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the theory for the effects of resolution, i.e. the response function or matrix (see
below), may no longer be available. If a particularly important measured dis-
tribution is to retain its value, then both the measurement and the response
matrix should be preserved. Unfortunately, this is often impractical, and it is
rarely done.

By unfolding the distribution one provides a result which can directly be
compared with those of other experiments as well as with theoretical predictions.
Other reasons for unfolding exist in -applications such as image reconstruction,
where certain features may not be recognizable in the uncorrected distribution.
In this chapter we will assume that these arguments have been considered and
that the decision has been made to unfold.

11.1 Formulation of the unfolding problem

Consider a random variable z whose p.d.f. we would like to determine. In this
chapter we will allow for limited resolution in the measurement of z, as well as
detection efficiency less than 100% and the presence of background processes.
As an example, we could consider the distribution of electron energies resulting
from the beta decay of radioactive nuclei, i.e. the variable z refers to the energy
of the emitted electron.

By ‘limited resolution’ we mean that because of measurement errors, the
measured values of ¢ may differ in a random way from the values that were
actually created. For example, a particular beta decay may result in an electron
with a certain energy, but because of the resolution of the measuring device, the
recorded value will in general be somewhat different. Each observed event is thus
characterized by two quantities: a true value y (which we do not know) and an
observed value z.

In general one must also allow for the occurrence of a true value that does not
result in any measured value at all. For the example of beta decay, it could be
that an emitted electron escapes completely undetected, since the detector may
not cover the entire solid angle surrounding the radioactive source, or electron
energies below a certain minimum threshold may not produce a sufficiently large
signal to be detected. The probability that an event leads to some measured
value is called the detection efficiency! &(y), which in general depends on the
true value of the event, y.

Suppose the true values are distributed according to the p.d.f. firue(y). In
order to construct a usable estimator for firue(y), it is necessary to represent it
by means of some finite set of parameters. If no functional form for firue(y) is
known a priori, then it can still be represented as a normalized histogram with
M bins. The probability to find y in bin j is simply the integral over the bin,

!If the reason that the event went undetected is related to the geometry, e.g. limited solid
angle of the detector, then the efficiency is often called acceptance. The term efficiency is
sometimes used to refer to the conditional probability that an event is detected given that it is
contained in the sensitive region of the detector. Here we will use efficiency in the more general
sense, meaning the overall probability for an event to be detected.
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Pj == fti'ue(?}) dy. (11‘1)
bin j

Suppose we perform an experiment in which a certain total number of events
Mot occur; this will differ in general from the number observed. The number
Mot could be treated as fixed or as a random variable. In either case, we will
call the expectation value of the total number of events piyor = E[miot), so that
the expected number of events in bin j is

Hi = Htot Pj- (11.2)

We will refer to the vector g = (py,...,upn) as the ‘true histogram’. Note
that these are not the actual numbers of events in the various bins, but rather
the corresponding expectation values, i.e. the p; are not in general integers. One
could, for example, regard the true number of events in bin 7 as a random variable
m; with mean p;. Because of the limited resolution and efficiency, however, m;
is not directly observable, and it does not even enter the present formulation of
the problem. Instead, we will construct estimators directly for the parameters
Hi.

For reasons of convenience one usually constructs a histogram of the observed
values as well. Suppose that we begin with a sample of measured values of z, and
that these are entered into a histogram with N bins, yielding n = (n1,...,nxn).
These values could also be sample moments, Fourier coefficients, etc. In fact, the
variable  could be multidimensional, containing not only a direct measurement
of the true quantity of interest y, but also correlated quantities which provide
additional information on y.

The number of bins N may in general be greater, less than, or equal to
the number of bins M in the true histogram. Suppose the ith bin contains n;
entries, and that the total number of entries is ) ; n; = nio¢. It is often possible
to regard the variables n; as independent Poisson variables with expectation
values ;. That is, for this model the probability to observe n; entries in bin i is
given by

2
P(ni;v) = +—— £
;!

(11.3)

Since a sum of Poisson variables is itself a Poisson variable (cf. Section 10.4),
ntot will then follow a Poisson distribution with expectation value vy = 3, v;4.
We may also consider the case where ni.: is regarded as a fixed parameter, and
where the n; follow a multinomial distribution. Whatever the distribution, we
will call the expectation values

vy = E[ni] (11.4)
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The fqrm of the probability distribution for the data n = (ny, ..., ny) (Pois-
son, multinomial, etc.) will be needed in order to construct the likelihood func-

tion, used. in unfolding methods based on maximum likelihood. Alternatively, we
may be given the covariance matrix,

Vi; = covngngl; (11.5)

which is needed in met.hods based on least squares. We will assume that either
the form of the probability law or the covariance matrix is known.

By using the law of total probability, (1.27), the expectation values v; = E[n;)
can be expressed as

Vi = [fitor P(event observed in bin i)
= for / dop observed | true value y and
in bin ¢ event detected €(y) frrue (y)

= Htot /bmi dz /dys(x{y)s(y) Feruall)- (11.6)

Here s(z|y) is the conditional p.d.f. for the measured value z given that the
true va'lue was y, and given that the event was observed somewhere, i.e. it is
normalized such that [ s(z|y)dz = 1. We will call s the resolution function or in

1magi.ng applications the point spread function. One can also define a response
function,

r(zly) = s(zly) e(v), (11.7)

w}ﬁch gives the probability to observe z, including the effect of limited efficiency
given that the true value was y. Note that this is not normalized as a conditionai
p.d.f.'for z. One says that the true distribution is folded with the response
function, 'and thus the task of estimating fi . is called unfolding.

Breaking the integral over y in equation (11.6) into a sum over bins and

mul?iplying both numerator and denominator by H;, the expected number of
entries to be observed in bin ¢ becomes

v; = i fbin’i dz fbinj dys(a:‘y) 6(3/) ftrue(y)
j=1 (/‘j /Ntot) Hi
M
= ZlRfj Hi» (11.8)
J=

where the response matrix R is given by
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fbinz’ dz .fbm i dy S(ﬂy) 5(9) ftrue (y)
Join j €Y ferue(y)

P(observed in bin i and true value in bin j)
P(true value in bin j)

= P(observed in bin ¢|true value in bin j). (11.9)

The response matrix element R;; is thus the conditional probability that an event
will be found with measured value & in bin i given that the true value y was in
bin j. The effect of off-diagonal elements in R is to smear out any fine structure.
A peak in the true histogram concentrated mainly in one bin will be observed
over several bins. Two peaks separated by less than several bins will be merged
into a single broad peak.

As can be seen from the first line of equation (11.9), the response matrix
depends on the p.d.f. firue(y). This is a priori unknown, however, since the goal
of the problem is to determine firue(y). If the bins of the unfolded histogram
are small enough that s(z|y) and £(y) are approximately constant over the bin
of y, then the direct dependence on firue(y) cancels out. In the following we
will assume that this approximation holds, and that the error in the response
matrix due to any uncertainty in firue(y) can be neglected. In practice, the
response matrix will be determined using whatever best approximation of firue (V)
is available prior to carrying out the experiment.

Although s(z|y) and £(y) are by construction independent of the probability
that a given value y occurs (i.e. independent of firue(y)), they are not in general
completely model independent. The variable y may not be the only quantity
that influences the probability to obtain a measured value z. For the example of
beta decay where y represents the true and z the measured energy of the emitted
electron, s(z|y) and £(y) will depend in general on the angular distribution of the
electrons (some parts of the detector may have better resolution than others),
and different models of beta decay might predict different angular distributions.

In the following we will neglect this model dependence and simply assume
that the resolution function s(x|y) and efficiency e(y), and hence the response
matrix R;;, depend only on the measurement apparatus. We will assume in fact
that R can be determined with negligible uncertainty both from the standpoint
of model dependence as well as from that of detector response. In practice, R is
determined either by means of calibration experiments where the true value y is
known a priori, or by using a Monte Carlo simulation based on an understanding
of the physical processes that take place in the detector. In real problems the
model dependence may not be negligible, and the understanding of the detector
itself is never perfect. Both must be treated as a possible sources of systematic
€rror.

Note that the response matrix R;; is not in general symmetric {(nor even
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square), with the first index i = 1,..., N denoting the bin of the observed
histogram and the second index j = L,..., M referring to a bin of the true
histogram. Summing over the first index and using [ s(z|y)dz = 1 gives

N

- ey fbinidx fbinj dy S(xly) g(y) ftme(y)
; i = 2 (3 ivor)

fbinj dy&'(y) ftrue(y)
fbinj firue(y) dy

= gy, (11.10)

1.e. one obtains the average value of the efficiency over bin j.

In addition to limited resolution and efficiency, one must also allow for the
possibility that the measuring device produces a value when no true event of
the type under study occurred, i.e. the measured ‘value was caused by some
background process. In the case of beta decay, this could be the result of spurious
signals in the detector, the presence of radioactive nuclei in the sample other
than the type under study, interactions due to particles coming from outside the
apparatus such as cosmic rays, etc. Suppose that we have an expectation value

i for the number of entries observed in bin i which originate from background
processes. The relation (11.8) is then modified to be

M
v = ZRU Ki + Bi. (11.11)
Jel
Note that the §; include the effects of limited resolution and efficiency of the
detector. They will usually be determined either from calibration experiments
or from a Monte Carlo simulation of both the background processes and the
detector response. In the following we will assume that the values B are known,
although in practice this will only be true to a given accuracy. The uncertainty
in the background is thus a source of systematic error in the unfolded result.
To summarize, we have the following vector quantities (referred to also in a
general sense as histograms or distributions):

(1) the true histogram (expectation values of true numbers of entries in each
bin), p = (y, o BM),

(2) the normalized true histogram (probabilities), p = (P1y o 5P} 22 B Bhrot s

(3) the expectation values of the observed numbers of entries, v = (W40 o o5 U)s

(4) the actual number of entries observed (the data), n = (s e s sl )

(5) efficiencies € = (g, .. -,E€m), and

(6) expected background values B=(p,...,0n5).

It is assumed either that we know the form of the probability distribution for
the data n, which will allow us to construct the likelihood function, or that we
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have the covariance matrix Vi; = covlng, ny], which can be used tc;‘ construct a
x? function. In addition we have the response matrix Ry, where; -8 ...,N
represents the bin of the observed histogram, and j = 1,..., M gives the hin of
the true histogram. We will assume that R and 3 are known. The vectors p, v,
B and the matrix R are related by

v= Ru + 3, (11.12)

where g1, v and 3 should be understood as column vectors in matrix eq‘uatgon&
The goal is to construct estimators 1 for the true histogram, or estimators p for
the probabilities.

11.2  Inverting the response matrix

In this section we will examine a seemningly obvious method for constructing esti-
mators for the true histogram g, which, however, often leads to an unacceptable
solution. Consider the case where the number of bins in the true and obser\./ed
histograms are equal, M = N. For now we will assume that the matrix relation
V= Ry + B3 can be inverted to give

p=R"1w-p). (11.13)

An obvious choice for the estimators of v is given by the corresponding data
values,

b =n. (11.14)

The estimators for the p are then simply

=R (n-p). (11.15)

One can easily show that this is, in fact, the solution obtained from maximizing
the log-likelihood function,

N
log L(p) = Y _log P(ns;wi), (11.16)
=1

where P(n;;v;) is a Poisson or binomial distribution. It is also the least squares
solution, where one minimizes

N
() = D i —m) (Vi (v — ny). (11.17)

45=1

Note that log L(p) and x?(u) can be written as functions of por v, since the
relation » = Rp + B always holds. That is, when differentiating (11.16) or
(11.17) with respect to p; one uses dv;/Ou; = Rij.
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Before showing how the estimators constructed in this way can fail, it is

interesting to investigate their bias and variance. The expectation value of 4; is
given by

N N
Bli) = ) (RN Blo = pi] = Y (R (v = 52)

= u, (11.18)

so the estimators fi; are unbiased, since by assumption, #; = n; is unbiased. For
the covariance matrix we find

M=

covfi, i;] = (R™YYix (R™Y)1 covng, mi]

x>

—

k

I
=

(R™Yix (R v, (11.19)

k=1

1

where to obtain the last line we have used the covariance matrix for independent
Poisson variables, cov[n,. ] = dpvg.

In the following we will use the notation Vij = cov[n;, n;] for the covariance
matrix of the data, and Uij = cov{jii, it;] for that of the estimators of the true
distribution. Equation (11.19) can then be written in matrix notation,

U= RV T, (11.20)

Consider now the example shown in Fig. 11.1. The original true distribution s
is shown in Fig. 11.1(a), and the expectation values for the observed distribution
v are shown in the histogram of Fig. 11.1(b).

The histogram » has been computed according to v = Ru, i.e. the back-
ground 3 is taken to be zero. The response matrix R is based on a Gaussian
resolution function with a standard deviation equal to 1.5 times the bin width,
and the efficiencies ¢; are all taken to be unity. This results in a probability of
approximately 26% for an event to remain in the bin where it was created, 21%
for the event to migrate one bin, and 16% to migrate two or more bins.

Figure 11.1(c) shows the data n = (n1,...,nn). These have been generated
by the Monte Carlo method using Poisson distributions with the mean values v;
from Fig. 11.1(b). Since the number of entries in each bin ranges from around
102 to 103, the relative statistical errors {ratio of standard deviation to mean
value) for the n; are in the range from 3 to 10%.

Figure 11.1(d) shows the estimates fi obtained from matrix inversion, equa-
tion (11.15). The error bars indicate the standard deviations for each bin. Far
from achieving the 3-10% precision that we had for the n;, the fi; oscillate
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Fig. 11.1 (a2} A hypothetical true histogram g, (b} the histogrtam of exnl:)ecé?tx‘or;dve;llzif
v = Ru, {c) the histogram of observed data n, and (d) the estimators i obtain
inversion of the response matrix.

wildly from bin to bin, and the error bars are as Iarge' as the estimated v'etlges
themselves. (Notice the increased vertical scale on this plot.}) The correlation
coefficients for neighboring bins are close to —1.

The reason for the catastrophic failure stems from the fact that we do—rllot.
have the expectation values v; if we did, we could simply compute g = Rb. Vt.
Rather, we only have the data n, which are random variables and h‘en‘ce subjec
to statistical fluctuations. Recall that the effect of the response matrix is to smear
out any fine structure. If there had been peaks close t.ogether'ln i, thel.’l alth%ug}i
these would be merged together in v, there would still remain a certain residua
fine structure. Upon applying R~ to v, this remnant of the o.mglnal structure
would be restored. The data n have indeed statistical ﬁuctu.atlons from bin to
bin, and this leads to the same qualitative result as would a residual fine structur.e
in v. Namely, the unfolded result is given a large amount of fine structure, as is

1 in Fig. 11.1(d). . '
ev}%inits liI;lteristing Eo)compare the covariance.matrix U (11.19) w1t‘}l1)lthat given
by the RCF inequality (cf. Section 6.6); this gives the smallfest possil etv;r{ance
for any choice of estimator. For this we will regard the n; as independent Poisson
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variables with mean values v;. The log-likelihood function is thus

N N I/nl 8'—2/5
log L{p) = Zlog Pl ) = Zlog (J—n_*_> ; (11.21)
i=1 i=1 >
Dropping additive terms that do not depend on p gives

N
log L{p) = 2:(712 logv; — v;). (11.22)
izl

One can check that by setting the derivatives of log L with respect to the
components of g equal to zero,

Olog L v dlog L 8y; il n;
— E : b s E = e o= 11.23
O o O ( i 1> i =i ( )

Ope e, W4

one obtains in fact the same estimators, & = n, as we have seen previously.
Differentiating one more time gives

& log L Y ni R Ru
O e e Sl Ll 11.24
Opk Op ; v} ( )

The RCF bound for the inverse covariance matrix for the case of zero bias (equa-
tion (6.19)) is therefore

6210gL]
Ry« | R
(U™ m Tr oo
_ iE[ni]RikRil
- 1=1 1/1.2
N
= ZR"’“R”. (11.25)
7 vy

13

1l

1

By multiplying both sides of the equation once by U, twice by R~!, and summing

over the appropriate indices, one can solve (11.25) for the RCF bound for the
covariance matrix,

N
Usj =Y (R (R Y)js v (11.26)

k=1

This is the same as the result of the exact calculation (11.19), so we see that
the maximum likelihood solution is both unbiased and efficient, i.e. it has the
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smallest possible variance for an estimator Wii}h zero bsg& ‘s‘e;%‘vi’}ﬁ;@ {:?i{;;:;il
same result using the method of least squares; in that case, unbiased and eficie
estimators are guaranteed by the Gauss~Markov t?iﬂ?r{%ﬂ”}y“ blance to the true
Although the solution in Fig. 11.1{d) W{”"* i%ttf&% yf‘?sﬁ?;w%mf”"_t z{"; i‘iaé
distribution, it has certain desirable properties. It is simple m;‘{“m?&:i OF ﬁ%
zero bias, and the variance is equal to the RCF }3&1;1?, In é?{i(}fa tﬁ%»ii«%ﬂ t%t
however, the correlations must be taken into account. For example, one can test

the compatibility of the estimators fi with a hypothesis po by constructing a x
statistic,

X2 = (= po)T U™ (o= o), {11.2)

which uses the full covariance matrix U of the estimators. fﬁﬂnsa test Wroufcih be:;
meaningless if the y? were to be computed with only the diagonal eIemep%t; }i
U. We should also note that although the variances are e;‘(trmnelj){ large in ,dﬂ
example shown here, they would be signiﬁcanft}y :Z%"nailer if the bins are made
large compared to the width of the resolution function. o ’

gRega,rcﬁ)less of its drawbacks, response-matrix inversion mdlcgt&&; S()}l’t]e'lmf;(j)::
tant lessons and provides a starting point for other me.thods. Since tN\e ‘m—ve bi“
matrix solution has zero bias and minimum variance as given b}{ the R,‘(;F l%quljrt
ity, any reduction in variance can only be achie\fed by mtiroducmg a lz;as.b.asev;m
of unfolding consists of constructing biased est,lmat'ors it such tl‘lat he 1t o v
be small if our prior beliefs, usually some assumptlons concerning sn;oto de—,;)f%
are in fact correct. Roughly speaking, the goal 1s to ﬁr?d an optimal trade:
between bias and variance, although we will see in Sec_tlon 1.1.7 that there 1s a
certain arbitrariness in determining how this optimum is a'chleved‘ N

The need to incorporate prior knowledge suggests using the Baie81aildpa
proach, where the a priori probabilities are combined W{th the data{ 3o ¥his °
posteriori probabilities for the true distribution {cf. ASectlons 1.2, Gf ).the hy
a common starting point in the literature on unfolding. It .suffers romalitative
ficulty, however, that prior knowledge is often of a c.omphcatec.i or quTh e
nature and is thus difficult to express in terms of prior probabilities. ! e the
that prior beliefs are inherently subjective 1s no.t a l.ree.xl disadvantage her}(z;:;es °
classical approach as well there is a certain subjectivity as tg how on.et(‘: ol
biased estimator. In the following we will mainly follow cla.sswal statis ics, u h'lg
bias and variance as the criteria by which to judge the guahty of a solutlon',}:;f ile
pointing out the connections with the Bayesian techmqt'les wherever po}sls1 eet.he

As a final remark on matrix inversion, we can consider the casebw efr the
number of bins M in the unfolded histogram is no.t equal to the mim Rer o gl -
sured bins N. For M > N, the system of .equatlons (11.12), v = t;zl-?—n S,eC—
underdetermined, and the solution is not unique. The metAhods p;;sen ; (111 -
tion 11.4 can be used to select a solution as the estlma'tor. f. For 1 i\ ; r;)Xi‘
is overdetermined, and an exact solution does not exist n ger;lerg . fr;n aili)mum
mate solution can be constructed using, for example, the methods o
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likelihood or of least squares, i.e. the problem is equivalent to parameter esti-
mation as discussed in Chapters 5-8. If M is large, then correlations between
the estimators can lead to large variances. In such a case it may be desirable

to reduce the variances, at the cost of introducing bias, by using one of the
regularization methods of Section 11.4.

11.3  The method of correction factors

Consider the case where the bins of the true distribution z& are taken to be the
same as those of the data n. One of the simplest and perhaps most commonly
used techniques is to take as the estimator for p;

fi = Ci(ni — Bi), (11.28)

where §; is the expected background and C; is a multiplicative correction factor.
The correction factors can be determined using a Monte Carlo program which
includes both a model of the process under study as well as a simulation of
the measuring apparatus. The factors C; are determined by running the Monte
Carlo program once with and once without the detector simulation, yielding
model predictions for the observed and true values of each bin, pY ahd WO,

Here vMC refers to the signal process only, i.e. background is not included. The
correction factor is then simply the ratio,

For now we will assume that it is possible to generate enough Monte Carlo
data so that the statistical errors in the correction factors are negligible. If this
is not the case, the uncertainties in the C; can be incorporated into those of the
estimates fi; by the usual procedure of error propagation.

If the effects of resolution are negligible, then the response matrix is diagonal,
Le. R;; = §;5¢;, and therefore one has :

' z/fig:w—ﬁi = i, (11.30)

where {8 is the expected number of entries in bin ¢ without background. Thus
the correction factors become simply C; = 1/g;, so that 1/C; plays the role
of a generalized efficiency. When one has off-diagonal terms in the response
matrix, however, the values of 1/C; can be greater than unity. That is, because
of migrations between bins, it is possible to find more entries in a given bin than
the number of true entries actually created there.

The expectation value of the estimator j; is
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g sig
Elj] = CiElni—B]=Ci(vi-f)= v}"c L
MC ;
B i\ ey (11.31)
. e - i H”

s 5 s . sig p
The estimator jz; thus has a bias which is only zero if the ratios pi/v;'® are the
same for the Monte Carlo model and for the real experument.
The covariance matrix for the estimators is given by

covlji, 1] = CF covlni, ny]

= C’? 5ij Vil (1132)

The last line uses the covariance matrix for the case where the n; are independent
Poisson variables with expectation values v;. For many practical problems., the Cj
are of order unity, and thus the variances of the estimates /i; are approx_lmately
the same as what one would achieve with perfect resolution. In- addi‘tlon, the
technique is simple to implement, not even requiring a matrix inversion. The
price that one pays is the bias,

, - (ui-‘“’ o ) o5, (11.33)

MC 51
vi vy

A rough estimate of the systematic uncertainty due to this bias can be obtained
by computing the correction factors with different Monte Carlo models. Clearly a
better model leads to a smaller bias, and therefore it is often recommended ‘that
the estimated distribution fi be used to tune the Monte Carlo, i.e. by adjust-
ing its parameters to improve the agreement between 2™ and the ‘baf:kground
subtracted data m — 3. One can then iterate the procedure and obtain improved
correction factors from the tuned model. .

A danger in the method of correction factors is that the b}as often pulls
the estimates fi towards the model prediction pME€ . This comphcafoes the task
of testing the model, which may have been the purpose of carrying out'the
measurement in the first place. In such cases one must ensure that the uncertainty
in the unfolded result due to the model dependence of the correction factors
is taken into account in the estimated systematic errors, and that these are
incorporated into any model tests.

11.4 General strategy of regularized unfolding

Although the method of correction factors is simple and widely practiced, it hasa
number of disadvantages, primarily related to the model dependence of the result.
An alternative approach is to impose in some way a measure of smoothness on
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the estimators for the true histogram g. This

1s known as regularization of the
unfolded distribution.

As a starting point, let us return to the oscillating solution of Section 11.2
obtained from inversion of the response matrix. This estimate for p is charac-
terized by a certain maximum value of the log-likelihood function log Lmay, or
a minimum value of the x2. In the following we will usually refer only to the
log-likelihood function; the corresponding relations using y? can be obtained by
the replacement log [ = -x?/2.

One can consider a certain region of p-space around the maximum likelihood
(or least squares) solution as representing acceptable solutions, in the sense that
they have an acceptable level of agreement between the predicted expectation
values v and the data n. The extent of this region can be defined by requiring

that log L stay within some limit of Its maximum value. That is, one determines
the acceptable region of p-space by

log L(p) = log Ly, = Alog L (11.34)
or for the case of least squares,

(1) < X2 + AY2 (11.35)

for appropriately chosen A log L or Ax?. The values of A log L or Ax? will deter-
mine the trade-off between bias and variance achieved in the unfolded histogram,;
we will return to this point in detail in Section 11.7.

In addition to the acceptability of the solution, we need to define a measure of
1ts smoothness by introducing a function § (1), called the regularization function.
Several possible forms for S (1) will be discussed in the next section. The general
strategy is to choose the solution with the highest degree of smoothness out of
the acceptable solutions determined by the inequalities (11.34) or (11.35).

Maximizing the regularization function S(p) with the constraint that log L)
remain equal to log Tsax = A log L is equivalent to maximizing the quantity

aflog L(p) — (log Luax —AlogL)] + S(u) (11.36)

with respect to both g and «. Here o 1s a Lagrange multiplier called the regu-
larization parameter, which can be chosen to correspond to a specific value of

Alog L. For a given @, the solution is thus determined by finding the maximum
of a weighted combination of log L and the S(u)

X

(1) = o log L(w) + S(p). (11.37)

Setting o = 0 leads to the smooth

pletely the datan. A very large o le

of the response matrix, corres
1ts maximum value.

In order for the prescription of maximizing ®(u) to be in fact equivalent to

the general strategy stated above, the surfaces of constant log L{p) and S(p)

est distribution possible; this ignores com-
ads to the oscillating solution from inversion
ponding to having the likelihood function equal to

Regularization functions 167

must be sufficiently well behaved; in the following we will ?%suggi ;;\}':::‘(f:) }E);th

case. In particular, they should not ‘c:hzmge from cj()‘n'vex‘st(‘) ¢ ve

complicated topology such that mulhp}e local n?axmla ex1‘ ’ o the relation
Recall that we can write log L and S as ftmcmqns of ({rtvi(; th(; i

v = Rp + B always holds. In a similar way, we will always ta >

5—Rp+ B (11.38)

i i ive cnowing the esti-
to define the estimators for 1; knowing these is equivalent to I;pow;?gg v
mators ji. Note, however, that in contrast to the met.hod of Sec mn_ .Z, gl
no longer have & = n. It should also be kept in mind that peor = 2 Hj

J s tions of p.
Vit == ) .85 = 3 » Risii; ave also func ons b N | e
tOtHereZ\tvezwillEc}lﬁly consider estimators fi for which the estimated total 1

of events i is equal to the number actually observed,

Vot = iﬁi e iiR,‘j B + Bi = Dot (11.39)
=1

=1 g=4

i : i sed b
This condition is not in general fulfilled automatically. It can be imposed by
modifying equation (11.37) to read

N
¢(p,A) = alog L(p) + S(pn) + A [ntot - ;m} ) (11.40)

P = N %
where ) is a Lagrange multiplier. Setting dy/0X = 0 then ileadtshior?;;/;rizatzg;
As a technical aside, note that it does nc?t matter.whet er itgis g
parameter o is attached to the regulari.zatlon function S({L) (najmerical e
references) or with the likelihood function. In the'partlcu ar R et
mentation given in Section 11.9, it is more convenient to associa
likelihood.

11.5 Regularization functions

11.5.1 Tikhonov regularization

A commonly used measure of smoothness is thg mean value of ihz si?ltcliz;eeﬁg ertrll;
derivative of the true distribution. This tec'hnlque was suggels1 ecaued et ety
by Phillips [Phi62] and Tikhonov [Tik63, Tik77], and is uiug y Comarh g
regularization. If we consider the p.d.f: ftr}le(y) before being

histogram, then the regularization function 1s

Smﬂw=5/G%%@f@, (11.41)

' i ign comes
where the integration is over all allowed v:.alu'es of y. Téle énénu(slilig)_ ?r nes
from the convention taken here that we maximize ¢ as defined by an. i
is, greater S corresponds to more smoothness. (Equivalently one c

3
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minimize a combination of regularization and log-likelihood functions with the
opposite sign; this convention as well is often encountered in the literature.)

In principle, a linear combination of terms with different derivatives could be
used; in practice, one value of k is usually chosen. When frrue{(y) is represented

as a histogram, the derivatives are replaced by finite differences. For equal bin
widths, one can use for k = 1 (cf. [Pre92])

M-1
Sm) == > (i — pip1)?, (11.42)
i=1
fork =2
M~2
S) == D (~m + 2is1 — pigs)?, (11.43)
i=1
orfork =3
-3
S(i) ==} (“pi + 3is — 3piags + pils)? (11.44)
=1

A common choice for the derivative is k = 2, so that S(p) is related to the
average curvature.

If the bin widths Ay; are all equal, then they can be ignored in (11.42)-
(11.44). This would only give a constant of proportionality, and can be effectively
absorbed into the regularization parameter . If the Ay; are not all equal, then
this can be included in the finite differences in a straightforward manner. For

k = 2, for example, one can assume a parabolic form for firue(y) within each
group of three adjacent bins,

fi(y) = aoi + aniy + any?. (11.45)

There are M — 2 such groups, centered around bins i = 2,.... M — 1. The
coefficients can be determined in each group by setting the integrals of fily)
over bins 1 — 1,7 and i + 1 equal to the corresponding values of Hi~1, i and
#i+1. The second derivative for the group centered around bin 7 is then I = 2aq;,
and the regularization function can thus be taken to be

M-1
S(p) == >" 7i” Ay. (11.46)

=2
Note that the second derivative cannot be determined in the first and last bins.
Here they are not included in the sum (11.46), i.e. they are taken to be Z€ro;
alternatively one could set them equal to the values obtained in bins 2 and M —1.

For any value of the derivative k& and regardless of the bin widths, the func-
tions S(p) given above can be expressed as
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M
S(;},) 2 e 2: Sf;gj i g = M;I.F G it (1147)
i,j=1
where G is a symmetric matrix of constants. For k = 2 with equal bin widths
(11.43), for example, G is given by

Giy =6
Giiz1 = Gigr,e = —4 3<i<M~1,
Giit2 = Gig2i =1 (11.48)

Gy =Gum =1,
Gag = Gp-1,M-1 =5, ;
Gi2 = Go1 = Gum-1=CGu-1,m =2,

with all other G;; equal to zero. . ‘ ) X
In order to ogtain the estimators and their covariance matrix {Section 11.6),
we will need the first and second derivatives of S. These are

M

05 (11.49)

= —2 Gz Hi /
Opi ;___‘:' !

and

2 s
L B, (11.50)
Opi Opt;

Tikhonov regularization using & = 2 has been '.v'vide.Iy app}igd in partxcl'e‘:
physics for the unfolding of structure functions (dist_rlbutlons of kmergatx;;zagr;
ables in lepton—nucleon scattering). Further descriptions can be found in [Blo85,
Hoc96, Roed2, Zec95].

11.5.2 Regularization functions based on entropy

Another commonly used regularization function is based on the entropy H of a
probability distribution p = (p1, .- .,pm), defined as [Sha48]

M
H=-> pilogp;. (11.51)
i=1
The idea here is to interpret the entropy as a measure of the smoothness of
a histogram p = (u1,...,pm), and to use
L i
S(p)=H(p)=— >  ——log-— (11.52)

: Htot Hiot
1=1

as a regularization function. Estimators based on (11.52) are said to be (}:lon—
structed according to the principle of maximum entropy or MaxEnt. To see how
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entropy is related to smoothness, consider the number of ways in which a par-

ticular histogram p = {18855 . s ipr) cam be constrnetad out of yer entries (here
the values yi; are integers). This is given by

_ ,Utot!
Qp) = IR . (11.53)

(Recall that the same factor appears in the multinomial distribution (2.6).) By

taking the logarithm of (11.53) and using Stirling’s approximation, logn!
n(logn — 1), valid for large n, one obtains

M
logQ - s Eiot (log pesr — 1) - Zm(logm - 1)
=1

M .
- ‘_Zﬂilog Ly

b Hiot

= fot S(pe). | (11.54)

We will use equation (11.54)

to generalize log 2 to the case where the {; are not
integers.

If all of the events are concentrated in a s
the minimum degree of smoothness, then the
them, and hence the entropy is also a mini
can show that the entropy 1s maximum for t
the histogram corresponds to a unifo
constraint Y, p;

For later refer

ingle bin, i.e. the histogram has
re is only one way of arranging
mum. At the other extreme, one
he case where all y; are equal, i.e.
rm distribution. To maximize H with the
=1, a Lagrange multiplier can be used.

ence, we list here the first and second derivatives of the entropy-

based S(u):
85 . .1 log £ _ S(w) (11.55)
a,ui Mot Htot Mot
and
8’5 1 [ Sij Meot Hipty
== =y e (J_i>+25 } 11.56)
Opibu; — pi., i #\ (w) :

11.5.3 Bayesian motivation for the use of entropy

In much of the literature on unfoldj
tropy is developed in the framewor
[Siv96, Jay86, Pre92].) This ap
ever, as we will see below. It
MaxEnt with the classical met

ng problems, the principle of maximum en-
k of Bayesian statistics. (See, for example,
proach to unfolding runs into difficulties, how-
1s nevertheless interesting to compare Bayesian
hods of the previous section.
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In the Bayesian approach, the values p are treatedhas‘rgntdom gall;l'zlmilz;ez (131; Stilzs
jecti ili sction 1.2), and the joint probabi
sense of subjective probability (cf. Sec , : oba y =
of beli t the true histogram is given by .
n) represents the degree of belief tha :
i}()lggtl oupr knowledge about p in light of the data n, we use Bayes’ theorem,

fp|n) oc L(n|p) m(p), (11.57)

where L{n|u) is the likelihood function (%he conditional pr'Oba:;eli::i foie;hriscizi:
n given p) multiplied by the pric?r d:;lsxtly tﬁ(pz). The prior Y
edge about g before seeing the data n. ’ L

Our}ll(:roewsl\?j %vill rega.rg the total number of events po as an mtigizé)f?,:hiz 1Or}
contrast to the classical approach, where pqt repres_ents an expec‘? i’ Su, .
an integer random variable, and thus is not necessarlly an mte%gr: isbellt.ed ip;] o
we have no prior knowledge about how these g entries ar; i1str g5 s
histogram. One can then argue tl_lat by Islyn“;plz;t;y&e}.]a;};fjbta }ilﬁ;sfor e
placing pio; entries into M bins is equally Ij : : ,n f P

istogram s, tar) therefore should be, in t}.le abgenc_e o‘ any phis
?Ii?'o(r);gnatior(l/f;ropoﬁim)lal to the number of ways in which llt canbl:i Ea;iv:y Zh(l;
1s just the number Q given by equation (11.53). The tota nun;abﬂity <
distributing the entries Q) is thus interpreted as the prior pro ;

lltot!
p1lpet ool par!

1.58
= exp(por H), (11.58)

() = Qp) =

re H is the entropy given by equation (11.51).‘ ‘ :
WheF:om the strict Bpayyfsian standpoint, the job is finished Wher}l1 we h?vzirclife
termined f(g|n). It is not practical to report f(p|n) 'complejtely}; ow;:(:llze,d e
this is a function of as many variables as there are bins M in t 'e m; i
tribution. Therefore some way of summarizing {t must. be foungilto ‘l(l)a] ;;Oice
typically selects a single vector f& as the Bayesian ~esf;lma.ltor:t ; s Z:ithm oice
is the p for which the probability f(pu|n), .or‘equlvaler.lt y xbs gXimiZir,lg
maximum. According to equation (11.57), this is determined by ma

log f(p|n) o log L(pn) + logm(p)
= log L(pn) + protH (1)
= log L(un) + protH (12). (11.59)

The Bayesian prescription thus corresponds to using a regularization function

M
. Hi 11.60
S(n) = potH(p) = — ; i log Mot ( )
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Furthermore, the regularization parameter « is no longer an arbitrary factor
but is set equal to 1. If all of the efficiencies €; are equal, then the requirement
Vtot = Mot also implies that puye is constant. This is then equivalent to using the
previous regularization function S (1) = H with o = 1/pcy.

If the efficiencies are not all equal, however, then constant vy, does not mmply
constant piior, and as a result, the distribution of maximum S(p) = prot H () is
no longer uniform. This is because S can increase simply by increasing piyor, and
thus in the distribution of maximum S, bins with low efficiency are enhanced.
In this case, then, using H and pyorH as regularization functions will lead to
somewhat different results, although the difference is in practice not great if the
efficiencies are of the same order of magnitude. In any event, S = H is easier
to justify as a measure of smoothness, since the distribution of maximum H is
always uniform.

We will see in Section 11.9 that the Bayesian estimator (11.59) gives too much
weight to the entropy term (see Fig. 11.3(a) and [Ski86]). From the classical point
of view one would say that it does not represent a good trade-off between bias
and variance, having an unreasonably large bias. One can modify the Bayesian
interpretation by replacing pio; in (11.59) by an effective number of events Hefr,

which can be adjusted to be smaller than por. The estimator is then given by
the maximum of

log L{pn) + pegH (). (11.61)

This is equivalent to using S(p) = H(u) as before, and the parameter pes plays
the role of the regularization parameter.

The problem with the original Bayesian solution stems from our use of Q(p)
as the prior density. From either the Bayesian or classical points of view, the
quantities p = p/ o are given by some set of unknown, constant numbers, e.g.
the electron energy distribution of specific type of beta decay. In either case, our
prior knowledge about the form of the distribution (i-e. about p, not p) should
be independent of the number of observations in the data sample that we obtain.
This points to a fundamental problem in using m(pe) = Q(p), since this becomes
increasingly concentrated about a uniform distribution (i.e. all p; equal) as pyos
increases.

It is often the case that we have indeed some prior beliefs about the form
of the distribution p, but that these are difficult to quantify. We could say, for
example, that distributions with large amounts of structure are a priori unlikely,
since it may be difficult to imagine a physical theory predicting something with
lots of peaks. On the other hand, a completely flat distribution may not seem
very physical either, so () does not really reflect our prior beliefs. Because of
these difficulties with the interpretation of Q(p) as a prior p.d.f., we will stay
with the classical approach here, and simply regard the entropy as one of the
possible regularization functions.
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11.5.4 Regularization function based on cross-entropy

Recall that the distribution of maximum entropy is flat, and thus the bias 111;{31;2;
duced into the estimators ft will tend to pull the result towards a more ur;rd "
distribution. Suppose we know a distribution' q = (q'l, ..., qa) that v:;;‘ev%m Lo
the most likely a priori shape for the true distribution p = /ot i
q the reference distribution. Suppose that we do not know hpw to q}:&m : y) o
degree of belief in q, however, and hence we do not have a prlcc;rh Fletns;;r] T7lr u/u t
use with Bayes’ theorem. That is, q represents‘the normalize 8 1st };Dg mirg rit;r
for which the prior density is a maximum, but it does not specify the entire p
den;;t);his case, the regularization function can be taken as

S(w) = K(p; ), (11.62)

where K{p;q) is called the cross-entropy [Kul64] or Shannon-Jaynes entropy
[Jay68], defined as

M

5 11.63

K(D;Q)”—“"Zpﬂogm- (11.63)
=

The cross-entropy is often defined without the fact;‘or of M, and leoorv:}l;shiﬁz
the minus sign, in which case the principle of maximum entropy zzs omes the
principle of minimum cross-entropy. We will keep the minus sign :(1) e;;si s
the similarity between K(p;q) and thg Sh‘annf)n e.ntrol.)y H(p) ( ol 1/M e
K(p;q) = H(p) when the reference distribution is uniform, 1.e. ¢; =

i. ' .

One can easily show that the cross-entropy K(p; q) is a max1m}}r;11 W};;;tﬂ;i'
probabilities p are equal to those of the'reference d1§tr1but10n qt teoreS ik
using the regularization function (11.62)‘18 tl.lat the bias of the e{? H&a refep:ence
be zero (or small) if the true distribution is equal (or close) to the
distribution.

11.6 Variance and bias of the estimators

The estimators fi are functions of the data n, and are hence themﬁselvas rando;g
variables. In order to obtain the covariance matrix .U,-j = cov|p, jt;], we cthe
calculate an approximate expression for ji as a function of‘n, and t}tle‘n' ?zj e
error propagation formula (1.54) to relate U to the covariance matrix

= Py 51 '
data’fh‘g]esti?s;gzg ;1,] are found by maximizing the function (e, )f\‘) glve?ti)l}é
(11.40), which uses a given log-likelihood or x? function and some torm ° the
regularization function S(p) (Tikhonov., entropy, etc.). Th(i~ ;me? oria;:ions
the Lagrange multiplier A are thus solutions to the system o +1eq

Fi(pAm) =0, i=1,...,M+1, (11.64)

where
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22 i=1,...,M,
Fi(p’) ’\y n) = 5 ' .
5%\3— t= M= 1
Suppose the data actually obtained are given by the vector 1, the correspond-
ing estimates are fi = f(n), and the Lagrange multiplier A has the value A. We

would like to know how f& and A would change if the data were given by some

different values n. Expanding the functions Fi(p, A,n) to first order in a Taylor
series about the values fi, A and & gives

(11.65)

" M rap.
Film,\n) =~ F(@,A5) + > [5—1—} o (wy — iy)

+ [%L;ﬁ(/\—f\) + ZN: Pﬂ]ﬁxﬁ(ng’—ﬁj)- (11.66)

J=1 17y

The first term F,-(ii,j\,ﬁ) as well as the entire expression Fi(p, A, n) are both
equal to zero, since both sets of arguments should represent

solutions. Solving
equation (11.66) for p gives

fA(m)~ g — A™' B(n - n), (11.87)

where the M + 1 component of p refers to the Lagrange multiplier A. The sym-
metric (M + 1) x (M + 1) matrix 4 is given by

8252 -
pidpn;> 27]:17"'7M;

2
A= 2o = 4

dwox — L i=1... Mj=M+1, (11.68)
2%

e =0, i=M4+1,j=M+1,
and the (M + 1) x N matrix B is
-Q—zif._.., Z‘:l,..‘,M,j:l’,,.)N’
Bii=q o (11.69)
s =1, i=M+1,j=1,...,N.

By using the error propagation formula (1.54), the covariance matrix for the

estimators Uy; = cov[jy;, fi;] is obtained from the covariance matrix for the data
Vij = cov[ng, n;] by

N

5 Ot Ofi;

coviji;, it;] = E gig%cov[nk,m]. (11.70)
k=1

The derivatives in (11.70) can be computed using (11.67) to be
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0% o L B = O (1L.71)
Ong

1 1 GR) ¢ .69). What
where the matrices A and B are given by equations (1}()33:&(1}((}\3 su}zmatri&
we will use here is not the entire matrix C, but rather on y = e eTen
excluding the row ¢ = M + 1, which refers to the Lagrange m‘ e
final expression for the covariance matrix [ can thus be expresse
compact form,

72
= OvVer. (11.72)

; - ation
The derivatives in (11.68) and (11.69) depend on Fhe chozlcetof ;:Eiiar;z& 1)\)
function and on the particular log-likelihoclcjzf)unc;torllnuts;e . ahose o examl;le)
.¢. Poisson, Gaussian (log L = —X , ete. In | ; o
S}i‘afg)é}fegdat?b;re treated as independent Poisson va.nab'les ;ntht'(;c;ve(xixlaM)
matrix Vi; = &;:1;, and where the entropy-based regularization funct :
ij = 9V,
is used, one has

N i

¢ = Z Ry: Bij ]

8H16y‘] k=1 b
1 {1 B 5;’j Hrot + log (E%‘J—) -+ 25(”‘)} (1173)

as 2 Hi tot
utot
and
Fp _ aRy (11.74)
Ouidn; v

i ing the

The matrices A and B (and hence C) can be determined by eva%ua(t;rili the

derivatives (11.73) and (11.74) with the estimates for p 'and :; obttag:: i

actual experiment. Table 11.1 summarizes the necessary ingredients iy

and Gaussian log-likelihood functions. Note tlhat for tfhe gaﬁilzn_.ci i,Xi .and

1t1 reter = —35X
f least squares, the quantities always wane
flhi rtrcl)e‘;?zois(:alf The (clieriva,(;ives of Tikhonov and entropy-based regularizati
0 .

functions are given in Sections 11.5.1 and 11A.5.2. , T —
In order to determine the biases b; = E{m] = pi, We e
tation values E[ji;] by means of the approximate relation (11.67),

N ‘ 3
b = Eli] — pi ~ fis + 9 Cij(vj — ) — pa- (11.75)
=1t

. k i : for
This can be estimated by substituting the Fzstlmat?r from e;%?a:morivglliihG;)e]gs
i ;nd replacing v; by its corresponding estimator vj = Do el
1
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S

- (7 — ny). (11.76)

. N N
b= Cij(s;~ny) = > =
g j=1 J

[0

The approximations used to constru

ct b; are valid for small (Z — n;), or equiv-
alently,

large values of the regularization parameter «. For small a, the matrix
C in fact goes to zero, since the estimators fi are then decoupled from the mea-
surements n;, cf. equation (11.71). In this case, however, the bias is actually at
its largest. But since we will only use b; and its variance in order to determine
the regularization parameter o, the approximation is sufficient for our purposes.

By error propagation (neglecting the variance of the matrix ('), one obtains
the covariance matrix W for the bi,

N
I/Vij = COV[b,', bj} = Z Cix le COV[ (1714 = nk), (1}1 = ng)] (11.77)
k=l

This can be computed by using i, = Y m Rimfim to telate the covariance matrix
cov[Dx, 1] to that of the estimators for the true distribution, Uij = covf, fi;],

which is in turn related by equation (11.72) to the covariance matrix of the data
by U = CVCT. Putting this all together gives

W = (CRC-C)V(CRC-C)T
= (CR~-NUCR=I)F, (11.78)
where [ is the M x M unit matrix.

whether the estimated biases are
can be employed as a criterion to

The variances V[b;] = W;; can be used to tell
significantly different from zero; this in turn
determine the regularization parameter.

Table 11.1 Log-likelihood functions and their derivatives for Poisson and Gaussian random
variables.
Poisson Gaussian (Teast squares)
log L 2i(nilogu; — ;) =3 2205 (W = ) (V=15 (w5 — ny)
S 2 (’:—; = 1) Rji =25k Rt (V75 (i — )
i ~ BTt —(RT V! R);;
k= i (V=" By

Choice of the regularization parameter 177

Before proceeding to the question of th_e regula:lzi::;efoa;i;n:ltleiééllzzjgig
it is important to note that the biases are in gener: ' o
ﬁnfoldirfg; methods, in the sense tha‘%~ they are ngen'by1 so?lql:sﬁ;lr;c;ir: Zlan
everywhere zero, of the true distribution. Their numerica va 3 i,n unf()ldi;lg "
in fact be zero for particular values of 2 A guiding pr1nc1ﬁ e
to choose a method such that the bias will be zero (gr s}rlnat ) ; (ﬁstribution .
properties believed a priori to be true. For example_, if t e r\;} P
uniform, then estimates based on Tikho‘nov'reg.;ulanzatlon ]:w“ 12 (1-1 15 gives
will have zero bias; if the true distribution is linear, then d'.;ribmio.n iy
zero bias, etc. If the true distribution is equgl tg a referer::es 18 ;
unfolding using the cross-entropy (11.63) will yield zero bias.

11.7 Choice of the regularization parameter

i i ogL
The choice of the regularization parameter ¢, or eqmvalently t_he :eh(:fcteh(;f éztli n%a_
(or Ax?), determines the trade-off between 'the blas am_i v:rzim}l) ; A
tors fi. By setting « very large, the solu‘mor.l is dominated by )
function, and one has log L = log Limax (or with least Squami)(() p;ts iy
correspondingly very large variances. At the other extrerx;e,tclv o
weight on the regularization function and leads to a per e.c hy D et
Various definitions of an optimal trade-off are pczssx}ale, th esle):. e
the estimates for the covariance matrix Uj; = COY[H}T, 5], the 1asd sz,wm e
covariance matrix of their estimisors, Wi = covlbi, bs]. Her.e U an oo
to the estimated values, 7 and W; the hats will not be wrlt.tert)hexr[:}ézn ;’éuared
One possible measure of the goodness of.the final result is the me
error, cf. equation (5.5), averaged over all bins,

M
. b 11.79
MSE:—MZ(UH + 3). ( )
i=1
; . 1
The method of determining « so as to obtain a pe.u't’lcul’ar value of zile héIfStlzy‘;rrllg
depend on the numerical implementation. Often it is simply a ma'l i; o
a value o, maximizing ¢(p, A), and iterating the procedure unti
tion is found. o
SOIUOXI?:: ;f)u(l)d argue, however, that the contribution to the mezlm :guared f;re(;r
i or il 1 ding on how accurately they are -
hould be different for different bins depep . g '
zu::d Since the variance of a Poisson variable with mean value y; is equal to pi,
one can define a weighted MSE,

M 72
1 Ui + b (11.80)
P b i N '
MSE' = — ; o
in analogy with the x? used in the method of least squares. F(?r Poissqn dils—
1tn'butedgdata the quantity MSE' represents the mean squ'ared increase in tt.te
errlrors due to l,imited resolution. It is thus reasonable to require that this quantity

be small.
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A popular choice for the regularization parameter is based on the idea that,
on average, each bin should contribute approximately one unit to the X2, ie. a
1s determined such that x? = N. This can be generalized to the log-likelihood
case as Alog L = log Lay — log L = N/2, since for Gaussian distributed n one
has log L = —x2/2.

Naively one might expect-that an increase in the %2
the appropriate level of discrepancy between the data n
This typically leads, however, to solutions with unreasonab
problem can be traced to the fact that the estimator ; receives contributions
not only from n; but also from neighboring bins as well. The coupling of the
estimators 2; to the measurements n; can be expressed by the matrix

of one umit would set
and the estimates ©.
ly large variance. The

O, B oy . .
gﬁ;‘ = 5‘75- kz;;l R,’k/.tk = (R(/)z'j. (1181)

A modification of the criterion Ax?

= 1 has been suggested in [Sch94] which
Incorporates this idea, It is based on

an increase of one unit in an effective ¥2,

Axie =@ -n)T RCV-Y(RC)T (&—n) =1, (11.82)
where the matrix RC effectively takes into account the reduced coupling between
the estimators U; and the data n;.

Alternatively, one can look
If the biases are significantly di
them. This is equivalent to goi

the deviation of the biases fr
squares,

at the estimates of the biases and their variances.
flerent from zero, then it is reasonable to subtract
ng to a smaller value of Alog L. As a measure of
Om zero, one can construct the weighted sum of

‘c~>
=2

M ,
=3 (11.83)
1=l

i

=

The strategy is thus to reduce AlogL (
sufficiently small value, such as the numb

deviations of the biases are approximately equal to the biases themselves, and

therefore any further bias reduction would introduce as much error as it removes.
The bias squared, the variance, and their sum, the mean squared error, are
shown as a function of A log L in Fig. 11

.2. These are based on the example from
Fig. 11.1, there unfolded by inverting the response matrix, and here treated
using (a) maximum entropy and (b) Tikhonoy regularization. The increase in
the estimated bias for low Alog L reflects the variance of the estimators 13,~; the
true bias decreases to zero as Alog L goes to zero. The arrows indicate solutions
based on the various criteria introduced above; these are discussed further in the
next section.

Further. criteria for setting the regularization parameter have been proposed
bas_ed on singular value analysis [H6c96], or using a procedure known as cross-
validation [Wah79]. Unfortunately, the choice of o is still a somewhat open

Le. increase ) until x? is equal to a
er of bins M. At this point the standard
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Fig. 11.2 The estimated mean variance, mean squarec’l bias, and thelr‘st—m.l, th(f}:cr_rie;.;x qf?;::lr_
error, as a function of A log L for (a) MaxEnt and (b) T}kh()_nc_)v regulasrgatlor.ls A-l—o L -y
rows indicate the solutions from Figs 11.3 and 11.4113: (b)is m;}x:lrrgxr;;lg;!an S,O(;;)tixon N ligL -
i = t case, the Ba;
d)is Ax2, = 1, and (e) is x?b = M. For the Ma{( n , the 15 \ s
i(s zlot sl’zccfgn. For Tikhonov regularization, (a) gives the solution for minimum weighted

question. In practice, the final estimates are relative}y stable as the ;flalute of
Alog L decreases, until a certain point where the variances su‘ddfenly shoo }zllp
(see Fig. 11.2). The onset of the rapid increase in the variances indicates roughly
the natural choice for setting a.

11.8 Examples of unfolding

Figures 11.3 and 11.4 show examples based on maximum entropy and lehzrézr\lf
regularization, respectively. The distributions u, v gnd n are ?he §anleeas;1al "
previously in Figs 11.1(a)-(c), having N = M = 20 bms,Aall eﬂ}men;lgs m;(imm-
unity, and backgrounds 3 equal to zero. The estlmaths [ are 'Oulll'h yd e
ing the function ¢(p, A) (11.40), here constructed with a log-like 11 ?o thu b2
based on independent Poisson distributions for the data. On the e E;, edo rgor
nal ‘true’ histograms g are shown along with the unfolde.d sqlutlons i atn er o
bars \/T;; corresponding to a given valug of the regularization Paramtg er tc(:; o
equivalently to a given Alog L. On the right are the corresponding e; lmaf "
the biases b; with their standard deviations /W;;. These shoulc.l not be conluse
with the true residuals fi; — p;, which one could not construct without know e gs
of the true histogram p. The estimates b;, on the other hand, are determine
frorgot::ic(li:rt ?i.rst Fig. 11.3, with the entropy-based yegularization ‘funCtIOn S (;t:,l)onz
H{p). Figure 11.3(a) corresponds to o = 1/;z'tot, Le. th.e Bz;;yetsm%lpf;a:;zpthat
(11.59), and gives Alog L = 970. We show this choice simply lotl. us rate that
e e e vty il i am onge i, e setEnoi
' viations \/U;; are very small, 3

E?Zhs(‘;jvl;ds;dtg: right are indeed large, and from their error bars :;r}lj car} lsle:;et}::z
they are significantly different from zero. Note that the estimated biases
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not, in fact, in very good agreement with the true residuals fi; — p;, owing to
the approximations made in constructing the estimators b;, cf. equation (11.67).
The approximations become better as Alog L is decreased, until the standard
deviations /W; become comparable to the biases themselves.

Figure 11.3(b) shows the result based on minimum mean squared error (11.79).

This corresponds to Alog L = 13.3 and X3 = 154. Although the estimated biases

are much smaller than for o« = 1/ tttor, they are still significantly different from
zZero.

The solution corresponding to AlogL = N/2 = 10 is shown in Fig. 11.3(c).
Here the biases are somewhat smaller than in the result based on minimum
MSE, but are still significantly different from zero, giving x? = 87. In this par-
ticular example, requiring minimum weighted mean squared error ( 11.80) gives
Alog L = 10.5, and is thus similar to the result from Alog L = N/2 = 10.

The results corresponding to AxZ; = 1and x2 = M are shown in Figs 11.3(d)
and (e}, respectively. Both of these have biases which are consistent with ZEro,

at the expense of larger variances compared to the results from AlogL = N/2
or minimum MSE. The Ax%: =1 case has X2 = 20.8, and the

Axgﬁ = 0.85, so in this example they are in fact very similar.

Now consider Fig. 11.4, which shows examples based on the same distribution,
but now using Tikhonov regularization with k = 2. The figures correspond to (a)
minimum weighted MSE, (b) minimum MSE, (c) AlogL = N/2, (d) AxZ: =11,
and (e) xZ = M. Here in particular the solution from AlogL = N/2 does not
appear to go far enough; although the statistical errors \/U;; are quite small,
the biases are large and significantly different from zero (b7 > Wy;). Reasonable
results are achieved in (a), (b) and (e}, but the requirement Ax2g = 1(d) appears
to go too far. The bias is consistent with zero, but no more so than
with x2 = M. The statistical errors are, however, much larger.

A problem with Tikhonov regularization, visible in the right most bins in
Fig. 11.4, is that the estimates can become negative. (All of the bins are posi-
tive only for Fig. 11.4(a).) There is in fact nothing in the algorithm to prevent
negative values. If this must be avoided, then the algorithm has to be modified
by, for example, artificially decreasing the errors on points where the negative
estimates would occur. This problem is absent in MaxEnt unfolding, since there

the gradient of S(p) diverges if any y; approach zero. This penalty keeps all of
the p; positive.

Xi = M case has

in the case

The techniques discussed in this chapter can easily be generalized to multidi-
mensional distributions. For the case of two dimensions, for example, unfolding
methods have been widely applied to problems of image restoration [Fri72, Fri80,
Fri83, Ski85], particularly in astronomy [Nar86], and medical imaging [Lou92]. A
complete discussion is beyond the scope of this book, and we will only illustrate
some main ideas with a simple example.

Figure 11.5 shows an example of MaxEnt unfolding applied to a test photo-
graph with 56 x 56 pixels. Figure 11.5(a) is taken as the ‘true’ Image, representing
the vector p. In Fig. 11.5(b), the image has been blurred with a Gaussian reso-
lution function with a standard deviation equal to 0.6 times the pixel size.
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Fig. 11.3 MaxEnt unfolded distributions shown as point.s with the true distributl;)n‘sh:;\;r;
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Bayesian prescription o = 1/ 101, ®
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the solution of minimum weighted MSE turns out similar to case {c) wi gl =
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Fig. 11.5 (a) The original ‘true’ image K. (b) The observed image n, blurred with a Gaus-
sian point spread function with a standard deviation equal to 60% of the pixel size. (c) The
maximum entropy unfolded image. The histograms to the right show the light intensity in pixel
row 36 {indicated by arrows).

For purposes of this exercise, the effective number of ‘photons’ (or, depending
on the type of imaging system, silver halide grains, photoelectrons, etc.) was
assigned such that the brightest pixels have on the order of 104 entries. Thus if
the number of entries in pixel 7 is treated as a Poisson variable n; with expectation
value v;, the relative sizes of the fluctuations in the brighter regions are on the
order of 1% (o /vi = 1/,/%i). Figure 11.5(c) shows the unfolded image according
to maximum entropy with AlogL = N/2 where N = 3136 is the number of
pixels. The histograms to the right of Fig. 11.5 show the light intensity in pixel
row 36 of the corresponding photographs. .

For this particular example, the method of maximum entropy has certain
advantages over Tikhonov regularization. First, there is the previously mentioned
feature of MaxEnt unfolding that all of the bins remain positive by construction.
Beyond that, one has the advantage that the entropy can be directly generalized
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to multidimensional distributions. This follows immediately from the fact that
the entropy H = -—Zj p;logp; is simply a sum over all bins, and pays no
attention to the relative values of adjacent bins. For Tikhonov regularization, one
can generalize the function S (1) to two dimensions by using a finite-difference
approximation of the Laplacian operator; see e.g. [Pre92], Chapter 18.

A consequence of the fact that entropy is independent of the relative bin lo-

popularity among astronomers. For relatively smooth distributions such as those
in Figs 11.3 and 11.4, Tikhonov regularization leads to noticeably smaller vari-

ance for a given bias. This would not be the case for distributions with sharp
peaks, such as the photograph in Fig. 11.5.

A disadvantage of MaxEnt is that it n
for p. But the number of pixels in pic
solution by direct matrix inversion, so th
numerical techniques.

ecessarily leads to nonlinear equations
ture is typically too large to allow for
at one ends up anyway using iterative

11.9 Numerical implementation

‘The numerical implementation of the unfolding methods described in the previ-
ous sections can be a nontrivial task. Finding the maximum of the function

N
o(p,A) = a log L{p) + S() + A | nggy — Zvj (11.84)
j=1

with respect to  and the Lagrange multiplier A implies solving the M + 1 equa-
tions (11.64). If o is & quadratic function of i, then the equations (11.64) are
linear. This occurs, for example, if one has a log-likelihood function for Gaussian
distributed n, giving log L = -x2/2, in conjunction with Tikhonov regulariza-
tion. Methods of solution for this case based on si

discussed in [H5c96]. If contains, for example, a log-likelihood function based

techniques.

Consider as an example the case of a Poisson-based likelihood function, cf.
equations (11.21), (11.29),

N
log L(p) = Z(n, logv; — 1), (11.85)
=l

with the regularization function S = H where H is the entropy (11.51).

A possible method of solution for MaxEnt regularization is illustrated in
Fig. 11.6. The three axes represent three dimensions of #-space, and the diagonal
plane is a subspace of constant Zz Vi = nyot. The two points indicated in the
plane are the point of maximum entropy (all p; equal) and the point of maximum
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Fig. 11.6 Three dimensions of p-space illustrating the numerical implementation o
mum entropy unfolding (see text).

likelihood. The curve connecting the two indicate:? possible solutic?r;s to (11.4106)
corresponding to different values of the regularization parameter o; to}f exaillf Of,‘
a = 0 gives the point of maximum entropy; o —)}To (201."rfispotndsh~t(;1 Cc()in}z;)urs v
i ikeli h the points at whic
maximum likelihood. The curve passes throug L o
ikelihood touch. Note that the point of maxi
constant entropy and constant likelihoo _ the p: : ;
likelihood is not in the allowed region with all y; > Oiifil(lz)ls, in fact, typical o
illati i ikeli i f. Fig. 11.1(d).
the oscillating maximum likelihood solution, ¢ - 1(d ]
The progr‘o;m used for the MaxEnt examples shown in Figs 11.3 andh.11:5 etI:d
ploys the following algorithm, which includes some featux.'es of more sop dls ica "
methods described in [Siv96, Ski85]. The point of maximum likelihoo :’il;a y
cannot be used for the initial value of g, since there one often has negatl /J;S,
and hence the entropy is not defined. Instead, the pom‘t‘of maximum eln rogyect
taken for the initial values. This is determined by requiring all y; equal, subj
to the constraint

N M M

N
Y = > R = > ek
=1 =1

=1 Jj=1

I}

Vot

(11.86)

= TNtot,

where ;15 the efficiency for bin 5. The point of maximum entropy is thus
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Mot
il 5= e

Zj::l 8j

If one uses S(p) = porH , and if the efficiencies are not all equal, then the

distribution of maximum 5(p) is not uniform, but rather is given by the solution
to the M equations,

(11.87)

logﬁi_Jr:g_(L‘_)fi:o, d==1,....0. (11.88)
Htot Niot

Starting from the point. of maximum S(p), one steps along the curve of
maximum ¢ in the subspace of constant Viot- As long as one remains in this
subspace, it is only necessary to maximize the quantity

(1) = a log L(p) + S(p), (11.89)

L.e. the same as ©(p) but without the Lagrange multiplier ), cf, (11.40). Simply
requiring V& = ( will not, however, lead to the desired solution. Rather, V&
must be first projected into the subspace of constant Vot and the components of
the resulting vector set equal to zero. In this way the Lagrange multiplier ) never
enters explicitly into the algorithm. That is, the solution is found by requiring

D = Vo —u(u-vd) =, (11.90)

where u is a unit vector in the direction of Vior. This is given by (cf. (11.10))

%:iZR.,%-g (11.91)
8ﬂk < ij (9,uk K :

so that the vector u is simply given by the vector of efficiencies, normalized to
unit length,

u= 1:_! (11.92)

We will use the differential operator D to denote the projection of the gradient
into the subspace of constant Viot, as defined by equation (11.90).

One begins thus at the point of maximum entropy and takes a small step in
the direction of Dlog L. The resulting g is in general not directly on the curve
of maximum &, but it will be close, as long as the step taken is sufficiently small.
As a measure of distance from this curve one can examine [D®]. If this exceeds
a given limit then the step was too far; it is undone and a smaller step is taken.

If the resulting point u were in fact on the curve of maximum ®, then we

would have a Dlog L + DS = ¢ and the corresponding regularization parameter
would be
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DS
“= Dlogl|

The parameter o can simply be set equal to the rigl.}t-hand side of ( 1.1‘93), and 3
side step taken to return to the curve of D® = 0. This can be done. using st@ndar
methods of function maximization (usually reformulated as minimization; cf.
[Bra92, Pre92]). These side steps as well are made such- that one remains }n the
subspace of vy = nyet, i.e. the search directions are projected into this subspaceﬂ.
One then proceeds in this fashion, increasing « by means of.the forwardsv.stepb
along Dlog L and moving to the solution D® = 0 with the side ‘steps, until the
desired value of AlogL = log Limax — log L is reached. Intermedl.ate regults can
be stored and examined in order to determine the optimal stopping point. '

Although the basic ideas of the algorithm outlined above can al§o be applied
to Tikhonov regularization, the situation there is somewhat compllcatfacl by t}}e
fact that the solution of maximum S(p) is not uniquely determined. For k = %,
for example, any linear function gives S = 0. One can simply start at Hi = nmt/.]\/[
and set the regularization parameter o sufficiently large that a unique solution
is found. N

It is also possible with Tikhonov regularization to leave fo the condition
Dy e Ttot, since here the regularization function does n(?t te.nd to p.uu thve
solution to a very different total normalization. If the normalization condition is
omitted, however, then one will not obtain exactly >, Ui = nyor. One can argue
that 2yo¢ should be an unbiased estimator for the total number of events, but
since the bias is not large, the constraint is usually not included.

(11.93)



