. Such a choice is illustrated in Fig. 8, showing
the time evolution of the attachment frequency (v,,)
compared to fictitious ionization frequency in SF, for
E/N=10 Td. In that case [i.e., Vg ion— (V) (2)>0],
the density n,(¢) increases as time evolves, as is shown in
Fig. 9. The distribution function f(v,t) or the density
n(t) [deduced from relation (13) or (14)] and other elec-

tron swarm parameters are therefore obtained with better
accuracy.

In conclusion, it is to be noted that the present Monte
Carlo method is well adapted for the low E /N cases since
the dominant collision processes (elastic including energy
exchange and thermal motion of gas, inelastic and su-
perelastic) are properly taken into account. This method
is also adapted for the cases of strongly electronegative
gases such as SF4 by using an additional fictitious ioniza-
tion process with constant collision frequency.
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