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Equation (7.1) states that the values of X at all times prior to n — 1 have no
cflect whatsoever on the conditional probability distribution of X, given X ol

Thus a Markov process has memory of its past values, but only to a limited
extent. ,

The collection of quantities _

MUH ANS = .w».._N:IH “Mk:luv

for various n,s, and S, ,» is called the set of one-time-step transition

probabilities. It will be seen later (Section 8.4) that these provide a complete
description of the Markov process, for with them the joint distribution
function of (X, X, _,,..., X,, X,), or any subset thereof, can be found for any
n. Furthermore, one only has to know the initial value of the process (in
conjunction with its transition probabilities) to determine the probabilities that
it will take on its various possible values at all future times. This situation may
be compared with initial-value problems in differential equations, except that
here probabilities are determined by the initial conditions.

All the random processes we will study in the remainder of this book are
Markov processes. In the present chapter we study simple random walks
which are Markov processes in discrete time and with a discrete state space.
Such processes are examples of Markov chains which will be discussed more
generally in the next chapter.

One note concerning terminology. We often talk of the value of a process at
time ¢, say, which really refers to the value of a single random variable (X)),
even though a process is a collection of several random variables. |
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,..
Suppose a particle is initially at the point x =0 on the x-axis. At each
subsequent time unit it moves a unit distance to the right, with probability p, or
a unit distance to the left, with probability g, where p 4 q = 1.

At time unit n let the position of the particle be X,,. The above assumptions
yield

with probability one,
and in general,
X,=X,_,+2Z2, n=12,...,
where the Z, are identically distributed with
Pr{Z,=+1}=p
Pr{Z,=—-1}=q.
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It is further assumed that the steps taken by the particle are mutually
independent random variables.

Definition. The collection of random variables X = { X, X}, X,,...} is called a
simple random walk in one dimension. It is ‘simple’ because the steps :_r.o only
the values + 1, in distinction to cases where, for example, the Z, are continuous
random variables.

The simple random walk is a random process indexed by a &.moﬂoﬁm mam
parameter (n=0,1,2,...) and has a discrete state space because its possible
values are {0, + 1, + 2,...}. Furthermore, because there are z.o bounds on the
possible values of X, the random walk is said to be unrestricted.

Sample paths
Two possible beginnings of sequences of values of X are

{0,+1,+2,+1,0,—1,0,+ 1, +2,+3,...}
{0,-1,0,—1,—2,-3,—4,-3,—4,—5,...}

The corresponding sample paths are sketched in Fig. 7.2.
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Figure 7.2 Two possible sample paths of the simple random walk.
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Murkov property
A simple random walk is clearly a Markov process. For example,
Pr{X,=2|X,=3X,=2,X,=1,Xo=0}
=Pr{X,=2|X,=3}=Pr{Z,=+1}=¢.

That is, the probability is g that X, has the value 2 given that X; =3,
regardless of the values of the process at epochs 0, 1, 2.
The one-time-step transition probabilities are

P, fk=j+1
ﬁmw”ﬂvﬂ%k;”\a_kﬂ_lnu.\@” Q. ;.NA“.\lH
0, otherwise

and in this case these do not depend on n.

Mean and variance
We first observe that

X1 =X0+2,
NNHN_ +N~H.Nc+N~+N~

k:"kOA_lNHl_INNlT...lTN:.

Then, because the Z, are identically distributed and independent random
variables and X, =0 with probability one,

BX)=E( 3. 7, )=nE(Z,)

and
Var(X,)=Var| ) Z, |=nVar(Z),).
k=1

Now,

EZ)=1p+(—1)g=p—gq
and

EZ)=1p+1g=p+q=1.
Thus

Var(Z,) = E(Z}) — EXZ,)
=1-(p—g)?
=1—(p*+q*—2pq)
=1—(p*+4q*+2pq) + 4pq
=4pq,
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since p>+¢>+2pg=(p+q)*>=1. Hence we arrive at the following ex-
pressions for the mean and variance of the process at epoch n:

E(X,)=n(p—q) (7.2)
Var(X,) =4npq (7.3)

We see that the mean and variance grow linearly with time.

The probability distribution of X,

Let us derive an expression for the probability distribution of the random
variable X, the value of the process (or x-coordinate of the particle) at time
n = 1. That is, we seek

plk,n) = Pr{X, =k},

where k is an integer.

We first note that p(k,n) = 0 if n < | k| because the process cannot get to level
k in less than |k| steps. Henceforth, therefore, n > |k|.

Of the n steps let the number of magnitude + 1 be N," and the number of
magnitude — 1 be N, , where N, and N, are random variables. We must have

X,=N—N,
and
n=N,)+N,.
Adding these two equations to eliminate N, yields
N, =4n+X,). (7.4)

Thus X, =k if and only if N, =4(n+ k). We note that N} is a binomial
random variable with parameters n and p. Also, since from (7.4), 2N, =n + X,
is necessarily even, X, must be even if n is even and X, must be odd if n is odd.
Thus we arrive at

L n (k+n)/2 (n—k)/2
p(k, n) (k + )2 p q

n = k|, k and n either both even or both odd.
For example, the probability that the particle is at k = — 2 after n = 4 steps is

4
p(—2,4)= 1 pq® =4pq>. (7.5)

This will be verified graphically in Exercise 3.
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Approximate probability distribution
I X, =0, then

N:” M qu
k=1

where the Z, are iid. random variables with finite means and variances. .
Hence, by the central limit theorem (Section 6.4),

Xy—E(X,) 4
N

as n— o0. Since E(X,) and ¢(X,) are known from (7.2) and (7.3), we have
uﬂ=.|.=A§ I1Qv d

- N(0,1).
/4npq

Thus for example,

Pr{n(p — q) — 1.96./4npg < X, < n(p — q) + 1.96../4npq } ~0.95.
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Figure 7.3 Mean of the random walk versus n for p=0.5 and p = 0.8 and normal
density approximations for the probability distributions of the process at epochs n = 50
and n = 100.
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After n = 10 000 steps with p = 0.6, E(X,) = 2000 and

Pr {1808 < X ;4000 < 2192} ~0.95,

whereas when p = 0.5 the mean is 0 and

Pr{—196 < X 0000 < 196} ~0.95.

Figure 7.3 shows the growth of the mean with increasing n and the
approximating normal densities at n =50 and n = 100 for various p.

7.3 RANDOM WALK WITH ABSORBING STATES

The paths of the process considered in the previous section increase or decrease
at random, indefinitely. In many important applications this is not the case as
particular values have special significance. This is illustrated in the following
classical example.

A simple gambling game

Let two gamblers, A and B, initially have $a and $b, respectively, where a and b
are positive integers. Suppose that at each round of their game, player 4 wins
$1 from B with probability p and loses $1 to B with probability ¢ = 1 — p. The
total capital of the two players at all times is

c=a+b.

Let X, be player A’s capital at round n wheren=0,1,2,...and X, = a. Let
Z, be the amount 4 wins on trial n. The Z, are assumed to be independent.
It is clear that as long as both players have money left,

Xp=X,-1+Z, n=12...,

where the Z, are i.i.d. as in the previous section. Thus {X,, n=0,1,2,...} isa
simple random walk but there are now some restrictions or boundary
conditions on the values it takes.

Absorbing states

Let us assume that 4 and B play until one of them has no money left; i.e., has
‘gone broke’. This may occur in two ways. A’s capital may reach zero or A’s
capital may reach ¢, in which case B has gone broke. The process
X ={X,,X,,X,,...} is thus restricted to the set of integers {0, 1,2,...,c} and
it terminates when either the value O or c is attained. The values 0 and ¢ are
called absorbing states, or we say there are absorbing barriers at 0 and c.
Figure 7.4 shows plots of A’s capital X, versus trial number for two possible
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Figure 7.4 Two sample paths of a simple random walk with absorbing barriers at 0 and
c. The upper path results in absorption at ¢ (corresponding to player A winning all the
money) and the lower one in absorption at 0 (player 4 broke).

games. One of these sample paths leads to absorption of X at 0 and the other to
absorption at c. |

74 THE PROBABILITIES OF ABSORPTION AT 0

Let P,,a=0,1,2,...,cdenote the probabilities that player A goes broke when
his initial capital is $a. Equivalently P, is the probability that X is absorbed at
0 when X, = a. The calculation of P, is referred to as a gambler’s ruin problem.
We will obtain a difference equation for P, |

First, however, we observe that the following boundary conditions must

apply:

NUO"H
P.=0

since if a=0 the probability of absorption at 0 is one whereas if a=¢,
absorption at ¢ has already occurred and absorption at 0 is impossible.

Now, when a is not equal to either 0 or ¢, all games can be divided into two
mutually exclusive categories:
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(1) A wins the first round;
(ii) A loses the first round.

Thus the event {4 goes broke from a} is the union of two mutually exclusive
events:

{A goes broke from a} =
(4 wins the first round and goes broke from a + 1}

U {4 loses the first round and goes broke from a — 1}. (7.6)

Also, since going broke after winning the first round and winning the first
round are independent,

Pr {4 wins the first round and goes broke from a + 1}
= Pr {4 wins the first round} Pr {4 goes broke from a + 1}
= EMVN..T 1

Similarly,

(7.7)

Pr {4 loses the first round and goes broke from a — 1}

=qP, ;. (7.8)

Since the probability of the union of two mutually exclusive events is the
sum of their individual probabilities, we obtain from (7.6)(7.8), the key
relation

th”ﬁmvh.?»l*lﬂwalw > Q”HuNu. A‘N.Wv

This is a difference equation for P, which we will solve subject to the above
boundary conditions.

Solution of the difference equation (7.9)

There are three main steps in solving (7.9).

(i) The first step is to rearrange the equation
Since p + g = 1, we have

Aﬁ+®v~un”§~U=+~+QNunlr

NwAmu=+H .lmuav“QAthllmv I»v.
Dividing by p and letting

or

gives
~u=+H|Nua”wA~ualmv IHV.
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It is seen that when p = g and ¢ = 10 and both players in the gambling game
start with the same capital, the expected duration of the game is 25 rounds. If
the total capital is ¢ = 1000 and is equally shared by the two players to start
with, then the average duration of their game is 250 000 rounds!

Finally we note that when ¢ = co, the expected times to absorption are

Simple random walks

(7.24)

as will be proved in Exercise 13.

7.8 SMOOTHING THE RANDOM WALK -THE WIENER
PROCESS AND BROWNIAN MOTION

In Fig. 7.8a are shown portions of two possible sample paths of a simple
unrestricted random walk with steps up or down of equal magnitudes. The
illustrations’in Fig. 7.8b—f were obtained by successive reductions of Fig. 7.8a.
In (a), the ‘steps’ are discernible, but after several reductions the paths become
smooth in appearance. In terms of the position and time scales in (a), the steps
in (f) are very small and so is the time between them. The point of this is to
illustrate that paths may be discontinuous but appear quite smooth iwan,
viewed from a distance.

Consider the time interval (0, ﬁ_ Subdivide this into subintervals of _onmz. Z

initially at x = 0, makes a step (in one mvmom dimension) at the times At, 2At, ...,
and that the size of the step is either + Ax or — Ax, the probability being 1/2

depend on the choice of At and Ax, we write the position as X(t; At, Ax).
We may write

t/At

XAt Ax)= Y Z, (7.25)
i=1

where the Z; are independent and identically distributed with
Pr(Z;= +Ax]=Pr[Z;= — Ax] =1/2, b =152
For the Z; we have,

E[Z]=0,
and
Var[Z;] = E[Z,*] = (Ax?).
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Figure 7.8 In (a) are shown two sample paths of a random walk, (b) to (f) were obtained
by successive reductions of (a).
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From (7.25) we get

Simple random walks

E[X(t; At, Ax)] =0,

and since the Z; are independent,
t(Ax)?

Var [ X(t; At, Ax)] = (t/At) Var[Z;] = e

Now we let At and Ax get smaller so the particle moves by smaller amounts
but more often. If we let At and Ax approach zero we won’t be able to find the
limiting variance as this will involve zero divided by zero, unless we prescribe a
relationship between At and Ax.

A convenient choice is Ax = z\m which makes Var [X(t; At, Ax)] = ¢ for all
values of At. In the limit At — 0 the random variable X(t; At, Ax) converges in
distribution to a random variable which we denote by W(t). From the central
limit theorem (Chapter 6) it is clear that W(t) is normally distributed.
Furthermore,

E[W({)]=0
Var[W(t)]=t.

The collection of random variables {W(t),t >0}, indexed by t, is a
continuous process in continuous time called a Wiener process or Brownian
motion, though the latter term also refers to a physical phenomenon (see
below).

The Wiener process (named after Norbert Wiener, celebrated mathema-
tician, 1894-1964) is a fascinating mathematical construction which has been:
much studied by mathematicians. Though it might seem just an abstraction, it
has provided useful mathematical approximations to random processes in the
real world. One outstanding example is Brownian motion. When a small
particle is in a fluid (liquid or gas) it is buffeted around by the molecules of the
fluid, usually at an astronomical rate. Each little impact moves the particle a
tiny amount. You can see this if you ever watch dust or smoke particles in a
stream of sunlight. This phenomenon, the erratic motion of a particle in a mca.ﬂ
is called Brownian motion after the English botanist Robert Brown who
observed the motion of pollen grains in a fluid under a light microscope. In
1905, Albert Einstein obtained a theory of Brownian motion using the same
kind of reasoning as we did in going from random walk to Wiener process. The
theory was subsequently confirmed by the experimental results of Perrin. For
further reading on the Wiener process see, for example, Parzen (1962), and for:
more advanced aspects, Karlin and Taylor (1975) and Hida (1980).

Random walks have also been employed to represent the voltage in nerve
cells (neurons). A step up in the voltage is called excitation and a step down is
called inhibition. Also, there is a critical level (threshold) of excitation of which
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the cell emits a travelling wave of voltage called an action potential. The
random walk model of a neuron was introduced by Gerstein and Mandelbrot
(1964), who also used the Wiener process as an approximation for the voltage.
Many other neural models have since been proposed and analysed (see, for
example, Tuckwell, 1988).

Exercises
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EXERCISES

1. Given physical examples of the four kinds of random process ((a)—(d) in
Section 7.1). State in each case whether the process is a Markov process.

2. Let X ={X,, X, X,,...} be arandom process in discrete time and with a
discrete state space. Given that successive increments -X, — X, X, —
X,...are independent, show that X is a Markov process.

3. For a simple random walk enumerate all possible sample paths that
lead to the value X, = — 2 after 4 steps. Hence verify formula (7.5) for
Pr(X,=—2)

4. Let X,=X,_,+Z,n=1,2,..., describe a random walk in which the Z,
are independent normal random variables each with mean u and variance
0. Find the exact probability law of X, if X, = x,, with probability one.

5. In certain gambling situations (e.g. horse racing, dogs) the following is an
approximate description. At each trial a gambler bets $m, assumed fixed.
With probability g he loses all the $m and with probability p=1—q he
wins back his $m plus a profit on each dollar which is a random variable
with mean u and variance 6. Let X, be the gambler’s fortune after n bets.
Deduce that {X,,X,,X,,...} is a random walk with X,=x,, the
gambler’s initial capital, and

X=X, 428, m=L2..,
N=“§_HN=%=+:, |N=vu_u



