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Monoidal foundations

C = (C0,⊗,1, a, `, r) monoidal category.

Q = (Q, ∗, e) monoid in C, where Q⊗Q
∗−→ Q,1

e−→ Q.

The unit object 1 = (1, `1, 11) is a monoid in C.

– A left (right) module M over Q is an object M of C0 provided
with a left (right) action � (�), where

– a left action is a C0-morphism Q⊗M
�−→ M such that the

following diagrams are commutative,

(Q⊗Q)⊗M Q⊗M

Q⊗ (Q⊗M) Q⊗M M

-∗⊗1M

?

a

?

�

-
1Q⊗�

-
�

1⊗M Q⊗M

M

Q
Q
Q
Qs`M

-e⊗1M

?
�
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a right action is a C0-morphism M ⊗Q
�−→ M such that the

following diagrams are commutative,

–

M ⊗ (Q⊗Q) M ⊗Q

(M ⊗Q)⊗Q M �Q M

-1M⊗∗

?

�
6

a

-
�⊗1Q

-
�

M ⊗ 1 M ⊗Q

M

Q
Q
Q
Qs

rM

-1M⊗e

?
�

• Even if C is symmetric — i.e. has a symmetry A⊗B
cAB−−→ B ⊗A,

then left and right actions are not equivalent concepts.

• But, if Q is a commutative momoid, then � is a left action if
and only if � = � ◦ cMQ is a right action on M .

Left (right) Q-module homomorphisms are structure preserving
C0-morphisms — e.g.



Monoidal foundations The tensor product in Sup General principles of module theory in Sup Quantale-enriched order theory Enriched order structures on right modules in Sup

a right action is a C0-morphism M ⊗Q
�−→ M such that the

following diagrams are commutative,
–

M ⊗ (Q⊗Q) M ⊗Q

(M ⊗Q)⊗Q M �Q M

-1M⊗∗

?

�
6

a

-
�⊗1Q

-
�

M ⊗ 1 M ⊗Q

M

Q
Q

Q
Qs

rM

-1M⊗e

?
�

• Even if C is symmetric — i.e. has a symmetry A⊗B
cAB−−→ B ⊗A,

then left and right actions are not equivalent concepts.

• But, if Q is a commutative momoid, then � is a left action if
and only if � = � ◦ cMQ is a right action on M .

Left (right) Q-module homomorphisms are structure preserving
C0-morphisms — e.g.



Monoidal foundations The tensor product in Sup General principles of module theory in Sup Quantale-enriched order theory Enriched order structures on right modules in Sup

a right action is a C0-morphism M ⊗Q
�−→ M such that the

following diagrams are commutative,
–

M ⊗ (Q⊗Q) M ⊗Q

(M ⊗Q)⊗Q M �Q M

-1M⊗∗

?

�
6

a

-
�⊗1Q

-
�

M ⊗ 1 M ⊗Q

M

Q
Q

Q
Qs

rM

-1M⊗e

?
�

• Even if C is symmetric — i.e. has a symmetry A⊗B
cAB−−→ B ⊗A,

then left and right actions are not equivalent concepts.

• But, if Q is a commutative momoid, then � is a left action if
and only if � = � ◦ cMQ is a right action on M .

Left (right) Q-module homomorphisms are structure preserving
C0-morphisms — e.g.



Monoidal foundations The tensor product in Sup General principles of module theory in Sup Quantale-enriched order theory Enriched order structures on right modules in Sup

a right action is a C0-morphism M ⊗Q
�−→ M such that the

following diagrams are commutative,
–

M ⊗ (Q⊗Q) M ⊗Q

(M ⊗Q)⊗Q M �Q M

-1M⊗∗

?

�
6

a

-
�⊗1Q

-
�

M ⊗ 1 M ⊗Q

M

Q
Q

Q
Qs

rM

-1M⊗e

?
�

• Even if C is symmetric — i.e. has a symmetry A⊗B
cAB−−→ B ⊗A,

then left and right actions are not equivalent concepts.

• But, if Q is a commutative momoid, then � is a left action if
and only if � = � ◦ cMQ is a right action on M .

Left (right) Q-module homomorphisms are structure preserving
C0-morphisms — e.g.



Monoidal foundations The tensor product in Sup General principles of module theory in Sup Quantale-enriched order theory Enriched order structures on right modules in Sup

a right action is a C0-morphism M ⊗Q
�−→ M such that the

following diagrams are commutative,
–

M ⊗ (Q⊗Q) M ⊗Q

(M ⊗Q)⊗Q M �Q M

-1M⊗∗

?

�
6

a

-
�⊗1Q

-
�

M ⊗ 1 M ⊗Q

M

Q
Q

Q
Qs

rM

-1M⊗e

?
�

• Even if C is symmetric — i.e. has a symmetry A⊗B
cAB−−→ B ⊗A,

then left and right actions are not equivalent concepts.

• But, if Q is a commutative momoid, then � is a left action if
and only if � = � ◦ cMQ is a right action on M .

Left (right) Q-module homomorphisms are structure preserving
C0-morphisms — e.g.



Monoidal foundations The tensor product in Sup General principles of module theory in Sup Quantale-enriched order theory Enriched order structures on right modules in Sup

M
h−→ N is a left Q-module homomorphism, if the following

diagram is commutative:

Q⊗M Q⊗ N

M N
?

�

-1Q⊗h

?
�

-h

• Mod`(Q) (Modr (Q)) category of left (right) Q-modules with left
(right) Q-module homomorphisms. Mod`(1) (Modr (1)) ∼= C0.

• The forgetful functor U : Mod`(Q)→ C0 has a left adjoint
functor F : C0 → Mod`(Q).

• F(M) = Q⊗M ,

Q⊗ (Q⊗M)

(Q⊗Q)⊗M Q⊗M

?
a−1

p p p p p p p p p ps�
-

∗⊗1M
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The tensor product in Sup
Sup= category of complete lattices with join-preserving maps.

A map X × Y
b−→ Z is a bimorphism if b is join-preserving in

each variable separately.

• If X and Y are complete lattices, then their tensor product is a
complete lattice X ⊗ Y determined by the following property:

• There exists a bimorphism X × Y
⊗−→ X ⊗ Y such that for every

bimorphism X × Y
b−→ Z there exists a unique join-preserving

map X ⊗ Y
hb−→ Z making the following diagram commutative:

X × Y X ⊗ Y

Z

HH
HHHHjb

-⊗ ppppp?hb
• The previous property is a universal property and ⊗ is the universal

bimorphism.
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The tensor product of two complete lattices X and Y exists:

• Complete lattice

X ⊗ Y = {all join-reversing maps X
f−→ Y }.

Meets are computed pointwisely, but not joins

• There exists a map X × Y
⊗−→ X ⊗ Y defined by:

(x ⊗ y)(z) =


>, z = ⊥,
y , z 6= ⊥, z ≤ x
⊥, z 6≤ x ,

 , x ∈ X , y ∈ Y .

• We show that ⊗ is a bimorphism. Properties of ⊗:

• If f ∈ X ⊗ Y , then x ⊗ y ≤ g ⇔ y ≤ f (x).

• For all f ∈ X ⊗ Y the relation f =
∨
x∈X

(x ⊗ f (x)) holds.

• If ⊥ is the universal lower bound of X ⊗ Y , then
x ⊗⊥ = ⊥ = ⊥⊗ y .
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⊗ is a universal bimorphism — i.e.

• Given a bimorphism X × Y
b−→ Z , there exists a unique

join-preserving map X ⊗ Y
hb−→ Z such that the following

diagram commutes:

X × Y X ⊗ Y

Z

H
HHH

HHjb

-⊗ ppppp?hb

• Definition: hb(f ) =
∨
i∈I

b(xi , yi ), f =
∨
i∈I

xi ⊗ yi , f ∈ X ⊗ Y .

• hb is well defined:

f =
∨
i∈I

xi ⊗ yi =
∨
j∈J

vj ⊗ wj . Then we put and define:

• z :=
∨
i∈I

b(xi , yi ) and define X
fz−→ Y by fz(x) =

∨
{y ∈ Y | b(x , y) ≤ z}

• fz ∈ X ⊗ Y and b(x , fz(x)) ≤ z for all x ∈ X .
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Unit object 1 = 2 = {0, 1}.

History of the tensor product in Sup:

• The tensor product between complete lattices goes back to a
PhD thesis by D.G. Mowat, Waterloo (Canada) 1968.

• A first, general accessible publication of the tensor product can
be found in Z. Shmuely’s paper: The structure of Galois
connections, Pac. J. Math. 54 (1974), 209–225 .

• Sup as star-autonomous category and in particular as symmetric
monoidal closed category has been first recognized by M. Barr
1979 (see Inf on p. 99 in LNM 752 Springer-Verlag), and later
repeated by A. Joyal and M. Tierney 1984, who made an
extensive use of its tensor product.
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Let X × Y
b−→ Z be a bimorphism and hb be the unique

join-preserving map determined by the tensor product in Sup

X × Y X ⊗ Y

Z

H
HHH

HHjb

-⊗ ppppp?hb

Question. How does the right adjoint map Z op h`b−−→ (X ⊗ Y )op of hb look
like?

• First we observe: h`b (z) =
∨
{x ⊗ y | hb(x ⊗ y) = b(x , y) ≤ z}, z ∈ Z .

• Secondly, for each z ∈ Z we introduce the join-reversing map X
fz−→ Y by:

fz(x) =
∨
{y ∈ Y | b(x , y) ≤ z}, x ∈ X .

• Since hb(x ⊗ y) = b(x , y) ≤ z ⇔ x ⊗ y ≤ fz , we obtain:

h`b (z) = fz , z ∈ Z .
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General principles of module theory in Sup
Let Q be a unital quantale in Sup, M be a complete lattice and

Q⊗M
�−→ M be a left action and M ⊗Q

�−→ M be a right
action.

In contrast to Ab the category Sup has a self-duality determined
by the construction of right adjoint maps.
An application of the self-duality to left or right actions in Sup

will change our idea of module theory we have gained in the case
of abelian groups.

• �` induces a right action on the dual lattice Mop of M by:

m�α =
(
�`(m)

)
(α) =

∨
{n ∈ M | α�n ≤ m}, m ∈ M , α ∈ Q.

• �` induces a Q-preorder on M by:(
�`(n)

)
(m) = p(m, n) =

∨
{α ∈ Q | m � α ≤ n}, m, n ∈ M .
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• If Mop is provided with the right action

m � α =
∨
{n ∈ M | α� n ≤ m},

then (Mop,�) is called the conjugate right Q-module of (M ,�).

• If (M ,�) is a right Q-module, then the Q-preorder p
determined by:

p(m, n) =
∨
{α ∈ Q | m � α ≤ n}

is called the intrinsic Q-preorder of (M ,�).

• Every intrinsic Q-preorder satisfies the following properties:∧
s∈S

p(s, n) = p(
∨

S , n),
∧
t∈T

p(m, t) = p(m,
∧

T ),

α↘ p(m, n) = p((m � α), n), α↘ β =
∨
{γ | α ∗ γ ≤ β}.
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Quantale-enriched order theory

• Let Q = (Q, ∗, 1) be a unital quantale. Then Q-preordered sets
(X , p) are equivalent to Q-enriched categories.

• The hom-object of x and y is given by p(x , y).

• The reflexivity axiom 1 ≤ p(x , x) expresses the Q-enriched
identities.

• The transitivity axiom p(x , y) ∗ p(y , z) ≤ p(x , z) is equivalent to
the Q-enriched composition law.

• The underlying preorder of p is given by:

≤p= {(x , y) ∈ X × X | 1 ≤ p(x , y)}.

• A map (X , p)
h−→ (Y , q) is a Q-homomorphism (Q-functor) if

p(x1, x2) ≤ q(h(x1), h(x2)) for all x1, x2 ∈ X .
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• Q-homomorphisms (X , p)
h−→ (Y , q) and (Y , q)

k−→ (X , p) are
adjoint if and only if q(h(x), y) = p(x , k(y)), x ∈ X , y ∈ Y .

• Let (X , p) be a Q-preordered set. A map X
f−→ Q is called a

contravariant Q-presheaf on (X , p), if f is left-extensional — i.e.

p(y , x) ∗ f (x) ≤ f (y) x , y ∈ X .

The complete lattice of all contravariant Q-presheaves on (X , p)
is denoted by P(X , p) provided with the following Q-preorder:

d(f , g) =
∧
x∈X

f (x)↘ g(x), f , g ∈ P(X , p).

• The Q-enriched Yoneda embedding (X , p)
η(X ,P)−−−→ (P(X , p), d) is

given by:

η(X ,p)(x) = x̃ , x̃(z) = p(z , x), z , x ∈ X .

• (X , p) is Q-enriched join-complete if η(X ,p) has a left adjoint
Q-homomorphism called the formation of Q-enriched joins.
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• Let (X , p) be a Q-preordered set. A map X
f−→ Q is called a

covariant Q-presheaf on (X , p), if f is right-extensional — i.e.

f (x) ∗ p(x , y) ≤ f (y) x , y ∈ X .

The complete lattice of all covariant Q-presheaves on (X , p) is
denoted by P†(X , p) provided with the following Q-preorder:

d †(f , g) =
∧
x∈X

f (x)↙ g(x), f , g ∈ P†(X , p).

• The Q-enriched co-Yoneda embedding

(X , p)
η†
(X ,P)−−−→ (P†(X , p), d) is given by:

η†(X ,p)(x) = x̃ , x̃†(z) = p(x , z), z , x ∈ X .

• (X , p) is Q-enriched meet-complete if η†(X ,p) has a right adjoint
Q-homomorphism called the formation of Q-enriched meets.

• (X , p) is Q-enriched join-complete if and only if (X , p) is
Q-enriched meet-complete.
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Enriched order structures on right modules in Sup
• Every right Q-module with its intrinsic Q-preorder p carries the

structure of a Q-preorder set. The underlying preorder ≤p of p
coincides with the order given on M . Hence every intrinsic
Q-preorder is antisymmetric.

• Every right Q-module homomorphism is also a
Q-homomorphism (resp. a Q-functor).

• The forgetful functor Modr (Q)
U−→ Preord(Q) has a left adjoint

functor Preord(Q)
F−→ Modr (Q). The details are as follows.

• Let (X , p) be a Q-preordered set. Then the complete lattice
P(X , p) of all contravariant Q-presheaves on (X , p) can be
provided with a right action determined by:

(f ∗ α)(x) = f (x) ∗ α, f ∈ P(X , p), α ∈ Q.

• The intrinsic Q-preorder of P(X , p) coincides with d .
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Theorem 1. Let (X , p) be a Q-preordered set and M be a right

Q-module with its intrinsic Q-preorder q. If (X , p)
h−→ (M , q) is

a Q-homomorphism, then there exists a unique right Q-module

homomorphism P(X , p)
h]−→ M making the following diagram

commutative:

(X , p) P(X , p)

M

HH
HHH

HHj
h

-
η(X ,p) pppppp?h]

In particular, h](f ) =
∨
x∈X

h(x) � f (x) for f ∈ P(X , p).

Hence P(X , p) is the free right Q-module generated by (X , p).
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Theorem 2. Let M be a right Q-module and p be its intrinsic
Q-preorder. Then (M , p) is a Q-enriched join-complete
Q-preordered set. In particular, the formation of Q-enriched

joins P(M , p)
supM−−−→ M is given by:

supM(f ) =
∨

m∈M
m � f (m), f ∈ P(M , p).

Proof.

p(supM(f ), n) =
∧

m∈M
p
(
(m � f (m)), n

)
=
∧

m∈M

(
f (m)↘ p(m, n)

)
= d(f , ñ) = d

(
f , η(M,p)(n)

)
.

Example. Consider the right Q-module Q. Then for Q
f−→ Q

we have:
supQ(↓f ) =

∨
α∈Q

α ∗ f (α).
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joins P(M , p)
supM−−−→ M is given by:

supM(f ) =
∨

m∈M
m � f (m), f ∈ P(M , p).

Proof.

p(supM(f ), n) =
∧

m∈M
p
(
(m � f (m)), n

)
=
∧

m∈M

(
f (m)↘ p(m, n)

)
= d(f , ñ) = d

(
f , η(M,p)(n)

)
.

Example. Consider the right Q-module Q. Then for Q
f−→ Q

we have:
supQ(↓f ) =

∨
α∈Q

α ∗ f (α).
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Theorem 3. Let (X , p) be a Q-enriched join-complete,
antisymmetric Q-preordered set. Then X provided with the
underlying partial order is complete in the traditional sense, and
there exists a right action � on X determined by:

x � α = sup(X ,p)(x̃ ∗ α), x ∈ X , α ∈ Q.

Hence right Q-modules and Q-enriched join-complete,
antisymmetric Q-preordered sets are equivalent concepts.

Theorem 4. Let M and N be right Q-modules with the
respective intrinsic Q-preorders p and q. Further, let

(M , p)
h−→ (N , q) be a Q-homomorphism. Then M

h−→ N is a
right Q-module homomorphism if and only if h has a right
adjoint Q-homomorphism.



Monoidal foundations The tensor product in Sup General principles of module theory in Sup Quantale-enriched order theory Enriched order structures on right modules in Sup

Theorem 3. Let (X , p) be a Q-enriched join-complete,
antisymmetric Q-preordered set. Then X provided with the
underlying partial order is complete in the traditional sense, and
there exists a right action � on X determined by:

x � α = sup(X ,p)(x̃ ∗ α), x ∈ X , α ∈ Q.

Hence right Q-modules and Q-enriched join-complete,
antisymmetric Q-preordered sets are equivalent concepts.

Theorem 4. Let M and N be right Q-modules with the
respective intrinsic Q-preorders p and q. Further, let

(M , p)
h−→ (N , q) be a Q-homomorphism. Then M

h−→ N is a
right Q-module homomorphism if and only if h has a right
adjoint Q-homomorphism.



Monoidal foundations The tensor product in Sup General principles of module theory in Sup Quantale-enriched order theory Enriched order structures on right modules in Sup

Since for Q-homomorphisms h the existence of right adjoint
Q-homomorphisms h` means Q-enriched join-preservation of
h, Stubbe’s theorem follows as corollary of Theorem 3 and
Theorem 4.

Corollary (Stubbe 2006 and 2007). The category Modr (Q) of
right Q-modules is isomorphic to the category of Sup(Q) of
Q-enriched join-complete, antisymmetric Q-preordered sets with
Q-enriched join-preserving Q-homomorphisms.
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Q-Enriched meets in right modules in Sup.

Let M be a right Q-module and p be its intrinsic Q-preorder.

• If f ∈ P†(M , p), then

inf(M,p)(f ) =
∨

m∈M
m �

( ∨
n∈M

p(m, n)↙ f (n)
)

=
∧

m∈M

(∨
{n ∈ M | n � f (m) ≤ m}

)
.

• Question. Are Q-enriched meets a dual concept of Q-enriched
joins?

• On the dual lattice Mop we introduce a left action � determined
by:

α�m =
∨
{n ∈ M | n � α ≤ m}, α ∈ Q, m ∈ M .

• Since infM(f ) =
∨op

m∈M f (m)�m, the Answer is in general
negative.
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Let Q = (Q, ∗, 1, ′) be an involutive and unital quantale.

• Every unital quantale can be embedded into an involutive and
unital quantale. Therefore the previous assumption does not
impose a restriction on the non-commutativity of quantales.

• The left action on Mop induces a right action on Mop by:

m �op α = α′ �m, m ∈ M , α ∈ Q.

• Then (Mop,�op) is the dual right Q-module of M , and its
intrinsic Q-preorder of coincides with the dual Q-preorder of p:

pop(m, n) = p(n,m)′, m, n ∈ M .

• f ∈ P†(M , p) ⇔ f ′ ∈ P(M , pop).

• inf(M,p)(f ) =
op∨

m∈M
f (m)�m =

op∨
m∈M

m �op f (m)′ = supMop(f ′).
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Summary

The replacement of the unique unital quantale 2 on {0, 1} by an
arbitrary involutive and unital quantale leads to a complete to
algebraization of the theory of complete lattices.
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