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0. Linear operators

0.1 Preliminaries and examples

Let X,Y be linear spaces.
Definition 0.1. Any map F': X — Y satisfying
F(Ax+py) = AF(x) + HF (y)
for all x,y € X and scalars A, u is called a linear operator.
Remark 0.2. For operator F, we can write Fx instead of F(x).

Example 0.3. The operator /: X — X given by x — x is called the identical operator.
Obviously, 7 is linear. If X is normed, then [ is continuous (by the Heine definition of
continuity: x, - x = Fx, — FXx).

Example 0.4. Let H be a Hilbert space and H its (closed) subspace. We know that
H = H, @Hﬁ, i.e., all x € H can be uniquely expressed as x = x| 4+ xp, where x| €
Hy, x € Hf‘. We put Px = x; for x € H. The operator P is called the (orthogonal)
projection. Evidently, it is linear and continuous.

Example 0.5. Let us consider the linear space C|a, b] and define the operator
T: Cla,b] — Cla,b]

by the formula

b
Tf(r) = /k(t,s)f(s) ds,  feClab),t€lab],

with the so-called core k € C([a,b] x [a,b]). We can see that T is linear. If we consider
the norm

£l = max [f(#)],  f€Cla,b], (0.1)
t€la,b]
i.e., the norm of the uniform convergence, then T is continuous.

Example 0.6. Let us consider the linear space C![a,b] of functions with continuous
derivatives on [a,b] and define the operator

D: C'[a,b] = Cla,b), Df(t) = f'(1), fecCla,b),t € [a,b].

This operator is called the differential operator and it is linear. In spaces C'[a,b],Cla, b],
let us consider the norm from (0.1). We prove that D is not continuous: the sequence

of )
£ult) = smr(lnt)’ neN,

satisfies || fu|| — O as n — oo, but the sequence of

Dfy(t) = f,(t) = cos(nt)

does not converge to 0.



0.2 Continuity and boundedness
Throughout this section, let

X = (XD = K FHx) . Y = (0D = 3 [1-ly)
be normed linear spaces.

Definition 0.7. An operator L: X — Y is called bounded if it maps any bounded set
into a bounded set.

Theorem 0.8. Any continuous linear operator L: X — Y is bounded.

Proof. We assume the opposite. Let the operator L not be bounded. Then, there exists
a sequence {x, }n—; C X such that ||x,||x < c forall » € N and some ¢ € R and

|Lxa|ly >n, neN. (0.2)

Since L is continuous, there exists 6 € (0, 1) such that, for all x € X satisfying ||x||x < J,
we have || Lx|ly < 1. Let us choose ng € N such that ¢ < 8ng. The inequality

sl _ 5
n

is valid for all n > ng. Hence, we get || Lx, ||y < n for all n > ng, which is a contradiction
with (0.2). 0

Theorem 0.9. Any bounded linear operator L: X — Y is continuous at 0 € X.
Proof. Let us assume the opposite. Let the operator L not be continuous at 0 € X.

Then, there exist € > 0 and a sequence {x,},_; C X such that

1
Hx,,||X<£, ILx,|ly > €, neN.

Let us denote y, = nx, for n € N. The sequence {y,},—; C X is bounded, but the
sequence {Ly,},_; €Y is not bounded, because ||Ly,||y > ne, n € N, which is a con-
tradiction. O

Theorem 0.10. If a linear operator L: X — Y is continuous at xy € X, then L is con-
tinuous at any point (vector) of X.

Proof. For all € > 0, there exists § > 0 such that, for x € X satisfying
[Jx —2x0[| < 6,

we have
|Lx — Lxo|| < .

Let x; € X be arbitrarily given and y € X satisfy ||y —x;|| < 6. Then,
1y =x1+x0) —x0l[ <8,

and thus
Ly —x1+x0) — Lxo|| < &,

i.e., |Ly — Lx1|| < €, which proves that L is continuous at x; . O



Remark 0.11. The definition of bounded linear operators can be reformulated as fol-
lows. A linear operator L: X — Y is called bounded if there exists ¢ > 0 such that

[Lxlly <clixlx,  xeX.
Definition 0.12. Let L: X — Y be a bounded linear operator. The number
inf{c € R; ||Lx||y < c||x||x forx € X}
is denoted by ||L|| and called the norm of L.
Theorem 0.13. Let L: X — Y be a bounded linear operator. Then,

[[Lx][y
IL]| = sup [[Lx|ly = sup
o [Ixllx

llxllx <1 X7

Proof. We denote
A =sup{||Lx|ly;x € X, ||x||x < 1}.

Firstly, we can see that

o xly
sup ||Lx[ly = sup ;
Illx <1 0 [1xlx

where it suffices to consider the linearity of L and ||x||x = 1. Therefore,

L
IExlly 2 v 20,
[1xllx

i.e., |Lx|ly < A||x||x for all x € X. Considering Definition 0.12, we have ||L|| < A.
Let € > 0 be arbitrary. Then, there exists x¢ € X such that x, 0 and

i o < ILely
= el

However, from Definition 0.12, we obtain ||Lx||y < ||L|| - ||x||x for all x € X. Thus,
A — €& <||L||. The arbitrariness of € gives A = ||L||. O

Remark 0.14. The set of all continuous linear operators L: X — Y is denoted by
Z(X,Y).For L,L, € £(X,Y) and a scalar k, we put
(L1 4+ Ly)(x) = Lix+ Lox, xeX,
(kLl)(x) :kLl(x), xeX.
Evidently, .Z(X,Y) forms a linear space.

This space is normed (with respect to the norm of operators introduced above).
Indeed, for the triangular inequality, it is sufficient to consider

(L1 + La)xlly < [[Lix]ly + [[Lox]ly < (Lo + Lzl

forall L,L, € Z(X,Y) and ||x||x < I, x € X. Moreover, from Definition 0.12, we have
the inequality

1Lxclly < ILI[- flxellx,  xeX,Le Z(X,Y).
In the case when X =Y, we can write only % (X) (instead of .2 (X, X)).



Remark 0.15. Recall that norms || — ||; and || — ||2 on X are called equivalent if there
exist ¢, 8 > 0 such that

olxlly < lxll2 < Bllxllr,  xeX.

Two norm are equivalent if and only if the topologies generated by them are same. For
any space with a finite dimension, all norms are equivalent.

Theorem 0.16. Let X have a finite dimension. Any linear operator L: X — Y is con-
tinuous.

Proof. According to Remark 0.15, we can choose a norm of X. Letey,...,e, be a base
of X. Forx € X,x = Aje; + -+ Ayen, we put
[lxllx =[]+ + [ Al
It is seen that
[Lxlly = |AiLer + -+ AuLen|ly < max{[|Lei]ly, ..., [|Len]ly} - |lx]x-
O

Remark 0.17. A basic example of continuous linear operators is given by functionals f
on X with the norm

1Al = S If ()l

X<
For details, we refer to the course Functional Analysis I. We add:
1. If X has a finite dimension, then ||f] is realized. In addition, the norm of any

continuous linear functional is realized on the closed unit ball with the center O if
and only if the Banach space X is reflexive (the so-called James characteristic).

2. If any linear functional on X is bounded, then the dimension of X is finite.

3. The so-called Bishop—Phelps theorem says that the set of all continuous linear
functionals on a Banach space X, whose norms are realized on the closed unit
ball with the center 0, is a dense subset of the dual space X !

Example 0.18. We mention a series of examples.

a) Let us consider the space C[—1, 1] with the norm

Ifl = max |f()]

el-1,1]
and the functional
Lr =952, +7 (3 ).
If || f]| <1, then

ILFL<OfI 200+ A1 < 12.

Especially, ||L|| < 12. On the contrary, let us consider a function g € C[—1, 1] for
which

=1
ax, g(?)]

and

We get Lg = 12. Therefore, ||L|| = 12.



b) For the space from a), we consider the functional

1
Lf= / sen(t)f(1) dr.
e}

Since

1 1
Ll [1rwia <l [ a =207,
-1 -1

we have ||L|| < 2. Let choose € € (0,1) and put g.(t) =¢/€ fort € (—¢,¢€) and
8e(t) = sgn t for others ¢. Then, ||g¢|| = 1 and |Lge| = 2 — €. Now, we see that
L] =2.

¢) For the space %, we consider L{x, };>_; = x| +x2. Forx = {x, }:>_, € I* satisfying
Il = /I + Pl - < 1,
we get
ILx? < (bt + 2 )? 2 (P + laf?) <2 (P + ol +-) <2

Therefore, ||L| < /2. For

1 1
x=<—,—,0,0,... >,
{7z 7moe-}
we have ||x|| = 1 and |Lx| = v/2. Thus, ||L| = V2.
We also know (from the Riesz theorem) that there exists A € [> such that
Lx = (x,h), xel?

We see that 7 = {1,1,0,0,...}. In addition, we know that ||L|| = |||, which
gives ||L|| = V141 = V2. Our knowledge of the dual space gives a powerful
tool to compute the norm of L.

d) We compute the norm of the functional
(=~ d 'x
L: {xn}n=1 — Z ;ﬂ
n=1

in /' and 2.

For x = {x,}7_, €', we have

Therefore, |L|| < 1. For x = {1,0,0, ...}, we have ||x|| =1,
quently, ||L|| = 1.

Lx| =1, conse-



We can also use our knowledge of the dual space. The dual space of I! is [”.
There exists just one {ay }p—; € [~ satisfying

Lx = Zanxn, x={x, ), el

where ||L|| = |[{an};—1]|;~. Obviously, a, = 1/n, n € N. We get

1 [ee)
il = H{}
n=11]>

Now, we consider L in [, Since {1/n}:_, € I, for x = {x,}_; € [, we have

=1.

o Xp
L =1) | = \/Z VZ bl = =2 el
Thus, ||L|| < 7/V/6. For y = {\[/ lel , we have ||y|| =1 and
f""l n
L Uy
Lyl = Zl 5= 7

which yields that | L|| = 7/V/6.

Let us consider X = C'[a,b], Y = Cla,b], and the operator (see Example 0.6)
D:X =Y, Df(t)=f(), feC'a,b]t€e]ab)

We consider the standard norm (see (0.1)) in ¥ and the norm

[fller = max If( )|+ max |f(1)]
t€la,b]

9

in X. Since

IDFIl = max | f'(r)] < max |£(t)|+ max |f' (1) = [|fllcr,  feC'la,bl,
t€la,b] t€la,b] t€la,b]

the operator D is continuous and ||D|| < 1. To prove ||D|| = 1, it is sufficient to

consider )
1
fult) = sin(n )’ neN,
n

for which |
faller =1+~ IDfull =1,
where n is sufficiently large.

Let us consider the operators L, L, € ¥ (12) given by
X2 X3 o
le:{O,xl,—,—,...}, x={x, ), €’
2°3
Lox ={0,x1,x2,x3, ...}, x={x,}0, €’
Since the operator L, is isometric, we see that ||Ly|| = 1.
For Li, we consider arbitrary x = {x,}>_, € [>. We have

IZix]* =Y <Y bul® = I,
n=1

n=1

which gives ||L;]| < 1. For y = {1,0,0, ...}, we have ||y|| =1 and ||L;y| = 1.
Altogether, ||L;|| = 1.

Xy |2




0.3 Inverse operator

In this section, let X,Y be linear spaces.

Definition 0.19. Let L : X — Y be an arbitrary operator. We put
R(L)={y€Y;thereexistsx € X : Lx =y}.

We say that the operator L has an inverse if, for all y € R(L), there exists just one x € X
such that Lx = y. In this case, the map ¥ — X given by y — x is called the inverse
operator of L and it is denoted by L.

Theorem 0.20. Let L: X — Y be linear and have an inverse. Then, L™ : Y — X is
linear as well.

Proof. Note that the range R(L) of the operator L, i.e., the domain D (L_l) of the
inverse operator L', is a linear space. Let y;,y> € R(L). It suffices to prove the
identity

L™ (ouy1 +o0y2) = auL ™'y + oL 'ys (0.3)

for all scalars a1, . Put Lx; =y, Lx, = y». We know that
L(onxi + oox2) = aiy1 + 0oy». (0.4)
According to Definition 0.19, we see that L*Iyl =x; and L71y2 = xp. Thus, we have
ou Ly + oLy, = ouxy + 0,

At the same time, from Definition 0.19 and (0.4), we get

o x1 + 0xy = L~ (ony) + aaya),
which gives (0.3). 0
Lemma 0.21. Let M be a dense subset of a Banach space Y. Anyy #0, y €Y, can be
expressed in the form

y:n;lyn, Le., y:r}gl;lo(yl+y2+"'+yn)a

where y, € M and

3yl
2n 7
Proof. At first, we choose y; € M in such a way that the inequality

HynH < eN.

Iyl < 21

is valid. Next, we choose y, € M so that

bl

ly=yi—=»2| < n

In general, we choose y,, € M so that

[yl
o

ly=yi ==l <



Such a choice is possible, because M is dense in Y.
Now,

—0 as m — oo,

m
y— Z)’n
n=1

ie.,
[es]
y= Z Yn,
n=1
and we have

31yl
il = Iy =y =+l < [y =yl + Iyl < -

3[ly
2l =2+ —y+y—nll <lly=y1=»2ll+ly—ml < y7

Ivall = v+ Y1+ 41—y +y—y1— = Yn_1]]

vl , Il 3yl
on +2nfl = on '

<ly=yi—- =yl +lly—y1— =yl £

O

Theorem 0.22 (Banach). Let X,Y be Banach spaces and let L : X — Y be a bounded,
bijective, and linear operator. Then, the inverse operator L~V is bounded as well.

Proof. InY, we consider the sets M C Y, k € N, of all elements y € Y for which
IL7"y]| < &lyll-

All element y € Y belongs to some M. Thus,
Y = M.
k=1

According to the Baire theorem, at least one of My, say M,, is dense in some ball B.
Inside B, we consider the set P of all elements z such that B < ||z — yo|| < o, where
0 < B < a, yp € M,. We move the set P so that the center is 0, i.e., let us consider the
set

P={zeY;B <]zl < a}.

We prove that some My is dense in Py. If z € PN M, then z—yy € Py and

7 @ =so)ll < [IL7" ][+ 1L 3o
< n(lll+ llyoll) < n(llz=oll + 2ol

2 2
—all=yoll (14 2220 ) < o (142820,
[lz—=yoll B

" (1 n 2||;0||>

(0.5)

The term




does not depend on z. So, we put

oo b))

From (0.5), we have z —yp € My. Since M,, is dense in P, we have that My is dense
in Py.
Lety# 0, y € Y, be arbitrary. We can choose such a number A that

B <Ayl <a,

i.e., Ay € By. Since My is dense in Py, we can construct a sequence of y; € My which
converges to Ay. Then, yx/A converges to y. It is obvious that {x;/u};_, C My for
arbitrary u # 0 if {x;}7_; € My. Therefore, the set My is dense in ¥ . {0} and,
consequently, it is dense in Y.

We consider arbitrary y # 0, y € Y. According to Lemma 0.21, we can expand y
into the series y =y; +y, + - - -, where y, € My and

3
<22 ke

In X, we consider the series L’lyl —|—L71y2 +---, where we put x; = L*ka. This series
converges to some x € X, because

3
ol = -l <Ml <628 pen

- = 1
Xl < kZl el < 3NHkaZ1 5 = 3Nyl

Since the series of x; is convergent and the operator L is continuous, we have
Lx=Lxj+Lxp+-- =y +yr2+- =y
Therefore, x = L} y. We also know that
[Z71y]| = Il < 3Ny,

where N does not depend on y. This estimation is valid for arbitrary y # 0. Thus, the
operator L~! is bounded. O

Remark 0.23. Let X,Y be Banach spaces. The symbol £ (X,Y) denotes the set of all
bijective, continuous, and linear operators X — Y.

Theorem 0.24. Let XY be Banach spaces. Let Ly € .Z(X,Y) and L € £ (X,Y), where
1
1Ll < =7
(e
Then, the bounded operator (Lo +L) ™" existson Y, i.e,, Ly = Lo+L € Z(X,Y).

Proof. We choose y € Y and consider the map B: X -+ X, Bx=1L ly— Lal (Lx). From
IL|| < ||Ly"||~", it follows that B is a contraction. Indeed,

||Bx1 — Bxz|| < HL(;] H . ||L|| X —)CzH, x1,x €X.



Since X is complete, according to the Banach theorem, there exists just one x € X such
that
x=Bx=L'y— Ly (Lx),

ie.,
Lix=Lox+Lx =Y.

If L1 =y for some ¥ € X, then X is also a fixed point of B, and therefore X = x. Thus, for
all y € Y, there exists only one solution of the equation Ljx =y in X, i.e., for L1, there
exists the inverse operator Lfl on Y. Considering Theorem 0.22, Lfl is bounded. [

Remark 0.25. According to the previous theorem, .2 (X,Y) forms an open subset in
Z(X,Y), where X,Y are Banach spaces.

Theorem 0.26 (Neumann). Let X be a Banach space, let I be the identical operator
on X, and let L: X — X be a bounded linear operator, where ||L|| < 1. Then, the
operator (I — L)_1 exists on X, it is bounded, and it can be expressed in the form

(I_L)71 = ZLk7
k=0
where

I¥=LoLo---oL.
k

Proof. The existence on X and the boundedness of (I — L)' come from Theorem 0.24
(also from treatments below). Because of ||L|| < 1, we have

Y ||| = X < e 0.6)
k=0 k=0

The space X is complete. Thus, considering (0.6), the treated infinite sum of LFis a
bounded linear operator. For arbitrary n € NU {0}, we have

n n
I-0)Y r =Y t"u-L)=1-1"".
k=0 k=0
Taking into account to HL"+1 | < L™ — 0 as n — oo, we get

(I-L) iL" = iL"(I—L) =1,
k=0 k=0

which yields
(- '=Y 1~
k=0

10



0.4 Adjoint operator

Throughout this section, let X,Y be normed linear spaces.

Definition 0.27. Let L € £ (X,Y) and let g € Y/, i.e., let g be a continuous linear
functional on Y. Let us consider the continuous linear functional f = goL € X’ and the
mapg €Y' — fe X' ThismapL':Y" — X' is called the adjoint operator of L.

Remark 0.28. We also denote f(x) = (f,x). Thus, we can write
(fx)=(gLx), e, (L'gx)=(gLx).

Remark 0.29. Let L,L;,L, € £ (X,Y) and let k be a scalar. Immediately, from Defini-
tion 0.27, we see:

1. L is linear;

2. (Li+Ly) =Ly +Ly;
3. (kL) =kL;

4. L is continuous.

Example 0.30. Let us consider a linear (continuous) operator L: R" — R given by a
matrix (/;;). The map y = Lx can be expressed as the system

n
yl:Zlijxj, ie{l,...,m},
j=1
and any functional f: R" — R as
n
x)=Y fixj,
j=1

where f; = f(e;) for the standard base ey, ...,e, of R". From

f(x):g(Lx):i :ii llj-x] ijzgz ijs

we obtain

3

fi=fle;)=Y glij, je{l,....n}.

i=1
Since f = L'g, the operator L’ is given by the transpose matrix.

Theorem 0.31. IfL € £ (X,Y), then
izl =]
Proof. Obviously, it holds
[(L'gx)| = (g, L) < llegll- [1Lx]| < llgll- 11| - [l
forall x € X and g € Y'. Thus,

ILg|| < llgll-NLll, — ie. ||| <L

11



Now, we prove the opposite inequality. Let xo € X, Lxo # 0. We put

Lx
= =0 ¢y,
[| Lxo ||

Yo

It is seen that ||yg|| = 1. Due to a well-known corollary of the Hahn—Banach theorem,
there exists a functional g such that ||g|| = 1 and (g,y9) = 1, i.e.,

(g, Lxo) = || Lxol|-
From
[ Lxo|| = (g, Lxo) = [{L'g,x0)| < ||L’g]| - Ixoll
< ||| - llgll - lxoll = ||2']| - I1xoll,
we get that ||L|| < [|L|. 0

Let H be a Hilbert space and let L : H — H be a bounded linear operator. We know
that there exists a map T which assigns to any element y € H the continuous linear
functional (7y)(x) = (x,y) € H'. Moreover, this map is an isometry. For the opera-
tor L', we consider the map I’ = 7~ 'L't, which is a bounded linear operator on H. One
can easily show that

(Lx,y) = (x,L'y), x,yEH.

Since ||L'|| = ||L|| and the maps T and T~" are isometries, we have the identity
IE1l = iz

Definition 0.32. In a Hilbert space H, the above mentioned operator L': H — H is
called the adjoint operator of L: H — H.

Remark 0.33. It should be emphasized that Definition 0.32 differs from Definition 0.27.
For a general Banach space X and a bounded linear operator L: X — X, the adjoint
operator of L is defined on X'.

The operator L' is sometimes called the Hermitian adjoint. We write only L’ (in-
stead of L) and speak about the adjoint operator of L. It should be remembered that,
in Hilbert spaces, the concept of adjoint operators differs from the one in general Ba-
nach spaces. For H, it is seen that the adjoint operator of a bounded linear operator
L: H — H can be defined as the operator L' : H — H which satisfies

(Lx,y) = <X7Lly>, x,yEH.

Definition 0.34. Let H be a Hilbert space. A bounded linear operator L: H — H is
called self-adjoint if

(Lx,y) = (x,Ly),  x,y€H.
Definition 0.35. Let H be a Hilbert space and let L: H — H be a linear operator.
A (closed) subspace H; of H is called invariant with respect to L: H — H if x € H;
implies Lx € H;.
Remark 0.36. Let H be a Hilbert space and let L: H — H be a bounded linear ope-
rator. If H; is a (closed) subspace of H, which is invariant with respect to L, then its
orthogonal complement Hj- is invariant with respect to L. Indeed, if y € Hi-, then

<x,L’y>:<Lx,y>:O, x € Hy,

because Lx € Hy. Especially, if L is self-adjoint, then the orthogonal complement of
any invariant subspace is invariant with respect to L as well.

12



0.5 Spectrum of operator

Let L: C" — C" be a linear operator. A number A € C is called an eigenvalue of L if
Lx = Ax for some non-zero x € C". Any such solution x is called an eigenvector of L.
The set of all eigenvalues is called the spectrum of the operator L and all other values A
are called regular; i.e., A is a regular value if the operator L — A has an inverse. In
this case, the operator (L — AI) ™" is defined on the entire space C" and (as well as any
linear operator on a space with a finite dimension) it is bounded (continuous).

In the space with a finite dimension, there are two possibilities:

1. the equation Lx = Ax has a non-zero solution, i.e., A is an eigenvalue of L—the
operator (L — A1)~" does not exist;

2. the bounded operator (L — AI)~" is defined in the whole space, i.e., A is a regular
value.

If the operator L is defined on a space whose dimension is infinite, then we have the
third possibility:

3. the operator (L — Al )71 exists, i.e., the equation Lx = Ax has only the zero solu-
tion, but this operator is not defined in the whole space (and it is not necessarily
bounded).

Let X be a complex Banach space.

Definition 0.37. A number A € C is called a regular value of a bounded linear operator
L: X — X if the operator R;, = (L— AI)~", called the resolvent of L, is defined in the
whole space X. The set of all non-regular values is called the spectrum of L and it is
denoted by o (L). The spectrum includes all eigenvalues of the operator L. Indeed, if
(L— AT)x =0 for some x # 0, then (L — A1) "' does not exist. The set of all eigenvalues
of L is called the point (or discrete) spectrum and the corresponding x # 0 are called
eigenvectors. The remaining part of the spectrum, i.e., the set of all A, for which the
inverse operator (L — A1 )7l exists, but is not defined in the whole space X, is called the
continuous spectrum.

Theorem 0.38. The set of all regular values of a bounded linear operator L: X — X
is open, i.e., the spectrum is a closed set.

Proof. Let A be a regular value of L. Then,
L-AMecZ(X)=2(X,X).

Let § € C satisfy

1
0] < —————-
[H(L=A0) ]
From Theorem 0.24, we have L — (1 +8)1 € .Z(X). Hence, A + § is a regular value
of L and the set of all regular values is open. O

Theorem 0.39. Let L: X — X be a bounded linear operator and let |A| > ||L||. Then,
A is a regular value of L.
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Proof. Because of ||L|| < |A|, applying Theorem 0.26, we know that the operator

-1
Ry=(L—-2AD""= —% (1— )LL)

exists in X and it is bounded. Therefore, A is a regular value. O

Remark 0.40. Theorem 0.39 can be specified as follows. Let
r= lim /||L"|,
n—soo

where it is possible to show that this limit exists for any bounded linear operator
L: X — X. The spectrum of L is in the closed circle with the radius r and the cen-
tre in 0. The value r is called the spectral radius of L and r < ||L||.

For example, the operator L: C[0,1] — CJ[0, 1] (we consider the norm from (0.1))
given by

L: f(t)»—>t/f(x)dx, te[0,1], f € Clo, 1],
0

has the norm ||L|| = 1 and
1
. n n|| — —
r=lim /7] = 5.
We add that, for any bounded linear operator L: X — X, it holds

r=sup{|A

;Aeo(l)}.
Example 0.41. We define the operator 7': C[0, 1] — C]0, 1] by the formula
T: f(t)—~ f(*), tel0,1], feCo,1],

where we consider the norm from (0.1). At first, we determine || T'||, which is easy. We
have

T = sup{ITfI; IF] < 1} < 1.

For fy = 1, we obtain || fy|| = 1 and also ||T fo|| = 1. Thus, ||T|| = 1.
We find eigenvalues of 7. We find such A that the equation 7 f = A f has non-zero
solutions. We know that

o(T)C{zeC;lz <||T|| =1}.

For A =0and Tf = Af =0, we have f = 0 and, therefore, 0 is not an eigenvalue. For
A=1and Tf = Af = f, all constant functions are solutions of the equation

() =1@), t€[0,1].

It remains to investigate such A that |A| € (0,1],4 # 1. From

Tf(t)=f(*)=2f(t), telo,1],

we obtain

1) = 37 (3) = 537 () == 2or ()

14



forall 7 € [0,1] and n € N. We see that
flt)=A"f (tzf") )

If |A| < 1, then f =0, because A" — 0 as n — o and f is bounded on [0, 1].
Let us consider the last case when [A| =1 and A # 1. In this case, we get

F0)=27(0),  f(1)=Af(1)
and, consequently, f(0) = f(1) =0. Letz € (0,1). From

-0 (7)

and?' = 0asn— oo, it follows that f = 0. Therefore, the set of all eigenvalues is {1}.

It remains to find out other values belonging to the spectrum of 7. Thus, we analyse
solutions of the equation 7 f — A f = g in C|[0, 1]. We know, when the operator T — A
is not injective. So, we are interested in the case, when it is not surjective. For ¢ € [0, 1],
we obtain

f(?) =g)+Af(1)

0= 02 (17) () () 1),

By induction, one can obtain

and

n—1 . .
flt) = Z)Lfg(tzflﬂ)Jrk”f(tz ), t€[0,1].
j=0
Because of the boundedness of g for |4| < 1, the series above converges and
l"f(tzfn) -0 as n—» oo

for all f. Therefore, the continuous function
fO =Y Mg (#),  relo,
j=0

is a solution of the equation Tf — A f = g. If [A| = 1,4 # 1, then the equation

Tf-Af=g

has no solution for all g € C[0,1]. For example, for A = —1, there exists a continuous
function g € C[0, 1] such that

for givent € (0,1),j € N.
Altogether, we have
o(T)={AeC;

Al=1}.
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Example 0.42. Now, on the space C[0, 1] with the norm from (0.1), we consider the
operator

T: f(r) n—>/f(x)dx, t€[0,1], f € C[0,1].

Its norm is ||TH =1

Let us identify the point spectrum of the operator T. We know that A is an eigen-
value if there exists a non-zero solution of the equation 7 f = A f. So, we are looking
for a non-trivial continuous function f € C[0, 1] with the property that

t

[r@a=ar0. el

0

We see that 4 £(0) = 0 and that the function f has to have a continuous derivative if
A #0.If A =0, then

/f(x)dxzo, t€[0,1], ie, f=0.
0

Therefore, 0 is not an eigenvalue of 7. If A # 0, from the mentioned identity, we obtain
&) =Af (1), t€10,1].

Solutions of this equation are functions f(z) = Ke''*. Since F(0) =0, we get K =0.
Thus, the operator 7 has no eigenvalues.

Now, we determine the whole spectrum of 7. We need to find the values A for
which the considered operator is surjective, i.e., we need to determine when the equa-
tion T f — A f = g has solutions for all g € C[0,1]. Let A = 0. Since 7 £(0) = 0, for
a function g such that g(0) # 0, any solution does not exist. Hence, 0 € 6(7"). In the
case when A # 0, we are looking for solutions of the equation

t

[ rdr=ar@) =5, refo.)

0

where g € C[0, 1] is a given function. Let & be the appropriate primitive function of f.
The aim is to solve the differential equation 7 — A%’ = g. Of course, this equation has
solutions. Thus, we get

o (T) ={0}.

Example 0.43. On the space [”, we consider the operator
R: {xl,X2,X3, .. } — {XQ,X3, .. }

It is easy to verify that R € Z(I™) and that ||R|| = 1. We know that

G(R)C{AeC;

Al <1}
If |A| < 1, the equation Rx = Ax has the non-trivial solution

Xy = {171712, }

16



Since x; €1~ for |A| < 1, we have 6(R) = {A € C; |A]| < 1}.

Let us consider the same operator R, buton /'. Of course, R € . (') and ||R|| = 1.
The equation Rx = Ax has (again) the non-trivial solution x;. But, for |A| = 1, this
element is not in I'. However, x; € ' for all A satisfying |A| < 1. Therefore, we get
that all such A are in the point spectrum. Since the spectrum & (R) is a closed set which
contains the point spectrum, we have again

o(R) = {L € C:|A <1}.

17



1. Completely continuous
operators

1.1 Preliminaries and examples

Throughout this section, let X, Y be Banach spaces.

Definition 1.1. An operator L: X — Y is called completely continuous if it maps any
bounded set into a precompact set.

Remark 1.2. If X has a finite dimension, then any linear operator L: X — Y is com-
pletely continuous (see also Theorem 0.16). For spaces whose dimension is infinite,
the complete continuity differs from the continuity.

Theorem 1.3. Let x1,x3, ... be linearly independent vectors in X a let X,, be the sub-
space of X generated by x1, . ..,x,. Then, there exists a sequence {y,}, _, such that

lyal =1,  yn€X,, neN,

and 1
inf —x||> = n>2,neN.
(A0 lyn = > 5, >2,
Proof. Since xj,xa, ... are linearly independent, x, ¢ X,,_; and the distance between

x, and X,,_; is positive. Let us denote it by o and let x* be an element of X,,_; for
which ||x, —x*|| < 2a. Then,

because
= inf —x|| = inf —x" =
o xemn,] [l — x]| N 1}12}17I Hxn X

We add that we can easily put
X1
Yi= 77
[l x|

O

Example 1.4. Let the dimension of X be infinite and let us consider the identical ope-
rator / on X. Using Theorem 1.3, in B[0, 1], one can construct a sequence {y,},_; such
that

1
lyi — yull > i€e{l,2,....n—1},n>2,neN.

Ea
Obviously, such a sequence cannot have a convergent subsequence. Therefore, B[O, 1]
is not (pre)compact and 7 is not completely continuous.

Example 1.5. Let L be a continuous linear operator which maps X into a subspace of X
with a finite dimension. The operator L is evidently completely continuous. Especially,
in a Hilbert space, the (orthogonal) projection is completely continuous if and only if
the considered subspace has a finite dimension. Note that an operator, which maps X
into a subspace of X having a finite dimension, is called degenerate.
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Example 1.6. In the space /2, we consider the operator L: I — [? given by

X2 Xn
x:{x1,x2,...,xn, }|—>Lx: {XI,?,...,F, }
This operator is completely continuous. It suffices to consider that the image of the
unit ball is precompact and to use the linearity.

Example 1.7. We consider C|a, b] with the norm
Ifll = max [f(r)],  f€Cla,bl,
t€la,b]

and the operator L: Cla,b] — C|a, b] defined by
b
L= y(s) = /k(s,t)x(t)dt, xeCla,bl,s € [a,b]. (1.1)
a

It is possible to prove the following implication. If k is bounded for s € [a,b], t €
[a,b] and all points of the discontinuity of k are on finitely many curves t = @(s),
k={1,...,n}, where @ are continuous functions on [a,b], then the operator L given
by (1.1) is completely continuous. We remark that this operator L is called the Fred-
holm operator.

The requirement, that the points of the discontinuity of k are only on finitely many
curves which intersect the lines s = const. in only one point, is essential. For example,
for the function

1
1, < =
552
k(s,t) =
1
09 > A
=3

the operator L maps x = 1 into a discontinuous function.

We prove the complete continuity of the operator L only in the case, when the
function k is continuous on [a,b] X [a,b]. It is easy to see that Lx is defined correctly,
Lx € Cla,b], and that L is a linear and bounded operator (see also Example 0.5). We
consider B[0, 1] C Cla, b]. It suffices to show that the set L(B[0, 1]) is precompact. We
apply the Arzela—Ascoli theorem. Of course, L(B[0,1]) is a bounded set, because L
is a bounded operator. It remains to show that L(B[0,1]) is a set of equicontinuous
functions. For an arbitrarily given € > 0, there exists 6 > 0 such that

|k(sl7t) _k(SZJH <é€
if
t € [a,b], |s1 —s2| < &, 51,82 € [a,b].
Then,

|Lx(s1) — Lx(s2)| < (b —a) max [k(s1,1) —k(s2,2)| - [|x]| < &(b—a)

t€la,b]
for all x € B[0, 1] and 51,57 € [a,b] satisfying |s; —s2] < O.
If we put k(s,7) = 0 for t > s, then L takes the form

L =y(s) = / ks, )x()dt,  x€Cla,bl,s € [a,b]. (1.2)
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If the function k is continuous, then the operator defined in (1.2) is completely conti-
nuous. This operator is called the Volterra operator.

Remark 1.8. For a completely continuous operator, the image of the closed unit ball
BJ0, 1] does not need to be compact, although it is precompact. As at the end of Exam-
ple 1.7, on C[—1,1] with the uniform norm, we consider the completely continuous

operator
s

Jx(s):/x(t)dt, se[-1,1],x e C[-1,1].
-1

For n € N, we put

0, —-1<r<0;
1
x, () = { 7t O<t§;;
1, -<t<l1
n

0, —1<s<0;
ns? 1
Yu(s) = Jxn(s) = 5 0<s< ;;
1 1
T A - < <1,
g 2n 5=

But, for the operator J, the function y is not the image of any function from C[—1,1],
because y' is not continuous. However, it is possible to prove that, for any completely
continuous linear operator, the image of B0, 1] is compact if the considered space is
reflexive.

1.2 Basic properties

Throughout this section, let X be a Banach space.

Theorem 1.9. If {L,} | is a sequence of completely continuous operators on X,
which converges to an operator L: X — X, i.e., |L, —L|| = 0 as n — oo, then L is
completely continuous as well.

Proof. Itis sufficient to prove that, for an arbitrarily given bounded sequence {x; };_; C
X, one can extract a convergent subsequence from {Lx; };_;.

Since the operator L; is completely continuous, {L;x};_, has a convergent sub-
sequence. Let {x,l}:zl be a subsequence of {x;},_; such that {lellc}:;l converges.
Now, let us consider {sz]lc}:: 1 From this sequence, we can extract a convergent

subsequence as well. Let {x;}_ be a subsequence of {x; },_, such that {L,x;},
converges. We proceed in the same way. An the end, we consider the diagonal se-

quence {x’,j}k K Any of the operators Ly,L,,L3, ... transforms this sequence into a
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convergent one. We show that L also transforms it into a convergent sequence. Since

=

X is complete, it suffices to show that {Lxﬁ} satisfies the Cauchy criterion. For
n,k,l € N, it holds

|t =] < st~ +

L~ L]+

L,,xf—fou. (1.3)
Let € > 0 be given and ¢ > 0 be such that ||x¢|| < ¢, k € N. Let n € N be such that
IL—Lo) < 5
"3
Then, we consider so large N € N that

for all k,/ > N, k,I € N. Now, from (1.3), it follows that

HL)J,E—foH<£

£
Ln#ka,,fo <3

for all sufficiently large k, /. O

Remark 1.10. Since any linear combination of completely continuous operators is a
completely continuous operator, from Theorem 1.9, we know that completely continu-
ous linear operators form a closed subspace of .Z(X).

Theorem 1.11. Let Ly,L, € £ (X) and let Ly be completely continuous. Then, the
operators Ly oLy and Ly o Ly are completely continuous as well.

Proof. If aset M C X is bounded, then
LiM)={yeX;y=Lx,xe M}

is bounded as well. Thus, the set L;(L,(M)) is precompact and L; o L, is completely
continuous. If M C X is bounded, then L (M) is precompact. Since L, is continuous,
L>(L;(M)) is precompact and Ly o L) is completely continuous. O

Corollary 1.12. In the space X whose dimension is infinite, any linear completely
continuous operator L: X — X does not have a bounded inverse L™\

Proof. Tt is enough to consider Theorem 1.11 and the identical operator / = Lo L!
(see Example 1.4). ]

Theorem 1.13 (Schauder). The adjoint operator of a completely continuous operator
L e Z(X) is completely continuous as well.

Proof. We want to prove that L' : X’ — X’ maps any ball into a precompact set. Due to
the linearity of L', it suffices to show that the image L’ (B/) of the closed unit ball with
the centre in 0 € X' is precompact. We point out that B’ is the unit ball in X’. Elements
of X’ can be considered as functions defined on L(B[0,1]). We show that the set ® of
all functions assigned to the functionals belonging to the ball B’ is a set of uniformly
bounded and equicontinuous functions. If a functional ¢ € X’ satisfies ||| < 1, then

sup |@(x)|= sup [o(x)|<[[@] sup [lLx|| <|L]]

XEL(B[Ovl]) )CEL(B[O,]]) XEB[O,]]
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and
o) — @) <lloll - | —x"|| < [ ="

Thus (consider the Arzela—Ascoli theorem), the set ® is precompact in
U=cC {L(B[Q 1])} .

But, the set ® with the metric of the uniform convergence is isometric with the set
L' (B") with the metric given by the norm of X', because, for g1,¢> € B', we have

|L'gi —L'g2|| = sup [(L'gi—L'gr,x)| = sup |(g1— g2 Lx)|
x€B[0,1]

x€B[0,1]
= sup [(g1—gn2)|= sup [(g1—g&2)|= g1 —gl.
z€L(B[0,1]) 2€L(B[0,1])

Since ® is precompact, it is totally bounded. Hence, the set L (B’), which is isometric
with it, is totally bounded as well. Therefore, the set L' (B') is precompactin X'. [

Remark 1.14. One can prove that the set ® (from the proof of Theorem 1.13) is closed
in U. Hence, ® is compact and, consequently, the set L’ (B’ ) is compact. By Re-
mark 1.8, for a completely continuous linear operator, the image of the closed unit ball
does not need to be bounded. But, for any completely continuous linear operator on X',
the image of the set B’ is compact.

Theorem 1.15. Let L € £(X) be a completely continuous operator. For arbitrary
0 > 0, there exists only a finite number of linearly independent eigenvectors associated
with eigenvalues of L whose absolute values are greater than 0.

Proof. By contradiction, let us consider a sequence A, A;,...A,, ... of eigenvalues
of L such that |A,| > 8, n € N, and a sequence xj,x2,...Xy, ... of associated linearly
independent eigenvectors. According to Theorem 1.3, we can construct a sequence
Y1,¥2,---Yn, - .. such that

||ynH:17 Yn € X, neN,

and that |

Xei)r(l”fll ||yn7x||>§a n227n€Na
where X, is the subspace generated by x1,...,x,. The sequence {y,/A,},_, is bounded,
because |A,| > 8, n € N. Now, we prove that, from the sequence of the images
{L(yn/n)},_,, one cannot choose a convergent subsequence. If

n
Yn = Z QX
k=1
then |
oy,
L(yn) = Z k kxk+anxn =Yn+2Zn,
A = Ay
where

k
in = Ol <A’—1>Xk€Xn].
k=1 n



Therefore, for any p,q € N, g < p, it holds

Y 1
HL (ii) —L (fi) H = H)’p +Zp—(yq+zq)” = ||yp_(Yq+Zq_Zp)H > 2

because y, + 2z, — 2 € X,—1. We have a contradiction. O

Remark 1.16. Especially, from Theorem 1.15, it follows that the number of linearly
independent eigenvectors associated with an eigenvalue A # 0 of a completely conti-
nuous linear operator is finite.

Remark 1.17. Let the dimension of X be infinite. For any completely continuous
operator L € £ (X), we see that 0 € o(L). Indeed, if 0 ¢ o(L), then L' is defined
on X, which is a contradiction with Theorem 1.11 (Corollary 1.12). In the case of a
linear completely continuous operator, the spectrum is non-empty. Using the so-called
Fredholm alternative, one can prove that ¢(L) of a completely continuous operator
L € #(X) can contain only eigenvalues and 0. Thus, the spectrum of a completely
continuous linear operator has a very simple structure. In particular, we recall that it is
a closed set.

Example 1.18. We consider the following series of examples.
a) Let us consider the operator T': C[0,1] — C[0, 1] given by
T: f(t)—f(t*), te[0,1], feCo,1].

See Example 0.41. Especially, we consider the norm from (0.1). The operator T
is not completely continuous. The spectrum

o(T)={AeC;|A|=1}

is an uncountable set. In the case of a space whose dimension is infinite, we
also know that 0 € o(L) for any completely continuous linear operator L. We
can also use directly Definition 1.1 and consider the sequence {¢"},_; C C[0, 1].

From the sequence
nyee  _ [2n\ %
{Tt }n=1 - {t }n:l’
one cannot choose a convergent subsequence.

b) Let us consider the operator T: C[0,1] — C[0, 1] given by
75 f0 [ refo1] e

See Example 0.42. Especially, we consider the norm from (0.1). We show that T
is completely continuous. We consider an arbitrary bounded sequence { f,, }_; C

C[0,1] and, using the Arzela—Ascoli theorem, we prove that {T fn}:: | 18 pre-
compact. Let K > 0 be such that

Iful <K, neN.

We have

t 1 1
T f|| = max /fn(x)dx = max/\fn(x)|dx§/de:K, neN.
t€[0,1] 5 ze[o,l]o 5
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c)

At the same time, for 7,5 € [0,1], n € N, we have
750 ~ThG] < | [ 1) d] <K,
t

Thus, the sequence {T In }:;1 is uniformly bounded and equicontinuous.

We remark that if we use the complete continuity of 7, then it is easy to deter-
mine the spectrum o(7) = {0} (cf. Example 0.42; see Remark 1.17).

We consider Ly,L, € ¥ (12) from Example 0.18, f). For these operators, we
determine o(L;) and o(L,) and we decide whether L;, L, are completely con-
tinuous. We recall that

le:{O,xl,%z,);i,...}, x:{xn}:’:lelz,

LZX:{()?xl,xZ,x?)w"}a 'x:{'x"}:::l 612'

At first, we analyse L;. For a constant A, we want to find x = {x,}%_, € I? such
that Ljx = Ax. We get

{o,xl,’ﬁ,’ﬁ, } = [Axi, Ao, A, ... )

For A #0, we have x; =0, x, =0,x3 =0, ...; and, for A = 0, we also have
x1:x2:_)(j3:...:0‘

The equation L;x = Ax does not have any non-zero solution for any A. Therefore,
any complex number is not an eigenvalue of the operator L.

We show that L; is completely continuous. For all k € N, we define Lll‘ PP
by

LKx= {0, — {O,xl,)6—27...,)&,0,07 }
2 k
Any of the operators Llf is linear, bounded, with a finite dimension of its range.
Therefore, they are completely continuous. Since, forallk € Nand x={x,};_; €

12, ||x|| < 1, it holds

s - 5

n=k+1

Xy |2 1

1 2
< k7||x|| < K2’

n

we have
k 2 1
J-u] < &

Hence, the completely continuous operators Lll‘ converge to L; (as k — o), which
proves that L; is completely continuous (see Theorem 1.9). From Remark 1.17,
we get that o(L;) = {0}.

Now, we prove that any A satisfying |A| < 1 lies in 0(L,). In this case, the
operator Ly — AI does not map /2 into 1, because there is no z = {zu}mer € 2
such that

(Lo —Alz={-Az1,21 — Az, 20 — Az3, ...} = {—1,0,0, ...}.
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d)

e)

If we exclude the trivial case A = 0, we have

111
7= I, ﬁ’ ﬁ’ e .
Such z (for |A| < 1) is not in /2. Therefore, the operator L, is not completely
continuous. It follows from the fact that its spectrum is the uncountable set

{AeC; A <1}
On the space C|0, 1] with the uniform norm, we consider the operator given by
F: f(t)—2f(0), r€]0,1], f€C|0,1].

This operator is completely continuous. Obviously, it is bounded, linear, and its
range is a one-dimensional subspace of C[0, 1]. The estimation

FfOl= 2O <IfOI <Al reo.], feco.),
gives ||F|| < 1. Then, the choice f = 1 shows that |F|| = 1.

The complete continuity of the operator F can be proved also directly. Let
{fu}m_y C B[0,1] C C[0,1]. From the estimations

[EAI<IFI- Il < IA<1, neN,

|F fult) = F fu(s)] < (2 = %) £(0)]
S‘(tfs)(t+s)|§2‘tfs|v I’ZEN, t,SE[O,l},

and from the Arzela—Ascoli theorem, it follows the complete continuity of F'.

Now, we identify eigenvalues of the operator F'. We look for non-trivial solutions
of the equation

2 £(0) = A£(1).

For A =0, e.g., f(t) =t is a solution. Therefore, 0 is an eigenvalue. For A # 0,
we obtain

1) = 37O

Hence, f(0) = 0 and, consequently, f = 0. Since F is completely continuous,

o(F)={0}.

On the complex space 12, we define the operator R: =2 by
Rx={i"x,}p_y, x={x, ), €’

where i is the imaginary unit. For x = {x,}>_; € I?, we have
2 v, 2 2
IRx[* =} xal* = [Ix[I",
n=1

which gives ||R|| = 1. If A is an eigenvalue, then there exists a non-zero element
x = {x,}°_; € [* such that Rx = Ax, i.e., i"x, = Ax,, n € N. It is seen that the
eigenvalues are i,i2,i%,i* e, i,—1,—1,1. For example, for i, the corresponding
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eigenvector is {1,0,0,...}. For A ¢ {i,—1,—i,1}, the operator R — AI has an
inverse. The inverse is

1 b o
Sx = {i" _)an}nZI ) x={x,}0, €,

where
[[Sx[| < kl|x|

for

r 1 1 1 1
= max .
= A" [i2 = AT [iP = 4] [i* = A
Note that the operator R is not completely continuous, because 0 ¢ o(R) (the
dimension of 1 is infinite).

Let the operator T} € & (L2 [0,1]) be defined by

1

Tlf(x):x-/f(t)dt, xe[0,1], f € 20, 1].

0

For f € L*[0,1], we have

LS}
l—

171 £l = x'/f(t)dt = /1x~jf(t)dt dx
0 0

=

Y
Jrac] =
0 \/§ .

Therefore, ||T1|| < 1/v/3. For f = 1, we see that || f|| = 1, ||T1.f|| = 1/V/3. Thus,

1
1Tl = —=

7

We determine the discrete spectrum of 7;. We want to find a non-trivial func-
tion f such that 73 f(x) = A f(x), x € [0,1]. For A = 0, it suffices to consider an
arbitrary identically non-zero function f € C[0, 1] for which

1

/ F()dt = 0.

0
For example, f(x) = sin(27x). For A # 0 and

1

T =x [ £0)dr =27 ()

0

26



we see that f has to be linear, i.e., f(x) = kx. Then,
1
x/ktdt:lkx, x€[0,1],
0

i.e., A = 1/2. Thus, the point spectrum is {0,1/2}. Obviously, the operator Tj
is linear and continuous and its range has a finite dimension. Therefore, it is
completely continuous and o (T7) = {0,1/2}.

Let the operator 7> € .# (L*[—1,1]) be defined by

1

Tg:f(x)H/xztf(t)du xe[-1,1], fe 2[-1,1].
!

For any f € L*[—1, 1], we have

1 1 2

1

1A = [1BsePav= [ | [ertar ] ax
-1 | 2—1 -1

:g /tf(t)dt <

—1

Wl N

4
e[l - 111 = T [Vl

For f(x) = x, we have
2 2 2(2Y
im=y% mr=2(3)

1121 =

Thus,
2
Witk
Let us find eigenvalues of 75. We look for non-trivial solutions of the equation
(T, — AI)f = 0. From the identity

1

2 [1f)dr =27,

|

we see that the function f has to be a multiple of the function X ie., flx)= kx?.

From
1

x / tkt> dt = Akx?,
21

it follows

1
A= / dr=0.
-1
The point spectrum is {0}. Since 75 is completely continuous, o (73) = {0}.
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Let the operator T3 € .# (L*[0,1]) be defined by
T3f(x):x'f(x)7 XE[O,I],fGLz[O,l]-

Since
1

1 2

b
il = | [wrelra] <| [lr@Pa) =gl rerou,
0

0

we have the inequality ||73|| < 1. Let us determine the discrete spectrum. We
look for non-trivial solutions of the equation (753 — A1) f = 0. As a solution of
the equation (x — 1) f(x) =0, x € [0,1], we get only f = 0. Thus, the discrete
spectrum is empty. Now, we consider the continuous spectrum. We consider a
function g € L2[0, 1] and find A for which the equation (73 — AI) f = g has solu-
tions in L?[0,1]. If A = 0, then the equation xf(x) = g(x) has only the solution

For example, for g(x) = /x € L*[0,1], we have f(x) = 1/y/x ¢ L*[0,1]. Thus,
0 € o(T3). In the case when A # 0, we get the solution

flx) = ngxi, xeo,1].

For A € (0,1] and g = 1, we obtain that f ¢ L2[07 1]. For others A € C, i.e.,
A ¢ 10, 1], the function 1/(x — A) is continuous on [0, 1]. Therefore, the equation
T3 f — A f = g has a solution in L*[0, 1] for any function g € L[0, 1]. The spectrum
is 0 (T3) = [0, 1]. The operator T3 cannot be completely continuous, because its
spectrum is an uncountable set. Moreover, ||T3|| = 1 (see Theorem 0.39).

1.3 Self-adjoint operator in Hilbert space

For self-adjoint linear operators in Hilbert spaces with finite dimensions, we have the
well-known theorem about the existence of an operator matrix in the diagonal form.
Now, we extend this theorem to completely continuous self-adjoint operators in Hilbert
spaces. Let H be a Hilbert space.

Theorem 1.19. All eigenvalues A of a self-adjoint operator L: H — H are real.

Proof. Let Lx = Ax for some non-zero x € H. Then,
A (x,x) = (Ax,x) = (Lx,x) = (x,Lx) = (x, Ax) = A {x,x).
We see that A = A. O

Theorem 1.20. Eigenvectors of a self-adjoint operator L: H — H, which correspond
to different eigenvalues, are orthogonal.

Proof. If Lx = Ax and Ly = py for A # u, then

A(x,y) = (Ax,y) = (Lx,y) = (x,Ly) = (x,uy) = U {x,y),

which gives (x,y) =
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Lemma 1.21. [f a sequence {&,}r—; C H and § € H satisfy

sup || & || < oo
neN

and
L& —&E)—0 as n— oo

for a self-adjoint operator L: H — H, then

Q(én) = <L€n7€n> — <L§,€> = Q(é) as n —» oo,

Proof. For all n € N, we have

[{LGw; Gn) — (LE, &) < [(LEn; &n) — (L&, Gn) |+ (S, LGn) — (&, LE)|

together with

(L&, &n) — (LE, En)| = [{L(En — &), &) < IIE NI IL(Sn = )
and
[(8,LEn) — (S, LE)| = [{&, L(& — ) < [IE ]| - [1L(& = S)I-

Since the set of all numbers ||&,|| for n € N is bounded and ||L(§, — &)|| — 0 as n — oo,
we get
(LE,, &) — (LE,E)| — 0 as 1 — oo,

Lemma 1.22. [f the functional

§—~10(8)={LE,E), SeH,

where L: H — H is a self-adjoint operator, assumes a maximum on B[0,1] C H at an
element &, then

(Go,m) =0
implies that
(Lo, ) = (&0, L) =0.
Proof. Obviously, ||&|| = 1. Let n # 0 and (&, n) = 0. We set

6: €O+an ,

2
L+al*|In]

where |a| > 0 is a sufficiently small number. From ||&]|| = 1, we get ||§]| = 1. It holds

= T (28 ) T+l otm)

B 1
- 2
L+ laf[|n]l

0(&)

[0(80) +2a (L&, 1) +al*Q(n)]

for such a number a that a(L&y,n) is real. From the expression above, we see the
following implication. If (L&y,n) # 0, then (consider |a| ~ 07)

10(5)] > 12(o);

which is a contradiction. O
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Remark 1.23. From Lemma 1.22, it follows that & is an eigenvector of the operator L
if the functional |Q(&)| assumes a maximum at & = &.

Theorem 1.24 (Hilbert—Schmidt). For every completely continuous self-adjoint ope-
rator L: H — H, there exists an orthonormal system of eigenvectors @1,@s, ... cor-
responding to non-zero eigenvalues Ay, ... such that any element & € H can be
uniquely written as

N —_
&= ch¢k+§a
=1

where N € NU {co}, 5_ satisfies LE =0, and

N
LE =Y Mk
k=1

If the system of @y is infinite, then
lim Ak =0.

k—ro0

Proof. By induction, we construct eigenvectors ¢, so that the absolute values of the
corresponding eigenvalues satisfy

Al > o] 2 e > A >

In the construction of @, we investigate the functional |Q(&)| = |(L&,&)| and we
prove that it assumes a maximum on B[0, 1]. We denote

§= sup [(L§,&)|.
HES

Let {&}5_, be a sequence such that ||| < 1 for k € N and
[(L&, &) | —S  as  k— oo

By Remark 1.14 (or Remark 1.8), from the sequence {&;};._,, one can extract a subse-
quence {&! }7_, such that

|LE —Ln||—0 as  k—e

for some 1 € H, where ||| < 1. By Lemma 1.21, it holds |(Ln,n)| = S. We put
¢ = 1. We add that ||n|| = 1. Indeed, for |n|| < 1, the element n; = n/||n || satisfies

[mll =1, (L1, M) | > S.
We know that (see Remark 1.23)

Loy =Nio1,
where w )
O1, P
M| = —=——=— =L, )| =5.
(@1,01)
Let eigenvectors @1, @, ..., @, correspond to eigenvalues A;,A;,...,A, from our con-

struction. Let H, be the subspace of H generated by ¢, ¢,,...,¢,. We consider the
functional | (L&, &) | on the set H;- NB[0,1] C H. Since the subspace H,, is invariant
and L is self-adjoint, the set H,,L is invariant with respect to L (see Remark 0.36). Ac-
cording to the considerations above for HnL, we get that, in Hnl N B[O, 1], one can find
the required element (denoted as ¢, 1) which is an eigenvector of the operator L. The
following two cases are possible:
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1. after a finite number of the steps, we get a subspace H,f(‘), where (L&, &) =0;

2. (LE,E)#0on H; foralln e N.

In the first case, from Lemma 1.22, it follows that L maps the subspace H,#) into {0},
ie., H,f(‘) is composed of eigenvectors corresponding to the eigenvalue A = 0. In this
case, the set { @} is finite. In the second case, we obtain a sequence { @}, of eigen-
vectors for which A; # 0, k € N. We know that A; — 0 as k — o (see Theorem 1.15).
Let .
A= \H, #{0}.
n=1
If £ € H, then
2
LG, &) [ <Al llS[I",  neN,

ie., (LE,E) = 0. Therefore, by Lemma 1.22 (for the subspace H), the operator L maps
H into {0}.

From the construction of { ¢y };(V:1 , it follows that any element & € H can be uniquely
expressed as

N -
§= ch¢k+§7
k=1

where N € NU {eo}, LE = 0, and

N
LE = Z AkCr Q-

k=1
O

Remark 1.25. Theorem 1.24 says that, for any completely continuous self-adjoint ope-
rator on H, there exists an orthogonal base of the space H which is composed of eigen-
vectors of this operator. To obtain such a base, it is enough to consider {(pk}szl with
an arbitrary orthogonal base of H,f(‘) or H (see the proof of Theorem 1.24). In other
words, we get a result entirely analogous to the theorem about the existence of an
operator matrix in the diagonal form for self-adjoint operators in a space with a finite
dimension.
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2. Derivative in Banach spaces

Let X,Y be real Banach spaces.

2.1 Weak and strong derivative

Let f be a map defined on an open set G C X with valuesin Y.
Definition 2.1. For x € G, we define the directional derivative of f in the direction of
h € X as the limit ]y
h) —
i LG AR = £
A—0 A
if it exists. We denote it by Dy, f(x).

Definition 2.2. If f has the directional derivative in the direction of any h € X atx € G
and df(x): h — Dy f(x) is a continuous linear map from X to ¥, we say that f has
the weak derivative df(x) at x. The weak derivative is sometimes called the Gateaux
derivative.

Definition 2.3. If there exists a continuous linear map L: X — Y such that

LS )~ £() — L(h)
h—0 [|7]|

=0, 2.1)

we say that f has the strong derivative at x € G. If f has the strong derivative at x € G,
the map L from (2.1), which is uniquely determined, is called the Fréchet derivative
of f at x and is denoted by f’(x).

Remark 2.4. If f'(x) exists, f has also the weak derivative at x and f’(x) = df(x). In
this case, there exists the directional derivative of f in the direction of any /4 and

D f (x) = f'(x) ().

Remark 2.5. Let f be areal function (i.e., a functional) on X (i.e., G = X). The function
£ has the Gateaux derivative at x € X if there exists L € X’ such that

lim [t An) = f(x)

=Lh 2.2
A—0 A 2.2)

forall h € X.

Example 2.6. On the Banach space X = C[0, 1] (with the norm of the uniform conver-
gence), we consider the functional

F:fe/lf?
0
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For any ¢ € X, we compute the directional derivative of F in the direction of ¢ as
(see (2.2))

A _
Dy (f) = tim U AR

j (f+29)*— %)
0

>’ \

1
— 1i 2 :/ )
Alg%/(2f<p+k<p) 2f 9
0 0
‘We introduce
L:o— /Zf(p.
0

It is immediately seen that L is a linear functional on X. From

1
o)l <2 [ 1fol <2 max [p(0)] /|f| 2||<P|\/|f|
0 ]
it follows that L is bounded. Thus, F has the Gateaux derivative at f (which is given
by L).
If the Fréchet derivative of F at f exists, then it is L (see Remark 2.4). Its existence
is guaranteed by the limit

1
. F(f+e)—F(f)—L(p) im 1 2 2
lim = lim o / ((f+0)2— > 2/0)

9—0 ol 9—0

/¢ <hmH¢H

R0

We see that the functional F has also the strong derivative at f and its Fréchet derivative
is equal to L.

Before the next example, we recall that continuous linear functionals on 1! have the

form
Y ann
n=1

for {a,},_, € I”. More precisely, if {a,},_, € [~ and
=Y awx,
n=1

forx = {x, )5, €', then ¥ € (I') (= 7).

Example 2.7. In the Banach space ', we consider the function f: ¢ + ||z|| on /' and
x = {x,}7_, €1'. We show that f has the Gateaux derivative at x if and only if x, 7 0
for all n € N. In this case,

df(x) = {sgnx,},_, €I”.
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Then, we show that the Fréchet derivative of the norm in /! does not exist at any point.
Let {x,}_, be a sequence in /' such that x; = 0 for some k € N. We put

e ={0,...,0,1,0, ...},

where 1 is in the k-th position. The non-existence of the directional derivative of f in
the direction of e; comes from

[Px+2e| —llxll _ 1 (¥ ¥ _ 1A
S 1 PR W) B

For A — 0, we see that the limit of the considered term does not exist. Therefore, the
function f does not have the weak (and also the strong) derivative at any point with a
zero element.

Let {x,},_, be a sequence in I' such that x, # 0 for all n € N. We consider & =
{h,}_, €1"and € > 0. Let k € N be such that

i || < €.
n=k+1
Obviously, there exists § > 0 such that
sgn (x, + Ahy,) = sgnxy,, Al <8,ne{l,... k}.
For A € (—9,0), we obtain

x+Ahl|—||x >
bt Al
n=1

1

k oo
< ‘l (Z |Xn + Ahy| — |x0] — Ahy sgnx, + Z xn+khn|—|xn—khnsgnxn>
n=1

n=k+1

1 &  —
S Y (bl 121 V] = beal A a]) < 2 Y 2IA] [ < 26
| ‘n:k+1 | ‘n:k+1

Due to the fact that € > 0 is arbitrary, the function f has the weak derivative at x which
is equal to

{Sgnxn}:;ozl S lma
because the map

h— Z hy, sgnx;,

n=1

is a continuous linear functional on /'.

Now, we show that f does not have the strong derivative at any point. We assume
that f has the derivative f'(x) atx = {x, },._;. If f/(x) exists, itis {sgnx,}_, € [*. We
consider

h =1{0,0,...,0,—2x;,—2xj41,—2xj42, ...}, jEN,

where the value —2x; is in the j-th position. Obviously,

W] =2Y ] 50 as e

n=j
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and (see (2.1))

=

Hx—i—th —|lx|l - Z(—an)sgnxn

n=j
Z || — Z || + ZZ\xn|
n=1 n=1 n=j

Now, it is seen that f cannot have the strong derivative at x.

[+ 27 || = l1xll = £ ) (W) | =

=[]l

2.2 Convex function

Now, we study derivatives of convex functions.
Definition 2.8. A real function f: D C X — R is called convex on a convex set D C X
if

FAx+(1=2A)y) <Af(x)+(1=2A)f(y), xyeD,A€[0,1].

An elementary example of convex functions on a Banach space is the norm.

Theorem 2.9. Let f be a real convex function on an open convex set D C X which is
continuous at xo € D. Then, there exist K > 0 and & > 0 such that

) —fOI<Klx=yll,  xy€Bx,6),

where B(xg,0) is the open ball with the center in x and the radius §.

Proof. The continuity of f at xy guarantees the existence of M > 0 and § > 0 such that

|f(#)| <M fort € B(xp,28) C D. We consider x,y € B(xp,0), where x # y. We denote
0

oa=x=yl,  z=y+—(—x).

o

We see that z € B(xg,28). Since y is a convex combination of z and x, where

o
Y= axrsi T are”

using the convexity of f, we have

a o)

F0) = £0) € 25 (@) + =55 10— 1)
o o 2M
= S U@ W) £ 2 < S x|
Analogously,

700~ £0) < 25 Iy =l
O

Remark 2.10. On spaces whose dimension is infinite, there exist discontinuous linear
functionals and all linear functional is a convex function. Thus, there exist disconti-
nuous convex functions. Note that convex functions on open subsets of a space with a
finite dimension are continuous.
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Remark 2.11. From the proof of Theorem 2.9, it follows that it suffices to assume only
the boundedness of f on some neighbourhood of xg. Thus, we know that a convex
function is continuous on an open convex set D C X if and only if it is locally bounded
on D.

Before the following theorem, we recall that a real function f defined on a metric
space M is called upper semi-continuous on M if the set

{xeM; f(x) <o}
is open for all @ € R.

Theorem 2.12. Let f be a convex function on an open convex set D C X. Then, the
following conditions are equivalent:

i) f is continuous on D;

ii) f is upper semi-continuous on D;
iii) f is upper bounded on some neighbourhood of a point of D;
iv) f is continuous at a point of D.

Proof. The implication i) = ii) is obvious.
If a real function f is upper semi-continuous on D and x € D, then the set

{reD;f(t) < fx)+1}

is a neighbourhood of x, where f is upper bounded. We have proved the implication
ii) = iii).

For the implication iif) = iv), we consider that f is upper bounded on a neighbour-
hood of xp € D. If f < K on B(xp,8), for t € B(xo,0), we have also 2xyp — € B(xg,0).
Thus,

2x9—t t 1

o) = £ (2514 5) < 3 x0 1)+ 1710 < 5K+ 70,

Then, we have
—f(t) <K —=2f(x0) <K+2|f(x0)]-

Since also
f(t) <K <K+2|f(x0)l,

we obtain
If()] <K+2|f(x0)],  t€B(x0,9).

Therefore, f is bounded on B(xg, ) and it suffices to use Remark 2.11.

Now, we consider the implication iv) = i). Let f be continuous at xo € D and y € D
be arbitrarily given. There exist z € D and A € (0,1) such thaty = Ax+ (1 —21)z. We
consider 6 > 0 and K > 0 such that f <K on B(x,8) C D. We show that f is upper
bounded on the set B(y, A ) which implies that the function f is continuous at y. We
consider ¢ € B(y,A6). Since

z:z(x+t;y>+(1—z)zea
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where

x+t_Ty € B(x,5),

the convexity of f gives the estimation

fiO)<Af <x+ t/ly) +(1-A)f(2) KAK+(1—-24)f(2).

O

Remark 2.13. It is known that linear functionals are continuous if and only if they
are continuous at 0, which is if and only if they are bounded. So, continuous linear
functionals are bounded on the unit ball, but continuous convex functions do not need
to be bounded on the unit ball (although they are locally bounded). In addition, on any
separable Banach space whose dimension is infinite, there exists continuous convex
function, which is not bounded on the unit ball.

Before the following theorem, we recall that a real function p on X is called a
convex functional on X if:

a) p(Ax) =Ap(x),A>0,x€X;

b) p(x+y) < plx)+p(), x,y€X.
Theorem 2.14. Let D C X be an open convex set, let f be a convex function on D, and
let x € D. Then,
. flx+th)—f(x)
dt h) = lim —M ————~
F8) = tim T

exists for all h € X and the map d* f(x): h— d* f(x)(h) is a convex functional on X.

Proof. Let h € X. The function

|, flxek )~ £()
t

is non-decreasing on a right neighbourhood of 0. If ¢, s, where 0 <t < s, are sufficiently
small (so that x + sh € D), then we have

—t t
x+th= s—x+f(x+sh)
s s

and, consequently,
—t t
Flx+th) < sTf(x) + =[x+ sh).
Thus,
1

) = £(@) < ¢ (Flxtsh) = £(0).

If we consider ¢ > 0 sufficiently small, then

_Se=2th) = f(x) _ fx+2th) — f(x)

2t 2t ’

2.3)

because
x—2th+x+2th

2f(x) =2f ( . ) < f(x—2th) + f(x+2th). (2.4)
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Therefore (see (2.3)), we have

—d" f(x)(=h) <d" f(x)(h).

Especially, the considered limit exists.
It remains to prove the convexity of the functional. If A > 0, then

et iAh) = f(x)

d*f(x)(Ah) =4 lim = — Ad*f(x)(h).
For h,k € X, it holds (see (2.4))
S+ =t L) =10
< lim Sx+2th)— f(x) n fx+2tk) — f(x)
t—0t 2t 2t
=d" f(x)(h) +d" f(x) (k).

O

Remark 2.15. In the proof of the previous theorem, we have obtained the inequality
—d"f(x)(=h) <d"f(x)(h).
It is easy to show that Dy, f(x) exists for all & € X if and only if
—d" f(x)(—=h) =d" f(x)(h), heX.

Theorem 2.16. Let f be a convex function on an open convex set D C X, let it be
continuous at x € D, and let it have the derivative Dy, f(x) linearly in the direction of
all h € X. Then, f has the Gdteaux derivative df (x) at x.

Proof. By Theorem 2.9, there exist K > 0 and § > 0 such that

[f(w) = fW)[ < Klu—v]|

for all u,v € B(x,8) C D. We consider h € X. Let A > 0 be such that x+ A% € B(x, J).
Then,
|f(x+Ah) = f(x)] < K[| Ah]| = KA ||A].

Therefore,
|d* £ (x) ()| < K |||

and, consequently, the derivative d* f(x)(h) = D;f(x) is continuous. O

2.3 Tangent functional

We know that the function f: X — R given by x — ||x|| is continuous and convex.
We show that, under certain assumptions, the weak derivative of this function f is the
so-called tangent functional. We recall the well-known corollary of the Hahn—Banach
theorem which says that, for any non-zero element x € X, there exists g € X’ such that
lgll = 1 and g(x) = ||x||. This functional is called the tangent functional at x.
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Theorem 2.17. Let the function f: x — ||x|| have the Gateaux derivative at x # 0, x €
X. Then, the Gateaux derivative df (x) € X has the norm ||df (x)|| = 1 and df(x)(x) =
||lx||. At the same time, if g € X' satisfies ||g|| = 1 and g(x) = | ().

Proof. For h € X and sufficiently small ¢, from the estimation

[IIX+th|| — Il < o [+ th = = 1]

o () =1z (epag]| - w)
1
}Lf%t( < E ||)x 'x”>

:lim”x”<1+t—1>:1,

[l

il
it follows that ||df(x)|| < 1. Since

we have ||df (x)|| = 1 and df(x)(x) = ||x]|.
Let g € X’ be such that ||g|| = 1 and g(x) = ||x||. We consider & € X and we define

e(t) =df(x)(h) — % [llxe+ 2]l — {Ix]l]

for sufficiently small # # 0. Obviously, () — 0 as r — 0. For the considered ¢, we
have

g(x+th) <llgll - llx+thl| = [lx]| +2df (x) (h) —2e(r) = g(x) +1df (x)(h) —1€(2).

Therefore,
tg(h) <tdf(x)(h) —re(t)

which gives (as t — 0")

g(h) < df(x)(h).
Since this inequality is valid for all 4 € X (also for —A), it is enough to consider the
linearity of g and df(x). Therefore, g = df(x). O

The previous theorem relates to the geometry of a Banach space. According to this
theorem, at all non-zero point in which the norm has the Gateaux derivative, the space
is “smooth” in the sense that there exists just one tangent functional. We discuss this
topic in the next chapter.
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3. Strictly and uniformly
convex spaces

In this chapter, we consider a real Banach space X.

3.1 Strictly convex space

Definition 3.1. An extreme point of a convex set C C X is a point x € C for which
x=(a+b)/2, where a,b € C, implies a = b. The set of all extreme points of the set C
is denoted by ext C.

Remark 3.2. Definition 3.1 says that x € C is an extreme point if there does not exist a
non-degenerated line segment in C having the center x. It is seen that x is an extreme
point of C if and only if the set C \ {x} is convex.

Definition 3.3. A Banach space is called strictly convex if all point of the unit sphere
dB(0,1) is an extreme point of the closed unit ball B[0, 1], i.e., if ext B[0,1] = dB(0,1).
Strictly convex spaces are also called rotund.

Remark 3.4. In strictly convex spaces, any line segment cannot lie on any sphere.
Therefore, the following implication is valid. If C is a convex set in the strictly convex
space X, x € X, a,b € C, and if ||x — a|| = ||x — b|| = dist(x,C), then a = b. Indeed, for
A €10, 1], it suffices to consider that

Ix—Aa—(1—A)b]| < |Ax—Aa] + || (1 = A)x— (1 —A)b]| = dist(x,C).

Remark 3.5. Since extreme points of the closed unit ball B[0, 1] have to lie on the unit
sphere dB(0, 1), we can say that X is strictly convex if and only if

x4yl <2,  x,yeB[0,1],x#y.

Let the identity
2 2 2
[+ y[1% = 2" + 2]yl 3.1)

be valid for points x,y of a Hilbert space. Since, in any Hilbert space, the identity
2 2 2 2
[+ YI17 + e = ylI" = 2 Il + 2 Iy

is valid, we see that x = y. Geometrically, (3.1) says that, in the parallelogram with the
sides x and y, the second diagonal x — y is missing. Now, we consider points x,y of X
for which (3.1) is valid. Since
2 2 2 2 2 2
0=2|x[["+2IylI" = [lx+ylI7 = 2{lx[|* + 2 llyll" = (Il + lI¥l})
2 2 2 2 2
=2l =+ 21{y 17 = llxll” = 21|l - [y | = [y 1" = ([lxll = [lyID* = 0,

we get ||x|| = ||y||, but not x = y necessarily. This observation motivates the following

theorem.
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Theorem 3.6. For the Banach space X, the following statements are equivalent:

i) X is strictly convex;

ii) if |x+y|| = ||x]| +[y]l, x # 0,y # 0, then x = Ay for some A > 0;

i) ifx,y € X and ||x+y|* = 2 ||x||* +2||y||% then x =,

Proof. We begin with the implication i) = ii). Let X be strictly convex and let x,y
be non-zero points of X satisfying the equality ||x+ y|| = ||x|| + ||y||- For example, let

[lx|l < [|y]|. We have
‘ |y yH
Xl Iyl

1 1 1
WNM+WW”ﬂQMuOZ

Therefore, we obtain (see Remark 3.5)

R
[l

x+yH > ‘
Ix Tyl

X
T+
x|

X _ Y
=l iyl

ie.,

Let us consider the implication if) = iii). Let the implication in i) be true and let
2 2 2
e+ 17 = 2 1l + 2|1

Hence (see the text before Theorem 3.6), ||x|| = ||y|l. We do not consider the trivial
case x = 0,y = 0. In the non-zero case, we obtain

2 2
[+ y[|* =4 |x]|~
Therefore,
[[x+yll = 2{x][ = [[x[| + [y -

Based on the assumption, x = Ay for some A > 0. Considering ||x|| = ||y||, we obtain
that A = 1. The implication has been proved.
In the last part of the proof, we can use, e.g., Remark 3.4 or Remark 3.5. If

1
Il = = 5490 =1

then
e+ )17 =4 =2 x| +21lyl>.
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3.2 Uniformly convex space

If points x,y of a strictly convex space have a constant distance and they are on the
unit sphere dB(0, 1), then the midpoint of the line segment between x and y is in the
open unit ball. But, in a space whose dimension is infinite, it is not clear, whether this
midpoint can be arbitrarily close to the sphere dB(0,1). This motivates the following
definition.

Definition 3.7. A Banach space is called uniformly convex if, for all € € (0,2], there
exists & > 0 such that, if x,y are in the unit ball B[0, 1] and ||x —y|| > &, then

H;(x—i-y)H <1-3.

The basic characteristics of uniformly convex spaces are mentioned in the following
theorem.
Theorem 3.8. For the Banach space X, the following statements are equivalent:
i) X is uniformly convex;
ii) for any € € (0,2], there exists 6 > 0 such that, if x,y are on the unit sphere

dB(0,1) and ||x —y|| > &, then

H;(Hy)HSI&

iii) if {xn}5_y s {n}ney € 9B(0,1) satisfy

lim || Yn
2

n—oo

=1

)

then x, —y, — 0 as n — oo,

Proof. If X is uniformly convex, then ii) is true. The implication ii) = iii) is trivial as
well.
If X is not uniformly convex, then there exist € > 0 and sequences

{xn}::I a{Yn};o:I - B[07 1]

such that
”xn_ynHZe’ neN,
and
1= < S lbtoll < 5 (bl + ) <1, neN.
n— 2 -2 -
Therefore,

x| 4 [|ynll — 2 as N — oo,

Since ||x,|| < 1,

yull <1, n €N, we have
lm [l = lim [l = 1.
n—oo n—oo

Especially, without loss of generality, we can assume that ||x,|| - ||y,|| > 0 for all n € N.

For N y
:”T”H, V= neN,
n

u
" [yall”
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we obtain ||uy|| = 1= ||vy||., n € N, and
et +vall = llxn +yalll < Nttn — 2l + [[vie = Yl neN.

The right side converges to 0 as n — oo, because

1
=||xn||-( 1)=1—||xn, nen,

[l

Xn
|t — x| = H —Xn
[

and, analogously,

Ve =yall = 1= lyull neN.
With respect to
a3l —1 as  n—oo,
2
we get
7||“”‘2LV”|| S1  as n—oe, (3.2)

We have two sequences {uy,},_;,{vn},_; € dB(0,1) for which (3.2) is valid and, at
the same time, for which
liminf ||u, — v, > € >0,
n—soo

because
0 <& <|xn —yull < [Ixn = ttnll + ltw = vall + [[va =yl neN.
—_—— —_——

—0 —0

O

Remark 3.9. Many other equivalences can be mentioned in Theorems 3.6 and 3.8.
The statements in Theorem 3.6 are also equivalent to:

iv) if p € (1,00) and x,y € X, x # y, then

xX+y
2

p
"<t i
v) if
=yl = lx=zll+llz=ll,
then there exists A € [0,1] such that z = Ax+ (1 —A)y.
Similarly, the statements in Theorem 3.8 are equivalent to:

iv) for any € > 0, there exists § > 0 such that, if ||x|]| < 1+ 8,

y|| <1446, and if

H;(XH)H >1,

then ||x—y|| < €.

Remark 3.10. Obviously, any uniformly convex space is strictly convex. In spaces
whose dimension is finite, these notions are same. It follows from the compactness of
the closed unit ball B[0,1] in spaces with finite dimensions and the continuity of the
function n
XTy

(v) = 2
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Remark 3.11. 'We consider X = C[0, 1] with the norm

1

2

1
7l =max{ls@ee 0+ ( [2) . rex.
0

One can show that this space X is strictly convex, but it is not uniformly convex.

Example 3.12. Any Hilbert space H is uniformly convex. It is enough to consider that,
forx,y € H, ||x]| < L, ||y|| < 1, and ||x — y|| > €, we have

XYy
2

2 2 2
B g i
2 2

x+y 2
2

and, consequently,

2 272 \2
ie.,
x+y €2
— | <t/1—-—< 1.
Ph-5<
Example 3.13. The spaces
2, = (L) I1,)

are strictly convex for all p € (1,0) and any measurable set Q C R. This fact is possible
to easily show taking into account the case, when the Minkowski inequality becomes
the equality. But, we prove the stronger result that the space Z, is uniformly convex
for all p > 1. It is enough to prove that, for all € > 0, there exists § > 0 such that, if
u,v € LP(Q), |[ul|, = [[v]|, = 1, and if

+ p
ury >1-0,

p

then p
v < 2€gP,

2 p

We consider an arbitrary number € > 0. For simplicity, we denote

1 1
s:i(u—i—v), t=-(u—v),

where u =s+1t,v=s—t. We put

S={weQt(o)| <e|s(0)]},
So={weQ;t(w) =0},

Sy ={0eQ:0<|i(0)] <els(w)|},
T ={weQ;t(o)]>¢ls(o)[}

Evidently,
/|t(a))|”da) < ep/|s(a))|”dw <P, (3.3)
N Q
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It is well-known that the function A — |A|? is strictly convex and continuous on R.
Therefore,

A+1P+|A =17 A+1 A—1)

P— | 4+
> > |4 ’ 5 + 5 , A ER,
and there exists y > 0 such that
Yiasipap—tp—ap sy, ae|-L L (34)
2 - e'e
In (3.4), we consider
(o)

For w € T, we obtain

[Is(@) +1(@)[” +[s(@) —1(@)["] > V]t(@)]” + |s(@)|?

and, for @ € S = Sy U S, it holds

S

1
5 lIs(@) +1(@)” +[s(@) —1(@) 7] = |s(@)|".
Thus, |
1= [ 5 ls@)+1(@)I" + Is(@) ~ (@)"] do
7 / (3.5)
Is(0)|”do+ [ 7|t(w)|” do.
Q T
If
/\ )P dw > 18,
then, using (3.5), we obtain
/\t(a))\pda) < i. (3.6)

The choice 6 = ye?, (3.3), and (3.6) give

[t(@)|Pdo = [ [t(w)Pdo+ [ [t(w)Pdo < el 4P =2¢eP.
[rorso= fiora- |

3.3 Projection

Now, we focus on projections in uniformly convex Banach spaces. Let X be a uni-
formly convex Banach space.

Theorem 3.14. Let C(#£ 0) be a closed convex subset of X. Then, for any y € X, there
exists just one ¢ € C such that ||y — c|| = dist(y,C).
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Proof. The uniqueness is presented in Remark 3.4. Hence, it suffices to prove the
existence of an element x € C with a minimal norm, because, without loss of generality,
we can assume that y = 0. We put

d =inf{]|c||; c € C}.

If d = 0, then we see that 0 € C (the set C is closed). Therefore, without loss of
generality, let 4 = 1. In this case, there exists a sequence {x,},_; C C such that

lim ||x,| = 1.
n—soo
If {x,},_, is Cauchy, then there exists the limit

x = lim x,, where  xeC,|x||=1.
n—o0

The convexity of C guarantees that

‘ 1

Xn+x0)|| > 1, n,k € N.

5

We consider an arbitrary number € > 0. For the given &, there exists ny € N such that
|lxz]] < 1+ € for all n > ng, n € N. Therefore (using the uniform convexity), we have
l|lxn —xi || < E(€) for all n,k > ng, n,k € N, where () — 0 as € — 0. The theorem
is proved. O

Definition 3.15. Let C be a closed convex subset of X. For any x € X, the uniquely
determined Pc(x) € C satisfying ||x — Pc(x)|| = dist(x,C) is called the projection (of x
on C).

Theorem 3.16. Let C be a closed convex subset of X. The projection Fc is continuous.

Proof. For simplicity, we consider dist(0,C) = 1. Let {x,},_, € X be a sequence such
that x, — 0 as n — oo. We want to show that Pc(x,) — Pc(0) as n — oo. Since

|12 — Pe(x) || — 1] = |dist(x,,C) — dist(0,C)|
< ||xp =0 = ||xa]] = O as n— oo,
we obtain that ||x, — Pc(x,)|| — 1 as n — . From
1 |[Jxn = Pe ()| = 1xall] < 1P (en) | < llxn = Po(xa) || + [lxall — 1

as n — oo, we have || Pc(x,)|| — 1 as n — oo. The convexity of C gives

1<
2

 (RelO) + Relin))| < SIRCO IRl 1w noseo

We use iii) from Theorem 3.8 for the sequences

Pc(xn) ™
{PC( )}n 1> {HPc(xn)|}n1

Thus, Pe(x,;) — Pc(0) — 0 as n — . It suffices to consider that

|5 e+ et | 5 (retor+ )|

[1Pe () |

1 P
| (oo BN 0 s e

[[Pe(xn)
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Remark 3.17. The projection on closed convex sets does not need to be linear (even in
Hilbert spaces). It is known that the projection on (closed) subspaces of Hilbert spaces
is linear. But, it is not true in uniformly convex spaces.

For a better understanding of Theorem 3.20 below, we mention the following result.
Theorem 3.18. Any uniformly convex space is reflexive.

Remark 3.19. Strictly convex spaces do not need to be reflexive (see the example in
Remark 3.11).

Now, without a proof, we mention a generalization of Theorem 3.14.

Theorem 3.20. Let C be a closed convex subset of a strictly convex reflexive Banach
space Y andy € Y. Then, there exists just one ¢ € C such that ||y — c|| = dist(y,C).

Remark 3.21. We add that there exist strictly convex reflexive spaces, which are not
uniformly convex.

Now, we generalize the concept of the projection to the concept of the so-called
metric projections in the following definition.

Definition 3.22. Let M be a subset of a Banach space Y. For x € Y, we denote
Py(x) ={m e M; ||x—m| = dist(x,M)}.
The set M is called:
e proximinal if P (x) #0 forallx €Y;
e semi-Chebyshev if Z%y;(x) has at most one element for all x € Y;
e Chebyshev if %)/(x) has just one element for all x € Y.

We repeat that, in strictly convex spaces, any closed convex set is semi-Chebyshev
and that any closed convex subset of a strictly convex reflexive Banach space is Cheby-
shev (see Remark 3.4 and Theorem 3.20). We add that any compact set is proximinal.

3.4 Smooth space

Now, let us define smooth spaces explicitly.

Definition 3.23. The space X is called smooth at x € dB(0, 1) if there exists just one
functional ¢ € X’ such that ||| = 1, (x) = 1. We say that X is smooth if it is smooth
at any point of the unit sphere dB(0, 1).

We emphasize that, according to the above mentioned corollary of the Hahn—Ba-
nach theorem, the tangent functional exists at any point x € dB(0,1). Concerning
Definition 3.23, we point out the uniqueness.

The following reinforcement of Theorem 2.17 is valid.

Theorem 3.24 (Smuljan). The space X is smooth at x € dB(0,1) if and only if the
Sunction f: t — ||t|| has the Gateaux derivative at x.

The most important connection between Chapters 2 and 3 is presented in the fol-
lowing theorem.
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Theorem 3.25 (Klee). If X' is strictly convex, then X is smooth. If X is smooth, then
X is strictly convex.

Proof. We assume that X is not smooth at x € dB(0,1). Thus, there exist @,y € X’
such that

e#v, ol=lvl=1=0¢x) =y(x).

Since

o+vl _
i

the space X' cannot be strictly convex.
If X is not strictly convex, then there exist x,y € dB(0, 1) such that x # y and

xX+Yy

—— € dB(0,1).
> € 9B(0,1)
By the recalled corollary of the Hahn—Banach theorem, there exists a functional ¢ such
that
xX+y
lol=1. o(*57) -1
Since | ) L
x+y
1= ) == ~ <-—+-=1
¢(2 > S0 +500) =S +5=1,
we see

ox)=0(y) =1

For the elements of the unit sphere in X" given by x and y (denoted by f; and f,), we
have

fx((P) = fy((P) =1
Since f; # fy, the space X’ cannot be smooth at ¢. O

Corollary 3.26. Let X be reflexive. The space X is smooth if and only if X' is strictly
convex; and X is strictly convex if and only if X' is smooth.

Remark 3.27. Note that there exist smooth spaces, whose dual spaces are not strictly
convex. Similarly, there exist strictly convex spaces, whose dual spaces are not smooth.
We repeat that smooth Banach spaces are the spaces whose norms have the Gateaux
derivative at any point of the unit sphere. The Banach spaces, whose norms have the
Fréchet derivative uniformly on the unit sphere, are called uniformly smooth spaces.
See the following definition.

Definition 3.28. The space X is called uniformly smooth if there exists the limit

R ]
7—0 T

uniformly for x,y € dB(0,1).

We end this chapter with the analogy of Corollary 3.26. We add that uniformly
smooth spaces are reflexive.

Theorem 3.29. The space X is uniformly smooth if and only if X' is uniformly convex;
and X is uniformly convex if and only if X' is uniformly smooth.
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4. Fixed point theorems

In this chapter, we consider a real Banach space X.

Definition 4.1. Let Y be a metric space. A point y is called a fixed point of a map
f:DCY =Yif f(y)=y.

At first, we recall the most important fixed point theorem.

Theorem 4.2 (Banach). IfY is a complete metric space and f: Y — Y is a contraction,
then there exists just one fixed point of f.

Remark 4.3. Theorem 4.2 is well-known, e.g., from the theory of ODE:s.

Definition 4.4. We say that a subset D of X has the fixed point property if any conti-
nuous map f : D — D has a fixed point.

Remark 4.5. For example, for (R,|-|), it is seen that any closed interval [a,b] has the

fixed point property.

4.1 Topological degree

Let f : G — X be a map, where G is an open set in X. Our goal is to define the number
deg(f,G,p), i.e., the so-called topological degree of f, which means “the number of
solutions of the equation f(x) = p on G”. This number depends on f and on p conti-
nuously. Thus, for small perturbations of f, the number deg(f, G, p) has to be constant
in a sufficiently small neighbourhood of p.

Let us consider the Euclidean space R".

Definition 4.6. To any (f,G,p), where G is from the system of all bounded open
subsets of R", f: G — R" is a continuous map, and p € R" \ f(dG), we assign the
integer deg(f, G, p) satisfying the following conditions:

i) if f is the identity on G and p € G, then deg(f,G,p) = 1;

i) if G1,G2 C G are open sets satisfying GiNG, =0 and p ¢ f (G~ (G UG»)),
then
deg(f,G,p) = deg(f,G1,p) +deg(f,Go, p);

iii) if H: [0,1] x G — R" is a continuous map, fo(x) = H(0,x), f1(x) = H(1,x), and
if H(t,x) # pfort € [0,1], x € dG, then

deg(fo,G, p) = deg(f1,G, p);
iv) if deg(f, G, p) # 0, then there exists x € G such that f(x) = p.

This map is called the topological degree in R".

Remark 4.7. In R", the map from the previous definition exists and it is determined by
the conditions i)—iv) uniquely.
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Before Remark 4.9 mentioned below, we recall the notion of the so-called homo-
topy.

Definition 4.8. Let Z and Y be metric spaces and let f,g: Z — Y be continuous maps.
We say that f is homotopic with g, if there exists a continuous map H: [0,1] x Z —
Y such that H(0,x) = f(x) and H(1,x) = g(x) for x € Z. The map H is called the
homotopy.

Remark 4.9. Now, we comment the conditions i)—iv) from Definition 4.6.

The condition i) says that the equation idx = p has one solution x = p.

The condition ii) says that, if the equation f(x) = p has just n; solutions on G1, just
ny solutions on G, and no solution on G ~ (G1UG3), then this equation has nj + np
solutions on G.

The condition iii) expresses the invariance of the topological degree with respect to
homotopies.

The condition iv) says when the equation f(x) = p has solutions on G.

Remark 4.10. Now, using a simple example, we explain why we cannot consider also
p € f(dG) in Definition 4.6. Let us consider the function f(r) =7 on G = (0,1) C R.
If p € (—o0,0) U(1,0), then deg(f,G, p) = 0, because the equation f(x) = p has no
solution from the interval (0, 1) for this p. Next, deg(f,G,p) =1 for p € (0,1). In any
neighbourhood of p = 0 or p = 1, the topological degree deg(f,G, p) takes the both
values 0 and 1. Hence, for p € f(dG) = {0,1}, deg(f,G, p) cannot be defined if the
topological degree depends on p continuously.

Remark 4.11. In spaces whose dimension is infinite, one can construct the theory of the
topological degree as well. It is called the Leray—Shauder degree and it is introduced
for maps of the type I — T, where T is a completely continuous operator.

Theorem 4.12. The topological degree in R" has the following properties:
1. if f,g: G — R" are continuous maps, f = g on dG, and p € R" \ f(dG), then

deg(f,G,p) = deg(g,G, p);

2. the map deg(f,G,—) is constant on any connected component of the open set

R" f(9G).

4.2 Brouwer and 1. and 2. Shauder theorem

Now, we use the topological degree in the Euclidean space R”".

Theorem 4.13 (Brouwer). The closed unit ball B[0,1] C R" has the fixed point pro-
perty.

Proof. By contradiction, we consider a continuous map f: B[0, 1] — B[0, 1] with the
property that f(x) # x for all x € B[0, 1]. The map

H(t,x) =x—1tf(x), xeR"te0,1],

is a homotopy. We show that H(¢,x) # 0 forz € [0, 1] and ||x|| = 1. For ¢ = 1, it follows
from the assumption. If r € [0,1), then we have the inequality ||z f(x)|| < < 1 for
||x|]| = 1. Therefore, x # ¢ f(x). We denote

go(x) = H(0,x) = x, g1(x) =H(l,x) =x— f(x), x€B(0,1).

50



From the condition iii) in Definition 4.6, we obtain that
deg(go,B(0,1),0) = deg(g1,8(0,1),0).
But, g is the identity, which gives deg(go,B(0,1),0) = 1. Thus,
deg(g1,B(0,1),0) =1

and the condition iv) from Definition 4.6 gives the existence of x € B(0, 1) for which
g1(x) = 0. Of course, this is a contradiction. O

Remark 4.14. From Theorem 4.13, it follows that any compact convex subset of a
Banach space with a finite dimension has the fixed point property.

Naturally, we obtain the question, whether the Brouwer theorem, i.e., Theorem 4.13,
is valid also for the closed unit balls in spaces whose dimension is infinite. But, it is
enough to consider, e.g., the map

h:x={x1,x2,...} — { 1= |lx]1?, %1, x2, },

which does not have any fixed point on the closed unit ball of the space 2.
For spaces whose dimension is infinite, we have the following result.

Theorem 4.15 (Shauder). Let K be a (non-empty) compact convex subset of X and let
f: K — K be a continuous map. Then, there exists x € K such that f(x) = x.

Proof. We consider € > 0. There exist xi,...,x, € K such that

K C | JB(x).¢).
j=1

We define
(pj(x):max{O,SfoijH}, x€K,je{l,...,n}.

The functions @; are non-negative on K and the function

Y o
=

is positive on K. Thus, we can define the function ¢ on K by

-1
Q:x+— ( (pj(x)xj) (Z (pj(x)> .
j=1 j=1

Obviously, ¢ is a continuous function on K which maps K to the set
Ke =conv{x(,...,x,} CK,
where conv {x,...,x,} is the convex hull of xj,...,x,. We have

lo(x)—x[[<e,  xekK.
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The composition ¢ o f maps K into K. According to Theorem 4.13 (see Remark 4.14),
it has a fixed point x; € K. Since

[lxe — f (xe) | < llxe — @(f (xe)) | + [ @(f (xe)) — f (xe) |
= llo(f(xe)) = flxe) | <&,

we have
inf{|]x— f(x)||;x€ K} =0.

Considering that f is a continuous map on a compact set, we know that there exists
X € K such that f(x) = x. O

Definition 4.16. A map f: D C X — X is called compact if it is continuous and if it
maps any bounded subset of D into a set whose closure is a compact set.

Remark 4.17. We repeat that a linear map f: X — X, which maps bounded sets into
sets with compact closures, is continuous.

Theorem 4.18 (Shauder). Let K be a closed bounded convex subset of X and let
f: K — K be compact. Then, f has a fixed point.
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5. Integration in Banach
spaces

In this chapter, we consider a real Banach space X.

5.1 Preliminaries and basic definitions

At first, we recall basic definitions.

Definition 5.1. A system S of subsets of a given set Q is called c-algebra if
a) QeSs;
b) AcS=Q~NAES;

©) Ay€S,neN= [ JA,€S.

n=1
Then, (Q,S) is called a measure space.

Definition 5.2. Let S by a system of subsets of a set . A non-negative map y: S —
[0, +o0] is called a measure if

a) Sis o-algebra;
b) ©(0)=0;
c) for any sequence {A,}, _, of pairwise disjoint sets from S, it holds

n=1 U

n=1

We say that a measure is finite if (t(Q) < co. A measure is called complete if the
implication
ABCQACBBEeS uB) =0 = A€cS

is valid.

Definition 5.3. Let Y be an arbitrary set. We define the function y4: A CY — R by

() = 1, foryeA;
Xa\y) = 0, foryé¢A.

Let a measurable space (€2, S) be equipped with measure (, whereas [ is probabil-
ity complete measure.

Definition 5.4. Function f: Q — X is called:
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e simple if there exist xy,...,x, € X and Ey,...,E, € S such that

e measurable if there exists sequence {f, },_, of simple functions such that
lim f,(w) = f(w)
n—soo
for all @ € Q up to a set with zero measure;

e weakly measurable if ¢ o f is measurable function for all ¢ € X’.

Remark 5.5. 1t is easy to show that fj + f> and A f, are measurable if f}, f> are mea-
surable and A € R. (analogously weakly measurable)

Theorem 5.6 (Pettis). Function f: Q — X is measurable if and only if f is weakly
measurable and there exists set E € S with measure U(E) = 0 such that f (Q\E) is
separably subset of X. Especially for separably Banach space X terms measurable and
weakly measurable merge.

Definition 5.7. If x,, for n € N be elements of Banach space X, we say that series Zx,-
i=1

e converges, if there exists
n
lim ) x;;
fim ) x
i=1
e converges absolutely if

Z |xl-\ < o005
i=1

e converges unconditionally to x € X, if

for all permutation p.

Remark 5.8. Due to the completeness of X, any absolutely convergent series is also
unconditionally convergent. If the dimension of X is finite, then any unconditionally
convergent series converges also absolutely. In spaces whose dimension is infinite, this
implication is not valid. We consider

1
x,1{0,.,.,0,70,~~~}€C0, I/ZEN,
n

where Cj is the space of all sequences of real numbers which converge to zero with the
norm

||lx|| = max |x,].
neN
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Definition 5.9. Let F': § — X be a set of functions. We say that F is additive or
o-additive vector measure if F(0) =0 and

F (UEn> =Y F(E,)
n n
for all finite or countable sequence of disjoint sets E,, € S, respectively.

Remark 5.10. Convergence in X in Definition 5.9 has the meaning of convergence of
series (in case of o-additivity of measure). This convergence is necessary uncondi-
tional (union is commutative).

Definition 5.11. We say that vector measure F: S — X is absolutely continuous with
respect to measure [, if for each € > 0 exists 6 > 0 such that ||F(E)|| < € if u(E) < 8.

Theorem 5.12 (Pettis). Let F' be c-additive vector measure. Then, F is absolutely
continuous with respect to the measure L if and only if F(E) =0 if u(E) =0.

Definition 5.13. Let F be vector measure. If
n n
|F(Q)| = sup{ Z [IF (Ap)||; Ak € S are pairwise disjoint, UAk = Q} < oo,
k=1 k=1

then we say that F has a bounded variation.

5.2 Bochner integral

Definition 5.14. A function f: Q — X is called Bochner integrable if f is measurable
and there exist simple functions f,, for n € N such that

tim [ 1F = fullau =0,
Q
It can be shown that if
tim [17 = fll du=0= lim [ £~ gl du
B B

for measurable function f and simple functions f,, g, for n € N and B € S, then there
exist limits and

lim [ fydu = lim [ g,ducx,
B B

and we put for simple function

p
o= ZXIZE,-
=1

4

just

- p
/ @du =Y xu(ENB).
2 i=1

The previous one guarantees correctness of the following definition.
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Definition 5.15. Let f be Bochner integrable function, B € S and { f, },_, be sequence
of simple functions satisfying

tim [ 1~ £l du =0.
B

The limit
lim / fodpeXx
n—yoo
B

is called Bochner integral f over B and it is denoted as

1o

B

Theorem 5.16 (Bochner). Let f: Q — X be measurable. Then, f is integrable in the
Bochner sense if and only if

JI£1 du < 4o
Q

As L;lf, respectively L)lf (Q,S, 1) is denoted the space of all Bochner integrable func-
tions.

Theorem 5.17. For f € L)l( and E € S, the inequality

[rau|| < [1r1 au
E E

is valid.

Theorem 5.18. After identification functions differing on a set with zero measure, L)l(
is Banach space with the norm

17y = [ 1171 du
Q
Definition 5.19. Indefinite Bochner integral is F': S — X defined by

FE)= [ rdu,
E

where E € S.

Theorem 5.20. Let function f: Q — X be Bochner integrable. Indefinite Bochner
integral is o-additive vector measure, which is absolutely continuous with respect to
u. If E, € S are pairwise disjoint, the series ZF (En) converges absolutely.

5.3 Gelfand and Pettis integral

Lemma 5.21. Let f: Q = X. Ifpo f € L)l( forall ¢ € X', then for each E € S exists
Lg € X" such that

LE(<P)=/<pofdu
E

forall p € X'.
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Definition 5.22. Let f: Q =+ X. If po f € L)l( for all ¢ € X', we say that f is weakly
integrable function. Element Lg € X, which existence is guaranteed by Lemma 5.21,
is called Gelfand integral of f over E. Similarly as for Bochner integral is being intro-
duced indefinite Gelfand integral, which E € S assigns values Lg € X”.

In addition, if Lg € X for all E € S, i.e., there exists pg € X such that Lg(¢) =
¢(pg) for all @ € X', we say that f is Pettis integrable. Element pg € X is called Pettis
integral of f over E. Indefinite Pettis integral assigns for E € S values pg € X.

Remark 5.23. If X is reflexive space, Gelfand integral merges with Pettis integral.

Theorem 5.24. Let function f: Q — X be weakly integrable. Then, the following
conditions are equivalent:

i) f is Pettis integrable;
ii) indefinite Gelfand integral of f is o-additive vector measure;
iii) indefinite Gelfand integral of f is absolutely continuous with respect to (L.

Remark 5.25. If function f is Bochner integrable, f is also Pettis integrable. More
specifically, the relationship between “strong” and “weak” integral describes following
theorem.

Theorem 5.26. Let f: Q — X be measurable and Pettis integrable function. Then, f
is Bochner integrable if and only if indefinite Pettis integral of f is vector measure of
bounded variation.

Theorem 5.27. Let K be compact subset of Banach space X and |l be probability
complete measure on K. If function f: K — X is continuous, then there exists Pettis
integral of f over K.

Definition 5.28. Let function f: [0,1] — X be given. Let
D={0=xp<x; < <x,=1}
be partition of interval [0, 1]. We denote
n
2(f,D) =Y sup{lIf(s) = f(O)]l 5.1 € [rim1,]} - (i —xi1).
i=1
We say that f is Darboux integrable, if for all € > 0 exists 0 > 0 such that 2(f,D) < &

if norm of partition D is smaller than &.

Theorem 5.29. Function f: [0,1] — X is Darboux integrable if and only if f is bounded
function, which is continuous on [0, 1] up to the set with zero Lebesgue measure.

Theorem 5.30. Any function f: [0,1] — X integrable in the Darboux sense is inte-
grable in the Bochner sense.
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