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OlOCIHdSUC ploCesses

Find functions f;(f) and f,(f)=—f(t) such that a standard Wiener
process is between f; and f, with probability (a) 0.5, (b) 0.95.

What is the probability that —./t < W(t) <./t? :
Prove that the transition probability density (11.12) of a Wiener process

with drift satisfies the heat equation (11.13).

Use Theorem 6.5 to find the characteristic function of X(s)=x, +
us + o W(s).

Let N= ”23“, be a Poisson process with parameter 1. Find the mean

and covariance functions of N.
Let M = dN/dt, where N is as in Exercise 14. What would a mmBEo path

of M look like? Use the results of Exercise 7 to ascertain the mean and
covariance functions of M.

For s>0,¢> 0 find the correlation coefficient p(s,t) (see section 1.3) of
W(s) and W(t). Assume s < t and sis fixed. What happensto p ast — 0?

12

Diffusion processes,
stochastic differential
equations and applications

121 DIFFUSION PROCESSES AND THE KOLMOGOROV
. (OR FOKKER-PLANCK) EQUATIONS

To introduce a wide class of random processes with properties similar to
those of a Wiener process with drift, we generalize the constant drift parameter
p and variance parameter o of such a process, so that they vary with the
value of the process and possibly the time. For a general process X, we have
that the increment in the small time interval (¢, ¢t + At] is

AX(t)=X(t + At) — X(2).

Now the properties of this increment may depend on the time ¢ and the
value x of the process at the beginning of the small time interval. We therefore
condition on X(t) = x and define the infinitesimal first moment, or infinitesimal

mean, as

a(x,t) = lim EAXgl X = u&.

(12.1
At—0 DH v

Note that because we have taken the expectation, this is not a random
quantity. Thus a(x,?) is a deterministic function of x and t. Similarly we
define the infinitesimal second moment, or, as will be seen in Exercise 1,
infinitesimal variance,

(12.2)

E[(AX)?|X(t) =
At—0 At
We assume that the higher order infinitesimal moments are zero, so that, for
n=3,4,...,
E[(AX)"|X(t) =
b ELAXY1X() =x]

=0. (12.3)
At=0 At
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This indicates that changes in the process in small time intervals will be
small, and in fact small enough to make the sample paths continuous for
suitably chosen functions « and f. Such a process is called a diffusion process
and behaves in a fashion similar to a Wiener process — although its paths
are continuous, they are with probability one non-differentiable. The drift
(«) and diffusion (8) components depend on the position and the time.

Once the drift and diffusion terms are specified, we are in a position to
obtain as much information as we require about the process if we can find
its transition probability density function. Fortunately this can always be
done because as the following theorem indicates, this function satisfies a
partial differential equation which is a general form of the much studied heat
equation — the differential equation (11.13) satisfied by the transition prob-
ability functions of the Wiener process with drift.

Theorem 12.1 Let p(y,f|x,s) be the transition probability density function
for a diffusion process with first and second infinitesimal moments a(y,t) and
B(»,1) as defined in equations (12.1) and (12.2) respectively. Then p satisfies
the forward Kolmogorov equation

op__9ep) 1 a*(Bp)

= ’

ot dy 2

with suitable initial and boundary conditions.

(12.4)

Equation (12.4) is also called a Fokker-Planck equation, especially by
physical scientists, who sometimes refer to it as a ‘Master equation’, to
empbhasize its generality. Proof that this equation follows from the Chapman—
Kolmogorov equation (11.14) and the relations (12.1)—(12.3), though not
difficult, is rather long and is hence omitted here. Interested readers may
refer to, for example, Jaswinski (1970).

The equation (12.4) is called the forward equation because the variables x
and s which refer to the earlier event are considered to be fixed as the later
variables y and t vary. One may also consider p as a function with fixed
values of y and t, and allow the earlier variables x and s to vary. This gives
rise to the backward equation which is often very useful, for problems such
as ascertaining times at which a certain value or set of values is first attained.

Theorem 12.2 Let o and f§ be the first and second infinitesimal moments of
a diffusion process. If the process has a transition probability density function
p(,1|x,s), then this density considered as a function of x and s with y and ¢
fixed, satisfies the backward Kolmogorov equation,
i) op 1 &
_OP_ P _pg%P (12.5)

os ox 2 ox?
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The derivation of the backward equation from the Chapman—-Kolmogorov
equation is also relatively straightforward but will again not be given here.
In addition it will be seen that the transition probability distribution function
P(y,t|x,s) also satisfies equation (12.5).

Time-homogeneous processes

In many problems of physical interest, the behaviour of a process depends
not on the actual value of the time, but rather the length of the time interval
since the process was switched on. Such a process is called temporally (or
time-) homogeneous and nearly all diffusion processes which have arisen in

-applications fall into this category. (Note that some authors refer to such a

process as one with stationary transition probabilities.) Clearly the first and
second infinitesimal moments of such a process do not depend explicitly on

. time, so we have a(x, t) = a(x), and B(x,t) = B(x), being functions only of the

state variable. Furthermore we have

ﬁQ.n_xuhvuﬁA.ym'h_xuOVv

so Emﬂ we can conveniently drop one of the arguments of the transition
density. Thus we can use p(y, t|x) for the density associated with transitions
from a state X(0) = x. That is,
m P
p(y, %) u&?@@ < y|X(0)=x}.
. The forward and backward Kolmogorov equations now take somewhat
simpler forms. For the forward equation we have

o _ _oep) , 1 P0p)

i 5y 2 oy (12.6)
and, as is seen in the exercises, the backward equation simplifies to
op op 1 d%p
—=ax)—+= PRk :
o ( me NE&QN (12.7)

Boundary conditions

When investigating the properties of a diffusion process by means of the
Kolmogorov differential equations, it is necessary to prescribe appropriate
boundary conditions in order to solve the latter. To be specific, let us assume
that the diffusion process is on the interval (x,,x,) and the time at which it
commences is t=0. Assume from now on also that the process is time-
homogeneous. For the Kolmogorov equations involving the transition density
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Alternatively, the formula (see section 12.2)
K,
Py
B»)¢()
with
r2(b — ay’)

¢(y) =exp o dy' |

can be employed — see the exercises.

125 STOCHASTIC INTEGRALS AND STOCHASTIC
DIFFERENTIAL EQUATIONS

We have seen in section 11.4 that a Wiener process with drift can be charac-
terized by the stochastic differential equation

dX =pudt+odW.

The correct interpretation of this equation is in terms of an integral involving
a Wiener process — called a stochastic integral.

There are a large number of integrals which one may define in connection
with random processes. Mathematical complexities arise when integrals
involving W are considered because of the irregular properties of the paths
of W. This means that the methods of defining integrals given in real-variable
calculus courses cannot be used. We will consider stochastic integrals very
briefly and somewhat superficially — there are numerous technical accounts —
see for example Gihman and Skorohod (1972), Arnold (1974), Lipster and
Shiryayev (1977) or Oksendal (1985). Our main purpose is to enable the
reader to understand and know how to use a stochastic differential equation
of the general form

dX(t) = f(X(),t)dt + g(X(2),t) AW (2).

Equivalently, dropping the reference to ¢ in the random processes, we can
write this as

dX = f(X,2)dt + g(X, £) dW, (12.20)

where f and g are real-valued functions, Wis a standard Wiener process and
X is a random process which in cases of interest will be a diffusion process.
However, it must be stated at the outset that (12.20) does not always have
a unique interpretation. This situation arises for the following reason.
Equation (12.20) is interpreted correctly as implying the stochastic integral

equation
X()=X(0) + R:\Cms. t)dt’ + %.ﬁ.ﬁ&v t)dw(t), (12.21)
(1] (o]

and the process X so defined is called a solution of the stochastic differential
equation (12.20). Although the first integral here presents no problems, there
are many ways of defining the second one,

gX(¥),t)dW (),
0

which is called a stochastic integral. Furthermore, the different definitions
can lead to various solutions, X, with quite different properties.

Despite this apparent ambiguity, there are two useful definitions which
are most commonly employed — the Ito stochastic integral and the Stratonovich
stochastic integral; and there is a simple relation between these two.

A note on notation. It is preferable in (12.20) not to ‘divide’ throughout by
dt, because as we have seen, the derivatives of W and hence of X do not
exist in the usual sense. However, as long as we keep that in mind, it is
possible to display (12.20) as a stochastic differential equation involving white
noise w, the ‘derivative’ with respéct to time ¢t of W (see section 11.3):

dx
dt
or perhaps even
dx :
dt
Stochastic differential equations written in this form are often called Langevin

equations.

Let us now make an important observation on the stochastic differential
equation (12.20). If the function g is identically zero, the differential equation
is deterministic and can be written in the usual way

dx

Y f(X,0).
Assuming the initial value X(0) = x, is not random then X(¢) is non-random
for all ¢ and this equation is solved in the usual way.

We expect that the behaviour of solutions of this deterministic equation
would be related to those of the stochastic differential equation (12.20), and
be close to them when the noise term g is small. We would be correct in
believing that, in particular, the expected value E[X(t)] of the solution of
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(12.20) would not be very far, in most cases, from the solution of the

deterministic equation.
This can be illustrated nicely with the Wiener process with linear drift ut
and variance parameter o. From section 11.4, this process has the stochastic

differential equation (11.11):
dX =udt+odW.

Here
f(X,0)=4p
and
g(X,t)=o.
If we put 0 = 0 we obtain the deterministic differential equation
dx
Fia

The solution of this with initial value x, is
X(t) = xo + ut,

and this, as seen in section 11.4, is equal to the mean value function of the
process satisfying (11.11). The added noise makes the paths of X very irregular,
but the mean value is still ut. This was depicted in Fig. 11.4.

Heuristic interpretation

Before proceeding more formally, let us describe roughly how we can under-
stand an equation of the form (12.20). This can perhaps best be accomplished
by writing the related difference equation

AX = f(X, )At + g(X, )AW. (12.22)

Here we may regard the (random) increment in X in the time interval
(t,t + At] as having two components. The first component is equal to the
value of f(X,t) at the beginning of the time interval multiplied by the length
At of the time interval. The second component is the value of g(X,¢) at the
beginning of the time interval, multiplied by the (random) increment AW =
W(t + At) — W(t) that occurs in a standard Wiener process in At. As we have
seen, AW is a Gaussian random variable with mean zero and variance At.
We have essentially outlined a method of simulation of the stochastic
differential equation (12.20) - this will be elaborated on below.

It should be realized, however, that even though the functions f and g are
functions in the usual deterministic sense, both the components of the
increment in X, namely, fAt and gAW, are random variables, because

S PSS -

f(X(2), 1), as well as g(X(), t) are random variables by virtue of their dependence
on the value of the random variable X(t).

We will now proceed to define the Ito integral, then state, with the aid of
a proof outline, a change of variable rule called Ito’s formula. This will be
followed by a brief consideration of the Stratonovich integral and the roles
of the various integrals in stochastic modelling.

The Ito stochastic integral

We are going to define the Ito stochastic integral
b
J = % S dw),
o

where {f(t),te[a,b)} is a suitable random process. (The f here is general
and not related to that in (12.20).) Suitable random processes will be said to
belong to class M. We define this class as containing random processes f
which satisfy the following requirements:

(i) f is a non-anticipative process. In the present context this means that
questions about f up to and including time t can be answered without
knowledge of the evolution of the Wiener process W for times beyond ¢; or
one could say that the evolution of; f up to and including any particular
time is independent of future values of W.

(ii) the integral of the square of f(t) over [a,b) is finite with probability
one; that is,

Pr ._;GAENQAS =1.

Thus the sample paths of f cannot be often singular or too wildy fluctuating —
such paths may occur, but their associated probability is zero. When an
event occurs with probability one it is said to be almost sure so we could
say that the integral of f 2 js almost surely finite. Note that the integral
appearing here is, like the Ito integral we are about to define, a random
variable, which takes on various values as the various sample paths of f arise.

Definition of Ito stochastic integral for simple random functions

A simple random function (or step function), in the present context, is one
which is constant on sub-intervals of [a,b). Such a function is represented
schematically in Fig. 12.2. The constant values on the various sub-intervals
are actually random variables — fixed ones — rather than numbers as in real-
variable calculus. We will insert the underlying sample-space variable o to
make it clear that these are constant random variables. Thus we may put

.\.An»n@v".\“%«bv‘ NRMN.AJ+H- .\."Ogﬂo....Ble
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f

t=a ty t, t=b

>t

Figure 12.2 A schematic representation of a simple function /- In the present context
the constant values on sub-intervals are actually random variables.

where a=ty <ty < <t,-y <t,=bisa partition of the interval [a,b) and
the {f;} are a set of n random variables.

Now for each sub-interval [¢;,t;. ;) of [a, b) we can define the corresponding
increment in a standard Wiener process

Dﬁ\ﬂ\.\"ﬁ\ﬂ\An‘..Tthﬂ\w\AH\vV .\.“O»Hv...valﬁu
which defines a further n random variables. We are now ready to define the
Tto stochastic integral of a simple random function f with respect to a Wiener
process as

n—1

b
fOAwW@E) = Y. f;AW;

j=9

We note that we could also write this as
b n—1

fOdwWE)= Y, fE)[W () — W] (12.23)
a j=0

Erwow will be a useful observation when we distinguish between the Ito and

Stratonovich integrals.

In order to define the stochastic integral for the general class of random
processes we have called M, we state the following lemma without proof — see
the references at the beginning of this section. This lemma tells us that for

any random process f in M, we can be sure there is a sequence {fun=12,.. o

~

also in M, whose members get closer and closer to f as n— oo, in the following
sense.

Lemma Let feM be a random process in the class defined above. Then a
sequence of simple functions f,()eM exists such that as n'— oo,

b
() — £ dt 5 0.

That is, this sequence of integrals, which measure the distances between f and
f.., converges in probability to zero — recall the definition of this mode of
convergence in section 6.6. :

Definition of Ito stochastic integral for arbitrary feM

Since we know how to define the Ito stochastic integral for simple functions, ,
we extend the definition to arbitrary random processes in M by using a
sequence of approximating integrals of simple functions. The limit of this
sequence is defined as the required integral. Thus we set

b b
% f@AW(@) = lim | f,(5)dW(),
a .,.:lgo a
where the limit is again in the sense of convergence in probability of a sequence
of random variables. The above lemma guarantees that a suitable sequence
{f.(t)} of approximating random functions exists.

We mentioned that other definitions can be given for the Ito stochastic
integral according to the different properties which are ascribed to the
integrand f(t). Usually these conditions are more restrictive (stronger) than
the ones we have employed. However, then, and indeed in most cases of
practical interest, we have the following results concerning the mean and the
variance of the Ito stochastic integral:

(i) Mean
E v\SQS\S =0. (12.24)

a

(ii) Variance

E .?Sas\s g QNS& (12.25)

We will not prove (12.25) but (12.24) will be considered in the exercises.
Furthermore, if f and g are both in M then

E( | fodwex | g0dw@ )= ELf®g@)1de.  (1225)

a
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Thus the differential equations (12.4) and (12.5) satisfied by the transition

probability density function can be obtained simply from the stochastic

differential equation.
In particular, for a time-homogeneous process with stochastic equation

dX = f(X)dt + g(X)dW,

the forward Kolmogorov equation for the transition density p(y, t|x) is, from
Equation (12.6),

o _ _oyop) , 1960

ot dy 2 oy’
and the corresponding backward equation is, from Equation (12.7),
ap op 1, %p
—_— s + - _
el v s

If a stochastic differential equation is given with Stratonovich’s interpreta-
tion, it may first be converted to an Ito equation using Equation (12.30);
then Theorem 12.5 will yield the infinitesimal moments of the process.

It might seem that, in modelling a random phenomenon with a stochastic

differential equation, an ambiguity arises in the choice of an Ito or Stratonovich
@Emm\:bl? This, however, is not the case. A diffusion process 1s specified
once its infinitesimal mean and variance are given. Thus, when deriving a
model one must be certain that these infinitesimal moments are correct. Once
this is done it matters not which stochastic calculus one adopts.

A word of caution is necessary. It is not a good idea to take an existing
deterministic differential equation and convert one of its parameters to white
noise. The reason is that in most cases there will be ambiguity because there
is no a priori reason why a particular interpretation, Ito or Stratonovich,
should be correct. A particular choice would only be defensible if the
infinitesimal moments could be ascertained to be the correct ones. This will
be illustrated in the exercises. However, in certain cases it has been shown
that limits of sequences of discrete stochastic equations have solutions
corresponding to the Stratonovich differential (Wong and Zakali, 1965).

127 APPLICATIONS

Diffusion approximation to a random walk

Suppose a random walk X, = {X,(z),¢ >0} occurs with jumps up or down
of magnitude &. Jumps up form a Poisson process N; with intensity 4 and
jumps down form another Poisson process N,, independent of N, but with
the same intensity. One may assume for convenience that the processes start
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at zero at time t=0. Note that this random walk, sometimes called a
randomized random walk (Feller, 1971), differs from the simple random walk
of Chapter 7 in that there the jumps (steps) occurred at fixed time intervals
whereas now they occur at random times.

We may write the following expression for the value of the process X, at

time t:
X, (t) =eN,(t) — eN,(t).
Similarly we may write the following expression for the increment in X, in
the interval (¢, ¢t + At]:
AX,=X,(t+ At)— X ()
= e[N(t + At] — N,(8)] — e[N,(t + At) — Ny(t)]
=¢AN; — eAN,.

One can also write the following stochastic differential equation involving

" Poisson processes:

dX, =e[dN, —dN,].

We will now determine the first two infinitesimal moments of a diffusion
process, X, obtained from the X sprocesses as the jump magnitudes ¢ go to
zero and the jump rates A go to infinity — but in such a way that these
moments remain finite and non-zero in the limit. We may call this a diffusion
approximation to the original discontinuous random walk — and this approxi-
mation will have, as we have seen, continuous sample paths. The situation

is illustrated in Fig. 12.3.
Now as we have seen in Equation (9.2), the increments in the Poisson

process N, are such that:

1, withprob. AAt+ o(At),

AN, = :
0, withprob. 1—AAt+ o(At),
and the probabilities of other values are o(At); similarly for increments AN,

in the process N,.
Thus, utilizing the fact that the increments are independent of previous

values and that the two Poisson processes are independent, we have

E[AX,|X,(t) = x] = o(At) (12.31)
and
Var[AX,| X, (t) = x] = e[ Var(AN,) + Var(AN;)] =~ (12.32)
= 2e2AAt + o(At).

The first two infinitesimal moments, &, and f,, of X, are thus, from (12.31)
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When the Ito definition of stochastic integral is used in the interpretation of
equation (12.20) we call it an Ifo stochastic differential or Ito stochastic
differential equation. The process X is called the solution of the equation.
There are many accounts of existence and uniqueness theorems and properties
of the solution — see for example the references at the beginning of this section.
We will avoid technicalities and simply assume that the functions f and g
are suitable.

Ito’s formula

When one uses Ito’s definition of stochastic integral, the usual rules of calculus
sometimes must be modified. This is not the case with the Stratonovich
definition considered below. In particular, one must be careful when changing
variables as the following result, called Ito’s formula, shows.

We will not give a detailed proof, which can be found for example in
Liptser and Shiryayev (1977). We will simply utilize the fact that

(dW?) acts like dt. (12.26)

This statement can be understood in terms of the following probability
one relation (see, for example the previous reference) for the so-called
quadratic variation of W over the interval [0, t):

lim 'Y (Wit ) — W) =,

n—o j=0

where {0 =1, <t, < <t,=t} is a partition of [0, ¢). This suggests we can
write

% dW)? =t.
0

and the latter can be written as (12.26). The significance of this result for our
purposes is that whereas second order differentials such as (df)* can usually
beignored, (dW)? is of the same order as d¢ and hence cannot be neglected.

We are now ready to discuss Ito’s formula.

Notation. In the following we will use subscripts to denote partial differen-
tiation with respect to a variable. Thus, for example, if h = h(x, t) then
0%h

F: = Ty
otox

Theorem 12.4 Let the random process X have the Ito stochastic differential

dX=f(X,0)dt + g(X,1)d W, (12.27)

A LA LA LA dhh L ) o o

for suitable functions f and g. Suppose we change variables by putting
Y = h(X, ).

Then Y satisfies the Ito stochastic differential equation

b
AV = fhy+ 5 b+ by |dt + hogdW, (12.28)

=
where £, and h, are the first partial derivatives of the function h with respect

to its first and second variables, respectively, and A, is the maaoi partial
derivative of k with respect to its first variable. Equation (12.28) is called

Ito’s formula.

Proof outline It we use the first few terms in a Taylor’s expansion for h we get
dY=h,(X,0)dX + h(X,1)dt
+3h (X, (dX)? + ho(X, 0 dX dt + Lhy(de)* + -
=h (X, 0)[f dt + gdW] + h(X,1)dt
+1h (X, 0[f(d)? +2fg dedW + g*(dw)*]
+ ho (X, O[f dt + g dW1dt + Lhy(X, D(de)* + -

Retaining only those terms of order dt or dW, we obtain (12.28). There is
the extra term involving h., which is absent in standard calculus.

Example
Suppose X is a standard Wiener process and so satisfies the stochastic
differential equation

dX =dWw.
What Ito stochastic equation does the new variable

Y =X?

satisfy?
Solution

Relating this to the standard form (12.27), we find f(X,t)=0 and g(X,t)= 1.
Now h(X,t) = X?, so we have

h(X,t)=2X
h(X,t)=2
h(X,1)=0.




Using (12.28) we see

dY=[2X.0+12+0]dr+2XdW
or

dY=1dt+2,/Ydw,

which is the required stochastic differential equation for Y. The extra term
is 1dt. Other examples will appear as exercises.

Stratonovich’s stochastic integral

Consider equation (12.23) where the Ito integral was defined for simple
functions. The Stratonovich integral differs in that instead of employing the
value of f at the beginning t; of the sub-interval [t;,¢;,,), the value at the
mid-point (¢; +¢;,,)/2 is used. The integral is thus said to be symmetrized.
This difference is sufficient to alter sometimes the properties of the resulting
random variable significantly.

With the Stratonovich definition, the change of variable formula (12.28)
becomes simply

dY=[fh, +h]dt +h,gdW, (12.29)

and usual calculus rules (product rule, quotient rule, etc.) can be used.

However, in most cases encountered in modelling real-world phenomena,
one may switch back and forth from the Ito and Stratonovich schemes by using
the following simple result. If X satisfies the Stratonovich stochastic differential
equation

dX = f(X,t)dt + g(X, 1) dW,
then the corresponding Ito equation is
dX = [f(X, 1)+ 39(X, )g.(X, 1)1 dt + g(X, 1) dW. (12.30)

Note that if g contains no explicit X-dependence, then g, is zero and there
is no difference between the two definitions. In particular, for all equations
of the form

dX = f(X,t)dt + g(¢)dW,
it makes absolutely no difference whether the interpretation is through an Ito
or a Stratonovich stochastic integral.
Example
If X satisfies the Stratonovich equation
dX =Xdr + X*dw,

what is the equivalent Ito equation?

Solution
Here f=X and g = X2 Hence g, =2X and we find
dX = _HN.+W.KN.N;N“_&+XNA=\<

or
dX =[X + X 1de+ X*dW.

is the corresponding Ito equation.

126 MODELLING WITH STOCHASTIC DIFFERENTIAL
EQUATIONS

We have seen in the last section that a wide class & Bsa.oa processes may
be defined directly by writing down a stochastic differential equation of

form
QNH\QLVQH‘TRNLVQSA

where we call f(X,?)dt the drift term and g(X,t)dW mrm _._cmwn term. In mqg,
s of interest, the solutions of such equations are diffusion processes which,
analytical methods in section 12.1. 5. that section, au.:caoc
processes were defined in terms of their first m:bi.azs& moment — given g
«(x,?) in Equation (12.1)-and infinitesimal variance — given as Blx, 1) .m 5
Equation (12.2). Such processes have sample paths which are continuous v},
Eﬂu wwﬁwﬁw MMo.éQ convenient to have a n&mnouwav between these ty,
representations so that given a mﬁoavmwco differential equation for X ope
could immediately ascertain its EmESEEm: mean and variance, m,za vice
versa: — given the infinitesimal moments, write down the oo.ﬁo%on%:m Sto-
chastic differential equation. It is indeed possible to accomplish these switcheg

very easily as the following result shows.

case
were defined by

Theorem 12.5 Let X be a diffusion process with Ito stochastic differengjg)
equation
dX =f(X, 1) dt + g(X, 1) dW,
where fand g are suitable functions. Then the infinitesimal mean of X is gjyo,
by
a(x, 1) =f(x,0),
and the infinitesimal variance of X is given by

Bx, 1) = g*(x, 0).
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Sample path for jump process

Value of process

X(0)

Sample path for diffusion

-
>

Time

Figure 12.3 Showing how the discontinuous random walk is approximated by a
diffusion process with continuous sample paths.

and (12,32) respectively, and the definitions (12.1) and (12.2),

A
i w2
At=0 At
and
. 2e%AAt  o(Ab)
x,t)= lim ———+ ——
hnA v At—=0 Dn Dn
=2g2).

Let us now make ¢ vanish and A grow to infinity but insist that the
infinitesimal variance remains finite and nonzero. This can be easily achieved

if, for example, we require
. 1 - ,
A=— (12.33
* %t _ )
In this case, the first and second infinitesimal moments of the limiting process
X are
a(x,t) = 0,
and

Blx,t)=1.
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With our choice of the relation (12.33) and letting ¢— 0, it will be seen in
the exercises that all the higher order infinitesimal moments of X vanish as
required by (12.3) — although some are zero regardless of the value of e.

We can now use Theorem 12.5. Since f(x,t)=1 we have g*(x,t) =1, so,
choosing the positive root,

glx,t)=1.
Hence the diffusion process approximating the random walk has the stochastic
differential equation

dX =dw.
That is, X is a standard Wiener process. One may also illustrate this

convergence to a Wiener process using characteristic functions —see the
€Xercises.

. A mathematical model for the activity of a nerve cell (neuron)

In Fig. 12.4 we depict a nerve cell or neuron — a component of the nervous
system. The one depicted is a pyramidal cell of the part of the human brain
called the cerebral cortex. Such cells are specialized to receive signals from
other cells at the junctions called' synapses. If no signals are received, the
electrical potential difference V,, across the target cell membrane tends to a
fixed value called the resting potential, which we designate by V. Usually
Vx is about 70 millivolts (the inside being negative) or about ssth of the
voltage of the familiar AA battery.
Let us denote the difference between V,, and Vj by V:

V= “\R - ﬁ\xv

— see the left part of Fig. 12.5. V is called the depolarization.

As explained at the end of Chapter 7, the incoming signals may excite the
target cell: this makes V), less negative, in which case V is increased. We
assume that each such incoming signal increases ¥ by an amount a; and
that such signals occur as a Poisson process N with intensity Az. Alternatively
an incoming signal may inhibit the target cell, thereby decreasing V (which
can go negative), by an amount g;. Let such inhibitory effects be generated
by a Poisson process N; with intensity A;. These events result in V’s executing
a random walk as depicted on the right in Fig. 12.5.

The state of the neuron at time ¢t can thus be characterized by

V(t) = agNg(t) — a;N,(t),

and we assume V(0) =0, so the cell is initially at resting level. The reader
can show that the mean and variance of the change in V during (¢, t + At] are

E[AV] = aghgAt — a; 1, At + o(At),

3
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Em.ﬁm 12.4 Here we depict a class of neuron called a pyramidal cell, showing the
main components of axon, dendrites and soma. The neuron is shown connected into
a network through synapses at which other cells transmit signals to the target cell
Here a (+ ) indicates an excitatory junction whereas a (—) denotes an inhibitory one. .

and
Var[AV] = aligAt + azl, At + o(At).

pﬁ&:m by At and taking the limit Az — 0, we obtain the first and second
S».E:om_B& moments. We may construct a diffusion approximation V*(t)
to V with the same infinitesimal mean and variance, viz.,

o(x,t) = aghy — ari;,
Bx,t) = azA, + a}d,.
Using Theorem 12.5, we find the following stochastic differential for V*:
Qﬂ\* “AQN&MIQNM&V QHIT QMNELIQNNLQ Q“\ﬂ\

M:hm will be recognized as the stochastic equation for a Wiener process with
rift.

QOutside 0OmV

Potential

Resting level ~~70mV

Figure 125 On the left we show the relation between V, Vg and V). On the right
are shown the variations which occur in V as signals come in from other cells. Two
excitatory inputs (Ex.) and one inhibitory input (Inhib.) are depicted. The solid line
is a trajectory for the process apNg(t) —a;N,(t) used in the text to model V. The
dashed line represents the more physiologically realistic trajectory involving decay to
resting level (V= 0) between input events.

The mean and variance, as well as the transition density of the state of a
nerve cell can be estimated using this approximation. In addition, the time
taken for V or V* to reach a threshold value, 6, say, can be determined
as a first passage time. When V reaches this threshold value, which is usually
about 10 millivolts (i.e, 0.01 volts) from resting level, our target cell itself
sends out a signal along its axon (see Fig. 12.3) to excite or inhibit other
neurons. The whole collection of neurons is sometimes called a neural network.
Details of such calculations can be found in Tuckwell (1988) where it is also
seen that the Ornstein-Uhlenbeck process (see section 12.4) is a somewhat
more realistic mathematical model for a neuron than the Wiener process
with drift. In the absence of inputs the OUP model correctly predicts that
the electrical potential across the neuron’s membrane will return exponentially
to resting level. .

A model for population growth in a random environment

As we have seen in section 9.1, when a population grows in an unrestrained
way, the population size x(t) at time ¢t may be approximated by the solution
of the deterministic differential equation

dx
= =rx, 12.34)
de (



where the assumed constant growth rate r is the difference between the birth
and death rates. This is the Malthusian law with exponential solutions

x(t) = x(0) ",

x(0) being the initial population size.

There are often factors, particularly environmental ones, which make the
birth and death rates chop and change from generation to generation. For
example, in very cold or very dry seasons we might expect a higher death
rate in populations of many species, so r would drop below some long-term
average value. The same might happen in very hot and very wet seasons.
On the other hand, if climatic conditions lead to an abundance of food, r might
increase above its average value, but this would be complicated if an
organism’s predators also benefited.

This suggests that a more accurate mathematical model of population
growth would result if the growth rate r and hence the population size x are
random processes. The simplest (but not necessarily accurate) assumption is
that the growth rate r(f) is the sum of its constant mean value # and a
fluctuating white noise,

rt) = F + ow(t),

where ¢ is a variance parameter and w(t) is standard white noise, defined in
section 11.3. Then we may write the model for the random population size
X(@),

dXx

= =+ owO)X0),

or, more satisfactorily as the stochastic differential equation,
dX =FXdt+ocXdW. (12.35)

We let the initial value be
X(0) = x,.

As mentioned in the last section, the approach we have used has the
apparent drawback of necessitating a choice of stochastic integral. Fortunately,
however, in this case the derivation of a diffusion approximation to Malthusian
growth has been carried out (Tuckwell and Walsh, 1983a) from first principles.
This approximation satisfies Equation (12.35) interpreted as a Stratonovich
equation. Note that this does not imply that the Stratonovich integral is
better or more correct than the Ito integral.

If we proceed with Equation (12.35) as a Stratonovich equation we can
use the usual rules of calculus. In particular, we find that the change of variable

Y=In(X)

Jeads to

dy _dY dX

dr  dXx dt
_lax
TX de

Thus

dy _ 4w

—=F 4O~

dt dt

or, equivalently,
dY=7dt+odW.

a Wiener process with drift. This

Thus the transformed process Y is simply
oo ; n method (Tuckwell, 1973;

is a particular case of a general transformatio
1974) in which the equation

dX = f(X) [pdt + adW]

is transformed to a Wiener process with drift using the transformation

1 dx’
Y=1 7

— see the exercises.

Note that in our present app
whereas the possible values of Y are in (— o, 00).

nd Y(0) = y,, then yo =In(xo). . .
) Hsoﬁs.vmsm‘w\mou aosmmw of NM %}oson process with drift was given by Equation
(12.15). If, in conjunction with that result, we use Equation .C.S for the
transformation of a density under 2 monotonic ogsmm of variable, we are
immediately able to find the transition probability density of the population

size X as

lication the possible values of X are in (0, 00)
In addition, if X(0)= X,

1 —[In(x/x0) — 7t]? .

exp| ———

X, t|Xg) =—
e x/ 2ot 207t

bility Py that the population eventually

Now, we can see that the proba
becomes extinct can be estimated from
Py = lim Pr{X(t) <e|X(0)= Xo)
t—
where ¢ > 0 is arbitrarily small. Note that X can never reach exactly zero 1n
this model — for we know that Y can never reach — co. However, an extremely
small population size implies extinction in a continuous model.
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It will be seen in the exercises that
0, if 7>0;
Pp=(3, if =0

1, if r<0.
Thus, if the mean growth rate is negative, the population will become extinct
with certainty, regardless of either the initial population size or how great
the fluctuations (o) are in the growth rate. In this model, if a zero population
growth policy is sustained on average, there is a 50% chance of long-term
survival.

In addition, diffusion processes and stochastic differential equations have
been usefully employed to model gene frequencies (Kimura, 1964; Tuckwell,
1976a; Watterson, 1979) — providing continuous approximations which are
usually easier to work with than the Markov chain models we considered
in Chapter 8, where additional references can be found. With these tools,
important questions in the theory of evolution can be addressed.

Applications in financial modelling

As exemplified by Figure 11.2b, many quantities of financial or economic
interest undergo random fluctuations. Needless to say, if the random compo-
nent was absent, stock prices, for example, would be predictable so that there
would be no risk involved in buying or selling shares. This would imply little
possibility of profit and stock markets might cease to exist per se.

It is clear that a sound mathematical model for fluctuations in financial
entities such as stock and commodity prices, exchange rates, etc. would be
very useful as one could then make quantitative estimates for the prob-
abilities of future values, expected profits, waiting times to reach certain
levels, etc. .

As early as 1900, the French mathematician Bachelier proposed the
modelling of stock market fluctuations using a Wiener process. It was
subsequently recognized that because the prices of shares could not be
negative, a modification to the simple Wiener process was necessary. One
solution proposed was the adoption of so-called geometric Brownian motion
or the geometric Wiener process to represent certain financial entities. Thus
Y=In(X) should be a Wiener process with drift —so that X =e’ might
represent a stock price. We then have Ye(— o, co) but X e(0, 00).

Another assumption can be made that the expectation of a stock price
grows in an exponential fashion (Samuelson, 1965). Thus if X{(¢) is a stock
price at time ¢, then

E[X () X(0) = x0] = xoe", (12.36)

where u represents a constant growth rate.
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To satisfy these requirements we need only put
dX =[pdt +odW]X,

s in Ito stochastic differential equation. That this gives
12.36) will be verified in the exercises. The process X is
) d was analysed in the context of general
Smith and Tuckwell

(12.37)

and interpret this a
the correct relation (
called geometric Brownian motion an
growth models, and in particular tumour ma.oézr by

(1974). . .
In the economics and finance literature, Equation (12.37) is ofte

MW“ta:.QQS\.
X

n written

This is an essential component of the Black—Scholes Boa&. for option prices
(Black and Scholes, 1973) which is often used by financial analysts. This
model, which provides a starting point for more m_mdoﬂﬁ models (Aase,
1988), leads to a formula called the Black—Scholes option \3§=S.EH an
option price in terms of variables such as term to maturity and :mwuwnn
interest rate. Wiener process models have been employed in the analysis of

exchange rates also (Werner, 1993).

Practical considerations ~ simulation, numerical methods and

parameter estimation

stic differential equations as mathematical models
it is often worthwhile, and in many cases necessary,
mulations. The computer simulation of diffusion
uckwell and Walsh, 1983b) and can be performed

When employing stocha
of empirical phenomena,
to perform computer si
processes is not difficult (T

as follows. . . .
pose that we wish to approximate solutions of the Ito equation

Let ussup
dX = f(X,1)dt +g(X,t)dW.
We choose a time step At and call our simulation X* with
X*(kAt) =~ X(kAt)
where k=0,1,2,... . We are given (or draw from a distribution) the value

X*(0) = X(0). Then we put, fork=12,...
X*(kAt) = X*((k — 1)AL) + f(X*(k - 1)At, (k — 1)At))At
+ g(X*((k — DA?), (k — :DS/\NMZG (12.38)
is a sequence of iid. standard normal random

nerated by the methods outlined in Chapter
ber generator. One performs a

where {N,k=1,2,...}
variables. The latter can be ge
5 — or simply by using a library random num
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large number of runs or trials for the process and can easily determine
estimates of quantities such as moments, distributions, and first passage or
first exit times, etc. .

An alternative to (12.38) is to employ a sequence of independent Bernoulli
random variables B, (see page 2) instead of the N, with

Pr{B,=1}=1/2=Pr{B,= —1},k=1,2,....

Then since E[B,] = 0 and Var[B,] = 1, one may simply replace N, in (12.38)
by B,. Since most computers have in their libraries a generator of uniformly
distributed random variables (see Chapter 5), U,, say, the sequence of
Bernoulli variables can be easily obtained by putting B, =1 if U, <1 or
B, = —1if U, >1. It has been found that when Bernoulli rather than normal
random variables are employed, the simulations may be performed about
three times faster (Tuckwell and Lansky, 1994). A detailed treatment of
theoretical considerations on the numerical solutions of stochastic differential
equations can be found in Kloeden and Platen (1992).

As mentioned earlier, another approach to the study of diffusion processes
is to use the analytical method. This will usually involve solving a Kolmogorov
or similar equation. Fortunately, even though the stochastic differential
equation may be nonlinear, the Kolmogorov equation is always linear. It is
then simply a matter of solving the latter using finite-difference approximations
either by explicit or implicit methods (Ames, 1977). The analytical approach
to first passage and first exit time problems is outlined in Siegert (1951),
Tuckwell (1976b; 1981) and Tuckwell and Wan (1984).

Finally, assuming that one has a satisfactory mathematical representation,
in the form of a stochastic differential equation, for an empirical process that
one wishes to model, it is often desirable to estimate values of the various
parameters which occur in the model using observed sample paths. Various
methods are available, including maximum likelihood (Feigin, 1976) and
quasi-likelihood (Heyde, 1993).
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