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Functional Response Models

Functional ANOVA
Just as in the standard ANOVA, let be K (K ≥ 3) groups and

xij(t) . . . i-th curve in j-th group, i = 1, . . . , nj , n =
K∑
j=1

nj

• An over-all mean

µ̂(t) = x̄(t) =
1

n

K∑
j=1

nj∑
i=1

xij(t)

• Effects for each group

α̂j(t) =
1

nj

nj∑
i=1

(xij(t)− x̄(t))

• An error process

ε̂ij(t) = xij(t)− α̂j(t)− x̄(t)
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Functional Response Models

Functional ANOVA model

xij(t) = µ(t) + αj(t) + εij(t) (1)

Suppose we observe scalar covariates zi1, . . . , ziK

zij =

{
1 if xij(t) belongs to j-th group

0 otherwise

Model (1) can be rewritten as a functional linear model

yi (t) = β0(t) +
K∑
j=1

βj(t)zij + εi (t)

with conditions
K∑
j=1

βj(t) = 0, Eεi (t) = 0.
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Functional Response Models

Canadian Weather
Divide all 35 locations to 4 regions: Atlantic, Continental, Pacific, Arctic
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We will study the effect of geographic region on the shape of the
temperature curves.
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Functional Response Models

Let us denote model parameters

β0(t) . . . Canada β1(t) . . . Atlantic β2(t) . . . Continental
β3(t) . . . Pacific β4(t) . . . Arctic

Estimates of βj(t)
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Functional Response Models

Prediction of the temperature curve in j-th group

ŷj(t) = β̂0(t) + β̂j(t), j = 1, . . . , 4.

Predicted temperatures in each region
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Functional Response Models

Confidence Intervals
Consider a basis representation

βj(t) = Φj(t)cj

set b = (c′0, . . . , c
′
K )′ ⇒ β̂j(t) depends on b̂.

Let t = (t1, . . . , tN), yi = (yi (t1), . . . , yi (tN))′, generally, we minimize
penalized least squares and get the estimate

b̂ = y2cMap y.

Estimate the covariance matrix

Σ̂ =
1

n − K

n∑
i=1

ε̂i ε̂
′
i , where ε̂i = yi − zi β̂(t).

Thus (formally)

Varβ̂j(t) = Φj(t)y2cMapΣ̂y2cMap′Φj(t)′.
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Functional Response Models

Estimates of βj(t)

Pacific Arctic

Canada Atlantic Continental
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Functional Response Models

Predicted temperatures in each region
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Functional Response Models

Assessing the fit of the fANOVA

Residuals
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Functional Response Models

Functional R2

R2 = 1−

n∑
i=1

(yi (t)− ŷi (t))2

n∑
i=1

(yi (t)− ȳ(t))2
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Jan Koláček (SCI MUNI) M7777 Applied FDA Fall 2019 11 / 31



Functional Response Models

F -statistic

To test significance, we can define a pointwise F -statistic

F (t) =
Var(ŷ(t))

n∑
i=1

(yi (t)− ŷi (t))2/n

indicates where there is a large amount of signal relative to variance.

Test over-all regression significance based on

F ∗ = maxF (t).
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Functional Response Models

Permutation Test

We would like to test the null hypothesis

H0 : Ey(t) = 0 ∀t ∈ [t1, tN ]

Do B times

1 Permute indexes 1, . . . , n to get i1, . . . , in, leaving the design
unchanged.

2 Define ybj (t) = yij (t).

3 Estimate the model using yb(t) as the response.

4 Measure F ∗b and set Ib =

{
1 if F ∗b > F ∗

0 if F ∗b ≤ F ∗

Then p-value for the test

pB =
1

B

B∑
b=1

Ib
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Functional Response Models

Canadian Weather
B = 200, pB = 0

1

2

3

0 100 200 300
Days

F
−

st
at

is
tic

Observed statistic

pointwise 0.05 critical value

maximum 0.05 critical value
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Functional Response Models

Canadian Weather
detailed test results
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Jan Koláček (SCI MUNI) M7777 Applied FDA Fall 2019 15 / 31



Functional Response Models

Canadian Weather
F ∗ = 3.41,F ∗0.95 = 0.747
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Functional Response Models

Functional t-test
Just 2 groups of curves (xij(t), xi2(t)): Is the difference statistically
significant?

Example. Berkeley Growth Study (39 boys, 54 girls)
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Functional Response Models

Functional t-statistic

To test significance, we can define a pointwise t-statistic

T (t) =
|x̄1(t)− x̄2(t)|√

1
n1

Var[x1(t)] + 1
n2

Var[x2(t)]

indicates where there is a large mean difference relative to variance.

Test over-all significance based on

T ∗ = maxT (t).
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Functional Response Models

Permutation Test

We would like to test the null hypothesis

H0 : Ex1(t) = Ex2(t) ∀t ∈ [t1, tN ]

Do B times

1 Randomly shuffle the labels of the curves.

2 Calculate the t-statistic Tb(t) with the new labels.

3 Measure T ∗b and set Ib =

{
1 if T ∗b > T ∗

0 if T ∗b ≤ T ∗

Then p-value for the test

pB =
1

B

B∑
b=1

Ib
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Functional Response Models

Berkeley Growth Study
B = 200, pB = 0
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Functional Response Models

Berkeley Growth Study
detailed test results
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Functional Response Models

Berkeley Growth Study
T ∗ = 10.3,T ∗0.95 = 2.61
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Problems to solve

1 Sound Intensity Data
Load the variable rat3 from the rat3.RData file. The variable rat3
contains observations of a rat neural activity evoked by sound
intensity. The evoked potential (EPI) was measured in dependence on
19 sound intensities for 5 days. The dataset contains 79 repetitions
for each day.

• Smooth the data by B-spline bases with second-derivative penalties and
plot the result with color-day specification (see Figure 1).

• Conduct a study of the effect of the day on the shape of the EPI curves.
Consider the fANOVA model with days as covariates. Plot estimated
parameters with its pointwise confidence bands (see Figure 2).

• Plot predictions for each day with its pointwise confidence bands (see
Figure 3).

• Plot functional R2 of the model (see Figure 4) and interpret it.
• Asses the model by the permutation test for F -statistic and plot the

result (see Figure 5).
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Problems to solve

2 Sound Intensity Data

• Consider just days SS4 and SS5 and plot the EPI estimates with
color-day specification (see Figure 6).

• Is the difference between days statistically significant? Conduct the
functional t-test.

• Asses the model by the permutation test for t-statistic, plot the result
(see Figure 7) and interpret it.
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Problems to solve
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Figure 1.
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Problems to solve
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Problems to solve
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Problems to solve
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Problems to solve
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Problems to solve

0

25

50

75

100

0 25 50 75
Intensity

E
P

I

day

SS4

SS5

Figure 6.
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Problems to solve
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