Module Theory in Sup and Enriched Order Theory

Ulrich Höhle

Bergische Universität, Wuppertal, Germany

Brno, October 3, 2019

Table of Contents

- Monoidal foundations
- O The tensor product in Sup
- General principles of module theory in Sup
- Quantale-enriched order theory
- 6 Enriched order structures on right modules in Sup

 $C = (C_0, \otimes, \mathbb{1}, a, \ell, r)$ monoidal category.

 $C = (C_0, \otimes, \mathbb{1}, a, \ell, r) \text{ monoidal category.}$ $\mathfrak{Q} = (\mathfrak{Q}, *, e) \text{ monoid in C, where } \mathfrak{Q} \otimes \mathfrak{Q} \xrightarrow{*} \mathfrak{Q}, \mathbb{1} \xrightarrow{e} \mathfrak{Q}.$

$$\begin{split} & \mathsf{C} = (\mathsf{C}_0, \otimes, \mathbb{1}, a, \ell, r) \text{ monoidal category.} \\ & \mathfrak{Q} = (\mathfrak{Q}, *, e) \text{ monoid in C, where } \mathfrak{Q} \otimes \mathfrak{Q} \xrightarrow{*} \mathfrak{Q}, \mathbb{1} \xrightarrow{e} \mathfrak{Q}. \end{split}$$
 $& \mathsf{The unit object } \mathbb{1} = (\mathbb{1}, \ell_1, \mathbb{1}_1) \text{ is a monoid in C.} \end{split}$

$$\begin{split} & \mathsf{C} = (\mathsf{C}_0, \otimes, \mathbb{1}, a, \ell, r) \text{ monoidal category.} \\ & \mathfrak{Q} = (\mathfrak{Q}, *, e) \text{ monoid in C, where } \mathfrak{Q} \otimes \mathfrak{Q} \xrightarrow{*} \mathfrak{Q}, \mathbb{1} \xrightarrow{e} \mathfrak{Q}. \end{split}$$
 $& \mathsf{The unit object } \mathbb{1} = (\mathbb{1}, \ell_1, \mathbb{1}_1) \text{ is a monoid in C.} \end{split}$

- A left (right) module M over \mathfrak{Q} is an object M of C_0 provided with a left (right) action \odot (\boxdot), where

$$\begin{split} & \mathsf{C} = (\mathsf{C}_0, \otimes, \mathbb{1}, a, \ell, r) \text{ monoidal category.} \\ & \mathfrak{Q} = (\mathfrak{Q}, *, e) \text{ monoid in C, where } \mathfrak{Q} \otimes \mathfrak{Q} \xrightarrow{*} \mathfrak{Q}, \mathbb{1} \xrightarrow{e} \mathfrak{Q}. \end{split}$$
 $& \mathsf{The unit object } \mathbb{1} = (\mathbb{1}, \ell_1, \mathbb{1}_1) \text{ is a monoid in C.} \end{split}$

- A left (right) module M over \mathfrak{Q} is an object M of C_0 provided with a left (right) action \odot (\boxdot), where
- a left action is a C_0 -morphism $\mathfrak{Q} \otimes M \xrightarrow{\odot} M$ such that the following diagrams are commutative,

$$\begin{split} & \mathsf{C} = (\mathsf{C}_0, \otimes, \mathbb{1}, a, \ell, r) \text{ monoidal category.} \\ & \mathfrak{Q} = (\mathfrak{Q}, *, e) \text{ monoid in C, where } \mathfrak{Q} \otimes \mathfrak{Q} \xrightarrow{*} \mathfrak{Q}, \mathbb{1} \xrightarrow{e} \mathfrak{Q}. \end{split}$$
 $& \mathsf{The unit object } \mathbb{1} = (\mathbb{1}, \ell_{\mathbb{1}}, \mathbb{1}_{\mathbb{1}}) \text{ is a monoid in C.} \end{split}$

- A left (right) module M over \mathfrak{Q} is an object M of C_0 provided with a left (right) action \odot (\Box), where
- a left action is a C₀-morphism $\mathfrak{Q} \otimes M \xrightarrow{\circ} M$ such that the following diagrams are commutative,

a right action is a C₀-morphism $M \otimes \mathfrak{Q} \xrightarrow{\square} M$ such that the following diagrams are commutative,

The second field of the second field field of the second second field field for the second second s Second se Second s Second s Second se

a right action is a C₀-morphism $M \otimes \mathfrak{Q} \xrightarrow{\square} M$ such that the following diagrams are commutative,

The second field of the second field field of the second second field field for the second second s Second se Second s Second s Second se

a right action is a C₀-morphism $M \otimes \mathfrak{Q} \xrightarrow{!:} M$ such that the following diagrams are commutative,

• Even if C is symmetric — i.e. has a symmetry $A \otimes B \xrightarrow{c_{AB}} B \otimes A$, then left and right actions are not equivalent concepts.

a right action is a C₀-morphism $M \otimes \mathfrak{Q} \xrightarrow{!:} M$ such that the following diagrams are commutative,

- Even if C is symmetric i.e. has a symmetry A ⊗ B → B ⊗ A, then left and right actions are not equivalent concepts.
- But, if \mathfrak{Q} is a commutative momoid, then \odot is a left action if and only if $\boxdot = \odot \circ c_{M\mathfrak{Q}}$ is a right action on M.

a right action is a C₀-morphism $M \otimes \mathfrak{Q} \xrightarrow{!:} M$ such that the following diagrams are commutative,

- Even if C is symmetric i.e. has a symmetry A ⊗ B → B ⊗ A, then left and right actions are not equivalent concepts.
- But, if \mathfrak{Q} is a commutative momoid, then \odot is a left action if and only if $\boxdot = \odot \circ c_{M\mathfrak{Q}}$ is a right action on M.

Left (right) Ω -module homomorphisms are structure preserving C_0 -morphisms — e.g.

 $M \xrightarrow{h} N$ is a left \mathfrak{Q} -module homomorphism, if the following diagram is commutative:

 $M \xrightarrow{h} N$ is a left \mathfrak{Q} -module homomorphism, if the following diagram is commutative:

(1) A second for the second second for the second second second for the second s Second se Second se Second sec

 $M \xrightarrow{h} N$ is a left \mathfrak{Q} -module homomorphism, if the following diagram is commutative:

• $Mod_{\ell}(\mathfrak{Q}) (Mod_{r}(\mathfrak{Q}))$ category of left (right) \mathfrak{Q} -modules with left (right) \mathfrak{Q} -module homomorphisms. $Mod_{\ell}(\mathfrak{1}) (Mod_{r}(\mathfrak{1})) \cong C_{0}$.

 $M \xrightarrow{h} N$ is a left \mathfrak{Q} -module homomorphism, if the following diagram is commutative:

- $Mod_{\ell}(\mathfrak{Q}) (Mod_{r}(\mathfrak{Q}))$ category of left (right) \mathfrak{Q} -modules with left (right) \mathfrak{Q} -module homomorphisms. $Mod_{\ell}(\mathfrak{1}) (Mod_{r}(\mathfrak{1})) \cong C_{0}$.
- The forgetful functor U: Mod_ℓ(Ω) → C₀ has a left adjoint functor F: C₀ → Mod_ℓ(Ω).

 $M \xrightarrow{h} N$ is a left \mathfrak{Q} -module homomorphism, if the following diagram is commutative:

- $Mod_{\ell}(\mathfrak{Q}) (Mod_{r}(\mathfrak{Q}))$ category of left (right) \mathfrak{Q} -modules with left (right) \mathfrak{Q} -module homomorphisms. $Mod_{\ell}(\mathfrak{1}) (Mod_{r}(\mathfrak{1})) \cong C_{0}$.
- The forgetful functor U: Mod_ℓ(Ω) → C₀ has a left adjoint functor F: C₀ → Mod_ℓ(Ω).

•
$$\mathcal{F}(M) = \mathfrak{Q} \otimes M$$
, $\mathfrak{Q} \otimes \mathfrak{Q} \otimes M$
 $\mathfrak{g}^{-1} \downarrow \qquad \mathfrak{Q} \otimes M$
 $\mathfrak{Q} \otimes \mathfrak{Q} \otimes M \xrightarrow{\mathfrak{g}^{-1}} \mathfrak{Q} \otimes M$

Sup= category of complete lattices with join-preserving maps.

Sup= category of complete lattices with join-preserving maps. A map $X \times Y \xrightarrow{b} Z$ is a bimorphism if *b* is join-preserving in each variable separately.

Sup= category of complete lattices with join-preserving maps. A map $X \times Y \xrightarrow{b} Z$ is a bimorphism if *b* is join-preserving in each variable separately.

If X and Y are complete lattices, then their tensor product is a complete lattice X ⊗ Y determined by the following property:

Sup= category of complete lattices with join-preserving maps. A map $X \times Y \xrightarrow{b} Z$ is a bimorphism if *b* is join-preserving in each variable separately.

- If X and Y are complete lattices, then their tensor product is a complete lattice X ⊗ Y determined by the following property:
- There exists a bimorphism X × Y → X ⊗ Y such that for every bimorphism X × Y → Z there exists a unique join-preserving map X ⊗ Y → Z making the following diagram commutative:

Sup= category of complete lattices with join-preserving maps. A map $X \times Y \xrightarrow{b} Z$ is a bimorphism if *b* is join-preserving in each variable separately.

- If X and Y are complete lattices, then their tensor product is a complete lattice X ⊗ Y determined by the following property:
- There exists a bimorphism X × Y → X ⊗ Y such that for every bimorphism X × Y → Z there exists a unique join-preserving map X ⊗ Y → Z making the following diagram commutative:

Sup= category of complete lattices with join-preserving maps. A map $X \times Y \xrightarrow{b} Z$ is a bimorphism if *b* is join-preserving in each variable separately.

- If X and Y are complete lattices, then their tensor product is a complete lattice X ⊗ Y determined by the following property:
- There exists a bimorphism X × Y → X ⊗ Y such that for every bimorphism X × Y → Z there exists a unique join-preserving map X ⊗ Y → Z making the following diagram commutative:

• The previous property is a universal property and ⊗ is the universal bimorphism.

• Complete lattice

 $X \otimes Y = \{ all \text{ join-reversing maps } X \xrightarrow{f} Y \}.$

Meets are computed pointwisely, but not joins

• Complete lattice

 $X \otimes Y = \{ all join-reversing maps X \xrightarrow{f} Y \}.$

Meets are computed pointwisely, but not joins

$$(x \otimes y)(z) = \left\{ \begin{array}{ll} \top, & z = \bot, \\ y, & z \neq \bot, & z \leq x \\ \bot, & z \not\leq x, \end{array} \right\}, \quad x \in X, \ y \in Y.$$

• Complete lattice

 $X \otimes Y = \{ all join-reversing maps X \xrightarrow{f} Y \}.$

Meets are computed pointwisely, but not joins

• There exists a map $X \times Y \xrightarrow{\otimes} X \otimes Y$ defined by:

$$(x \otimes y)(z) = \left\{ \begin{array}{ll} \top, & z = \bot, \\ y, & z \neq \bot, & z \leq x \\ \bot, & z \not\leq x, \end{array} \right\}, \quad x \in X, \, y \in Y.$$

• We show that \otimes is a bimorphism. Properties of \otimes :

• Complete lattice

 $X \otimes Y = \{ all join-reversing maps X \xrightarrow{f} Y \}.$

Meets are computed pointwisely, but not joins

$$(x \otimes y)(z) = \left\{ \begin{array}{ll} \top, & z = \bot, \\ y, & z \neq \bot, & z \leq x \\ \bot, & z \not\leq x, \end{array} \right\}, \quad x \in X, \, y \in Y.$$

- We show that \otimes is a bimorphism. Properties of \otimes :
- If $f \in X \otimes Y$, then $x \otimes y \leq g \quad \Leftrightarrow \quad y \leq f(x)$.

• Complete lattice

 $X \otimes Y = \{ all join-reversing maps X \xrightarrow{f} Y \}.$

Meets are computed pointwisely, but not joins

$$(x \otimes y)(z) = \left\{ \begin{array}{ll} \top, & z = \bot, \\ y, & z \neq \bot, & z \leq x \\ \bot, & z \not\leq x, \end{array} \right\}, \quad x \in X, \, y \in Y.$$

- We show that \otimes is a bimorphism. Properties of \otimes :
- If $f \in X \otimes Y$, then $x \otimes y \leq g \quad \Leftrightarrow \quad y \leq f(x)$.
- For all $f \in X \otimes Y$ the relation $f = \bigvee_{x \in X} (x \otimes f(x))$ holds.

• Complete lattice

 $X \otimes Y = \{ all join-reversing maps X \xrightarrow{f} Y \}.$

Meets are computed pointwisely, but not joins

$$(x \otimes y)(z) = \left\{ \begin{array}{ll} \top, & z = \bot, \\ y, & z \neq \bot, & z \leq x \\ \bot, & z \not\leq x, \end{array} \right\}, \quad x \in X, \ y \in Y.$$

- We show that \otimes is a bimorphism. Properties of \otimes :
- If $f \in X \otimes Y$, then $x \otimes y \leq g \quad \Leftrightarrow \quad y \leq f(x)$.
- For all $f \in X \otimes Y$ the relation $f = \bigvee_{x \in X} (x \otimes f(x))$ holds.
- If \perp is the universal lower bound of $X \otimes Y$, then $x \otimes \perp = \perp = \perp \otimes y$.

 \otimes is a universal bimorphism — i.e.

Given a bimorphism X × Y → Z, there exists a unique join-preserving map X ⊗ Y → Z such that the following diagram commutes:

Given a bimorphism X × Y → Z, there exists a unique join-preserving map X ⊗ Y → Z such that the following diagram commutes:

• Definition:
$$h_b(f) = \bigvee_{i \in I} b(x_i, y_i), \quad f = \bigvee_{i \in I} x_i \otimes y_i, \quad f \in X \otimes Y.$$

Given a bimorphism X × Y → Z, there exists a unique join-preserving map X ⊗ Y → Z such that the following diagram commutes:

- <u>Definition</u>: $h_b(f) = \bigvee_{i \in I} b(x_i, y_i), \quad f = \bigvee_{i \in I} x_i \otimes y_i, \quad f \in X \otimes Y.$
- *h_b* is well defined:

Given a bimorphism X × Y → Z, there exists a unique join-preserving map X ⊗ Y → Z such that the following diagram commutes:

- <u>Definition</u>: $h_b(f) = \bigvee_{i \in I} b(x_i, y_i), \quad f = \bigvee_{i \in I} x_i \otimes y_i, \quad f \in X \otimes Y.$
- *h_b* is well defined:

 $f = \bigvee_{i \in I} x_i \otimes y_i = \bigvee_{j \in J} v_j \otimes w_j$. Then we put and define:
\otimes is a universal bimorphism — i.e.

Given a bimorphism X × Y → Z, there exists a unique join-preserving map X ⊗ Y → Z such that the following diagram commutes:

- <u>Definition</u>: $h_b(f) = \bigvee_{i \in I} b(x_i, y_i), \quad f = \bigvee_{i \in I} x_i \otimes y_i, \quad f \in X \otimes Y.$
- *h_b* is well defined:

$$f = \bigvee_{i \in I} x_i \otimes y_i = \bigvee_{j \in J} v_j \otimes w_j.$$
 Then we put and define:
• $z := \bigvee_{i \in I} b(x_i, y_i)$ and define $X \xrightarrow{f_z} Y$ by $f_z(x) = \bigvee \{y \in Y \mid b(x, y) \le z\}$

 \otimes is a universal bimorphism — i.e.

Given a bimorphism X × Y → Z, there exists a unique join-preserving map X ⊗ Y → Z such that the following diagram commutes:

- <u>Definition</u>: $h_b(f) = \bigvee_{i \in I} b(x_i, y_i), \quad f = \bigvee_{i \in I} x_i \otimes y_i, \quad f \in X \otimes Y.$
- *h_b* is well defined:

 $f = \bigvee_{i \in I} x_i \otimes y_i = \bigvee_{j \in J} v_j \otimes w_j$. Then we put and define:

- $z := \bigvee_{i \in I} b(x_i, y_i)$ and define $X \xrightarrow{f_z} Y$ by $f_z(x) = \bigvee \{y \in Y \mid b(x, y) \le z\}$
- $f_z \in X \otimes Y$ and $b(x, f_z(x)) \leq z$ for all $x \in X$.

Unit object $1 = 2 = \{0, 1\}$.

History of the tensor product in Sup:

History of the tensor product in Sup:

• The tensor product between complete lattices goes back to a PhD thesis by D.G. Mowat, Waterloo (Canada) 1968.

History of the tensor product in Sup:

- The tensor product between complete lattices goes back to a PhD thesis by D.G. Mowat, Waterloo (Canada) 1968.
- A first, general accessible publication of the tensor product can be found in Z. Shmuely's paper: The structure of Galois connections, Pac. J. Math. 54 (1974), 209–225.

History of the tensor product in Sup:

- The tensor product between complete lattices goes back to a PhD thesis by D.G. Mowat, Waterloo (Canada) 1968.
- A first, general accessible publication of the tensor product can be found in Z. Shmuely's paper: The structure of Galois connections, Pac. J. Math. 54 (1974), 209–225.
- Sup as star-autonomous category and in particular as symmetric monoidal closed category has been first recognized by M. Barr 1979 (see Inf on p. 99 in LNM 752 Springer-Verlag), and later repeated by A. Joyal and M. Tierney 1984, who made an extensive use of its tensor product.

Let $X \times Y \xrightarrow{b} Z$ be a bimorphism and h_b be the unique join-preserving map determined by the tensor product in Sup

The second for the second for the second second

Let $X \times Y \xrightarrow{b} Z$ be a bimorphism and h_b be the unique join-preserving map determined by the tensor product in Sup

Question. How does the right adjoint map $Z^{op} \xrightarrow{h_b^-} (X \otimes Y)^{op}$ of h_b look like?

Let $X \times Y \xrightarrow{b} Z$ be a bimorphism and h_b be the unique

join-preserving map determined by the tensor product in Sup

Question. How does the right adjoint map $Z^{op} \xrightarrow{h_b^-} (X \otimes Y)^{op}$ of h_b look like?

• First we observe: $h_b^{\vdash}(z) = \bigvee \{x \otimes y \mid h_b(x \otimes y) = b(x, y) \le z\}, \quad z \in \mathbb{Z}.$

h

Let $X \times Y \xrightarrow{b} Z$ be a bimorphism and h_b be the unique join-preserving map determined by the tensor product in Sup

Question. How does the right adjoint map $Z^{op} \xrightarrow{h_b^-} (X \otimes Y)^{op}$ of h_b look like?

- First we observe: $h_b^{\vdash}(z) = \bigvee \{x \otimes y \mid h_b(x \otimes y) = b(x, y) \le z\}, \quad z \in \mathbb{Z}.$
- Secondly, for each $z \in Z$ we introduce the join-reversing map $X \xrightarrow{f_z} Y$ by:

 $f_z(x) = \bigvee \{y \in Y \mid b(x, y) \le z\}, \qquad x \in X.$

and being a to be the second of the second second

Let $X \times Y \xrightarrow{b} Z$ be a bimorphism and h_b be the unique join-preserving map determined by the tensor product in Sup

Question. How does the right adjoint map $Z^{op} \xrightarrow{h_b^-} (X \otimes Y)^{op}$ of h_b look like?

- First we observe: $h_b^{\vdash}(z) = \bigvee \{x \otimes y \mid h_b(x \otimes y) = b(x, y) \le z\}, \quad z \in \mathbb{Z}.$
- Secondly, for each $z \in Z$ we introduce the join-reversing map $X \xrightarrow{f_z} Y$ by:

 $f_z(x) = \bigvee \{y \in Y \mid b(x, y) \le z\}, \qquad x \in X.$

• Since $h_b(x \otimes y) = b(x, y) \le z \quad \Leftrightarrow \quad x \otimes y \le f_z$, we obtain:

$$h_b^{\vdash}(z) = f_z, \qquad z \in Z$$

Let \mathfrak{Q} be a unital quantale in Sup, M be a complete lattice and $\mathfrak{Q} \otimes M \xrightarrow{\odot} M$ be a left action and $M \otimes \mathfrak{Q} \xrightarrow{\Box} M$ be a right action.

Let \mathfrak{Q} be a unital quantale in Sup, M be a complete lattice and $\mathfrak{Q} \otimes M \xrightarrow{\odot} M$ be a left action and $M \otimes \mathfrak{Q} \xrightarrow{\Box} M$ be a right action.

In contrast to Ab the category Sup has a self-duality determined by the construction of right adjoint maps.

Let \mathfrak{Q} be a unital quantale in Sup, M be a complete lattice and $\mathfrak{Q} \otimes M \xrightarrow{\odot} M$ be a left action and $M \otimes \mathfrak{Q} \xrightarrow{\Box} M$ be a right action.

In contrast to Ab the category Sup has a self-duality determined by the construction of right adjoint maps.

An application of the self-duality to left or right actions in Sup will change our idea of module theory we have gained in the case of abelian groups.

Let \mathfrak{Q} be a unital quantale in Sup, M be a complete lattice and $\mathfrak{Q} \otimes M \xrightarrow{\odot} M$ be a left action and $M \otimes \mathfrak{Q} \xrightarrow{\Box} M$ be a right action.

In contrast to Ab the category Sup has a self-duality determined by the construction of right adjoint maps.

An application of the self-duality to left or right actions in Sup will change our idea of module theory we have gained in the case of abelian groups.

• \odot^{\vdash} induces a right action on the dual lattice M^{op} of M by: $m \boxdot \alpha = (\odot^{\vdash}(m))(\alpha) = \bigvee \{n \in M \mid \alpha \odot n \le m\}, \quad m \in M, \alpha \in \mathfrak{Q}.$

Let \mathfrak{Q} be a unital quantale in Sup, M be a complete lattice and $\mathfrak{Q} \otimes M \xrightarrow{\odot} M$ be a left action and $M \otimes \mathfrak{Q} \xrightarrow{\Box} M$ be a right action.

In contrast to Ab the category Sup has a self-duality determined by the construction of right adjoint maps.

An application of the self-duality to left or right actions in Sup will change our idea of module theory we have gained in the case of abelian groups.

- \odot^{\vdash} induces a right action on the dual lattice M^{op} of M by: $m \boxdot \alpha = (\odot^{\vdash}(m))(\alpha) = \bigvee \{n \in M \mid \alpha \odot n \le m\}, \quad m \in M, \alpha \in \mathfrak{Q}.$
- \square^{\vdash} induces a \mathfrak{Q} -preorder on M by: $(\square^{\vdash}(n))(m) = p(m, n) = \bigvee \{ \alpha \in \mathfrak{Q} \mid m \boxdot \alpha \leq n \}, m, n \in M.$

• If M^{op} is provided with the right action

 $\mathbf{m} \boxdot \alpha = \bigvee \{ \mathbf{n} \in \mathbf{M} \mid \alpha \odot \mathbf{n} \le \mathbf{m} \},\$

then (M^{op}, \Box) is called the *conjugate right* \mathfrak{Q} -module of (M, \odot) .

- The second field of the second field of the second second field of the second s Second s Second s Second s Second se
- If M^{op} is provided with the right action

$$\mathbf{m} \boxdot \alpha = \bigvee \{ \mathbf{n} \in \mathbf{M} \mid \alpha \odot \mathbf{n} \le \mathbf{m} \},\$$

If (M, ⊡) is a right Ω-module, then the Ω-preorder p determined by:

$$p(m,n) = \bigvee \{ \alpha \in \mathfrak{Q} \mid m \boxdot \alpha \leq n \}$$

is called the *intrinsic* \mathfrak{Q} -preorder of (M, \boxdot) .

- If M^{op} is provided with the right action

$$\mathbf{m} \boxdot \alpha = \bigvee \{ \mathbf{n} \in \mathbf{M} \mid \alpha \odot \mathbf{n} \le \mathbf{m} \},\$$

If (M, ⊡) is a right Ω-module, then the Ω-preorder p determined by:

$$p(m,n) = \bigvee \{ \alpha \in \mathfrak{Q} \mid m \boxdot \alpha \leq n \}$$

is called the *intrinsic* \mathfrak{Q} -preorder of (M, \boxdot) .

• Every intrinsic Q-preorder satisfies the following properties:

- If M^{op} is provided with the right action

$$\mathbf{m} \boxdot \alpha = \bigvee \{ \mathbf{n} \in \mathbf{M} \mid \alpha \odot \mathbf{n} \le \mathbf{m} \},\$$

If (M, ⊡) is a right Ω-module, then the Ω-preorder p determined by:

$$p(m, n) = \bigvee \{ \alpha \in \mathfrak{Q} \mid m \boxdot \alpha \leq n \}$$

is called the *intrinsic* \mathfrak{Q} -preorder of (M, \boxdot) .

• Every intrinsic \mathfrak{Q} -preorder satisfies the following properties: $\bigwedge_{s\in S} p(s,n) = p(\bigvee S, n), \qquad \bigwedge_{t\in T} p(m,t) = p(m, \bigwedge T),$

- If M^{op} is provided with the right action

$$\mathbf{m} \boxdot \alpha = \bigvee \{ \mathbf{n} \in \mathbf{M} \mid \alpha \odot \mathbf{n} \le \mathbf{m} \},\$$

If (M, ⊡) is a right Ω-module, then the Ω-preorder p determined by:

$$p(m, n) = \bigvee \{ \alpha \in \mathfrak{Q} \mid m \boxdot \alpha \leq n \}$$

is called the *intrinsic* \mathfrak{Q} -preorder of (M, \boxdot) .

• Every intrinsic \mathfrak{Q} -preorder satisfies the following properties: $\bigwedge_{s \in S} p(s, n) = p(\bigvee S, n), \qquad \bigwedge_{t \in T} p(m, t) = p(m, \bigwedge T),$ $\alpha \searrow p(m, n) = p((m \boxdot \alpha), n), \qquad \alpha \searrow \beta = \bigvee \{\gamma \mid \alpha * \gamma < \beta\}.$

Let \$\Omega = (\Omega, *, 1)\$ be a unital quantale. Then \$\Omega\$-preordered sets (X, p) are equivalent to \$\Omega\$-enriched categories.

- Let \$\Omega = (\Omega, *, 1)\$ be a unital quantale. Then \$\Omega\$-preordered sets (X, p) are equivalent to \$\Omega\$-enriched categories.
- The hom-object of x and y is given by p(x, y).

- Let \$\Omega = (\Omega, *, 1)\$ be a unital quantale. Then \$\Omega\$-preordered sets (X, p) are equivalent to \$\Omega\$-enriched categories.
- The hom-object of x and y is given by p(x, y).
- The reflexivity axiom 1 ≤ p(x, x) expresses the Ω-enriched identities.

- Let \$\mathcal{Q} = (\mathcal{Q}, *, 1)\$ be a unital quantale. Then \$\mathcal{Q}\$-preordered sets (X, p) are equivalent to \$\mathcal{Q}\$-enriched categories.
- The hom-object of x and y is given by p(x, y).
- The reflexivity axiom 1 ≤ p(x, x) expresses the Ω-enriched identities.
- The transitivity axiom p(x, y) * p(y, z) ≤ p(x, z) is equivalent to the Ω-enriched composition law.

- Let \$\Omega = (\Omega, *, 1)\$ be a unital quantale. Then \$\Omega\$-preordered sets (X, p) are equivalent to \$\Omega\$-enriched categories.
- The hom-object of x and y is given by p(x, y).
- The reflexivity axiom 1 ≤ p(x, x) expresses the Ω-enriched identities.
- The transitivity axiom p(x, y) * p(y, z) ≤ p(x, z) is equivalent to the Ω-enriched composition law.
- The underlying preorder of *p* is given by:

$$\leq_p = \{(x,y) \in X \times X \mid 1 \leq p(x,y)\}.$$

- Let Ω = (Ω, *, 1) be a unital quantale. Then Ω-preordered sets
 (X, p) are equivalent to Ω-enriched categories.
- The hom-object of x and y is given by p(x, y).
- The reflexivity axiom 1 ≤ p(x, x) expresses the Ω-enriched identities.
- The transitivity axiom p(x, y) * p(y, z) ≤ p(x, z) is equivalent to the Ω-enriched composition law.
- The underlying preorder of *p* is given by:

$$\leq_p = \{(x,y) \in X \times X \mid 1 \leq p(x,y)\}.$$

• A map $(X, p) \xrightarrow{h} (Y, q)$ is a \mathfrak{Q} -homomorphism (\mathfrak{Q} -functor) if $p(x_1, x_2) \leq q(h(x_1), h(x_2))$ for all $x_1, x_2 \in X$.

- \mathfrak{Q} -homomorphisms $(X, p) \xrightarrow{h} (Y, q)$ and $(Y, q) \xrightarrow{k} (X, p)$ are adjoint if and only if $q(h(x), y) = p(x, k(y)), \quad x \in X, y \in Y.$

- \mathfrak{Q} -homomorphisms $(X, p) \xrightarrow{h} (Y, q)$ and $(Y, q) \xrightarrow{k} (X, p)$ are adjoint if and only if $q(h(x), y) = p(x, k(y)), \quad x \in X, y \in Y.$
- Let (X, p) be a Ω-preordered set. A map X → Ω is called a contravariant Ω-presheaf on (X, p), if f is left-extensional i.e.

$$p(y,x)*f(x) \leq f(y)$$
 $x,y \in X$.

- \mathfrak{Q} -homomorphisms $(X, p) \xrightarrow{h} (Y, q)$ and $(Y, q) \xrightarrow{k} (X, p)$ are adjoint if and only if $q(h(x), y) = p(x, k(y)), \quad x \in X, y \in Y.$
- Let (X, p) be a Ω-preordered set. A map X → Ω is called a contravariant Ω-presheaf on (X, p), if f is left-extensional i.e.

$$p(y,x)*f(x) \leq f(y)$$
 $x,y \in X$.

The complete lattice of all contravariant \mathfrak{Q} -presheaves on (X, p) is denoted by $\mathbb{P}(X, p)$ provided with the following \mathfrak{Q} -preorder:

$$d(f,g) = \bigwedge_{x \in X} f(x) \searrow g(x), \qquad f,g \in \mathbb{P}(X,p).$$

- \mathfrak{Q} -homomorphisms $(X, p) \xrightarrow{h} (Y, q)$ and $(Y, q) \xrightarrow{k} (X, p)$ are adjoint if and only if $q(h(x), y) = p(x, k(y)), \quad x \in X, y \in Y.$
- Let (X, p) be a Ω-preordered set. A map X → Ω is called a contravariant Ω-presheaf on (X, p), if f is left-extensional i.e.

$$p(y,x)*f(x) \leq f(y)$$
 $x,y \in X$.

The complete lattice of all contravariant \mathfrak{Q} -presheaves on (X, p) is denoted by $\mathbb{P}(X, p)$ provided with the following \mathfrak{Q} -preorder:

$$d(f,g) = \bigwedge_{x \in X} f(x) \searrow g(x), \qquad f,g \in \mathbb{P}(X,p).$$

The Ω-enriched Yoneda embedding (X, p) ^{η(X, p)}/_(X, p) (ℙ(X, p), d) is given by:

$$\eta_{(X,p)}(x) = \widetilde{x}, \quad \widetilde{x}(z) = p(z,x), \quad z,x \in X.$$

- \mathfrak{Q} -homomorphisms $(X, p) \xrightarrow{h} (Y, q)$ and $(Y, q) \xrightarrow{k} (X, p)$ are adjoint if and only if $q(h(x), y) = p(x, k(y)), \quad x \in X, y \in Y.$
- Let (X, p) be a Ω-preordered set. A map X → Ω is called a contravariant Ω-presheaf on (X, p), if f is left-extensional i.e.

$$p(y,x)*f(x) \leq f(y)$$
 $x,y \in X$.

The complete lattice of all contravariant \mathfrak{Q} -presheaves on (X, p) is denoted by $\mathbb{P}(X, p)$ provided with the following \mathfrak{Q} -preorder:

$$d(f,g) = \bigwedge_{x \in X} f(x) \searrow g(x), \qquad f,g \in \mathbb{P}(X,p).$$

The Ω-enriched Yoneda embedding (X, p) ^{η_(X,P)}/_{(X,p),d} is given by:

$$\eta_{(X,p)}(x) = \widetilde{x}, \quad \widetilde{x}(z) = p(z,x), \quad z,x \in X.$$

 (X, p) is Ω-enriched join-complete if η_(X,p) has a left adjoint Ω-homomorphism called the formation of Ω-enriched joins.

- Let (X, p) be a Ω-preordered set. A map X → Ω is called a covariant Ω-presheaf on (X, p), if f is right-extensional i.e.

 $f(x) * p(x, y) \leq f(y)$ $x, y \in X$.

Let (X, p) be a Ω-preordered set. A map X → Ω is called a covariant Ω-presheaf on (X, p), if f is right-extensional — i.e.

$$f(x) * p(x, y) \leq f(y)$$
 $x, y \in X$.

The complete lattice of all covariant \mathfrak{Q} -presheaves on (X, p) is denoted by $\mathbb{P}^{\dagger}(X, p)$ provided with the following \mathfrak{Q} -preorder:

$$d^{\dagger}(f,g) = \bigwedge_{x\in X} f(x) \swarrow g(x), \qquad f,g \in \mathbb{P}^{\dagger}(X,p).$$

Let (X, p) be a Ω-preordered set. A map X → Ω is called a covariant Ω-presheaf on (X, p), if f is right-extensional — i.e.

$$f(x) * p(x, y) \leq f(y)$$
 $x, y \in X$.

The complete lattice of all covariant \mathfrak{Q} -presheaves on (X, p) is denoted by $\mathbb{P}^{\dagger}(X, p)$ provided with the following \mathfrak{Q} -preorder:

$$d^{\dagger}(f,g) = \bigwedge_{x\in X} f(x) \swarrow g(x), \qquad f,g \in \mathbb{P}^{\dagger}(X,p).$$

• The Q-enriched co-Yoneda embedding $(X, p) \xrightarrow{\eta_{(X,P)}^{\dagger}} (\mathbb{P}^{\dagger}(X, p), d)$ is given by: $\eta_{(X,p)}^{\dagger}(x) = \widetilde{x}, \quad \widetilde{x}^{\dagger}(z) = p(x, z), \quad z, x \in X.$
- Let (X, p) be a Ω-preordered set. A map X → Ω is called a covariant Ω-presheaf on (X, p), if f is right-extensional i.e.

$$f(x) * p(x, y) \leq f(y)$$
 $x, y \in X$.

The complete lattice of all covariant \mathfrak{Q} -presheaves on (X, p) is denoted by $\mathbb{P}^{\dagger}(X, p)$ provided with the following \mathfrak{Q} -preorder:

$$d^{\dagger}(f,g) = \bigwedge_{x \in X} f(x) \swarrow g(x), \qquad f,g \in \mathbb{P}^{\dagger}(X,p).$$

- The \mathfrak{Q} -enriched co-Yoneda embedding $(X, p) \xrightarrow{\eta^{\dagger}_{(X, P)}} (\mathbb{P}^{\dagger}(X, p), d)$ is given by: $\eta^{\dagger}_{(X, p)}(x) = \widetilde{x}, \quad \widetilde{x}^{\dagger}(z) = p(x, z), \quad z, x \in X.$
- (X, p) is Ω-enriched meet-complete if η[†]_(X,p) has a right adjoint Ω-homomorphism called the formation of Ω-enriched meets.

- Let (X, p) be a Ω-preordered set. A map X → Ω is called a covariant Ω-presheaf on (X, p), if f is right-extensional i.e.

$$f(x) * p(x, y) \leq f(y)$$
 $x, y \in X$.

The complete lattice of all covariant \mathfrak{Q} -presheaves on (X, p) is denoted by $\mathbb{P}^{\dagger}(X, p)$ provided with the following \mathfrak{Q} -preorder:

$$d^{\dagger}(f,g) = \bigwedge_{x \in X} f(x) \swarrow g(x), \qquad f,g \in \mathbb{P}^{\dagger}(X,p).$$

- The \mathfrak{Q} -enriched co-Yoneda embedding $(X, p) \xrightarrow{\eta^{\dagger}_{(X, P)}} (\mathbb{P}^{\dagger}(X, p), d)$ is given by: $\eta^{\dagger}_{(X, p)}(x) = \widetilde{x}, \quad \widetilde{x}^{\dagger}(z) = p(x, z), \quad z, x \in X.$
- (X, p) is Ω-enriched meet-complete if η[†]_(X,p) has a right adjoint Ω-homomorphism called the formation of Ω-enriched meets.
- (X, p) is Q-enriched join-complete if and only if (X, p) is Q-enriched meet-complete.

Every right Ω-module with its intrinsic Ω-preorder p carries the structure of a Ω-preorder set. The underlying preorder ≤_p of p coincides with the order given on M. Hence every intrinsic Ω-preorder is antisymmetric.

- Every right Ω-module with its intrinsic Ω-preorder p carries the structure of a Ω-preorder set. The underlying preorder ≤_p of p coincides with the order given on M. Hence every intrinsic Ω-preorder is antisymmetric.
- Every right Q-module homomorphism is also a Q-homomorphism (resp. a Q-functor).

- Every right Ω-module with its intrinsic Ω-preorder p carries the structure of a Ω-preorder set. The underlying preorder ≤_p of p coincides with the order given on M. Hence every intrinsic Ω-preorder is antisymmetric.
- Every right Ω-module homomorphism is also a Ω-homomorphism (resp. a Ω-functor).
- The forgetful functor Mod_r(Ω) → Preord(Ω) has a left adjoint functor Preord(Ω) → Mod_r(Ω). The details are as follows.

- Every right Ω-module with its intrinsic Ω-preorder p carries the structure of a Ω-preorder set. The underlying preorder ≤_p of p coincides with the order given on M. Hence every intrinsic Ω-preorder is antisymmetric.
- Every right Ω-module homomorphism is also a Ω-homomorphism (resp. a Ω-functor).
- The forgetful functor Mod_r(Ω) → Preord(Ω) has a left adjoint functor Preord(Ω) → Mod_r(Ω). The details are as follows.
- Let (X, p) be a Q-preordered set. Then the complete lattice P(X, p) of all contravariant Q-presheaves on (X, p) can be provided with a right action determined by:

$$(f * \alpha)(x) = f(x) * \alpha, \qquad f \in \mathbb{P}(X, p), \alpha \in \mathfrak{Q}.$$

- Every right Ω-module with its intrinsic Ω-preorder p carries the structure of a Ω-preorder set. The underlying preorder ≤_p of p coincides with the order given on M. Hence every intrinsic Ω-preorder is antisymmetric.
- Every right Ω-module homomorphism is also a Ω-homomorphism (resp. a Ω-functor).
- The forgetful functor Mod_r(Ω) → Preord(Ω) has a left adjoint functor Preord(Ω) → Mod_r(Ω). The details are as follows.
- Let (X, p) be a Q-preordered set. Then the complete lattice P(X, p) of all contravariant Q-presheaves on (X, p) can be provided with a right action determined by:

$$(f * \alpha)(x) = f(x) * \alpha, \qquad f \in \mathbb{P}(X, p), \, \alpha \in \mathfrak{Q}.$$

• The intrinsic \mathfrak{Q} -preorder of $\mathbb{P}(X, p)$ coincides with d.

Theorem 1. Let (X, p) be a \mathfrak{Q} -preordered set and M be a right \mathfrak{Q} -module with its intrinsic \mathfrak{Q} -preorder q. If $(X, p) \xrightarrow{h} (M, q)$ is a \mathfrak{Q} -homomorphism, then there exists a unique right \mathfrak{Q} -module homomorphism $\mathbb{P}(X, p) \xrightarrow{h^{\sharp}} M$ making the following diagram commutative:

Theorem 1. Let (X, p) be a \mathfrak{Q} -preordered set and M be a right \mathfrak{Q} -module with its intrinsic \mathfrak{Q} -preorder q. If $(X, p) \xrightarrow{h} (M, q)$ is a \mathfrak{Q} -homomorphism, then there exists a unique right \mathfrak{Q} -module homomorphism $\mathbb{P}(X, p) \xrightarrow{h^{\sharp}} M$ making the following diagram commutative:

In particular, $h^{\sharp}(f) = \bigvee_{x \in X} h(x) \boxdot f(x)$ for $f \in \mathbb{P}(X, p)$.

Theorem 1. Let (X, p) be a \mathfrak{Q} -preordered set and M be a right \mathfrak{Q} -module with its intrinsic \mathfrak{Q} -preorder q. If $(X, p) \xrightarrow{h} (M, q)$ is a \mathfrak{Q} -homomorphism, then there exists a unique right \mathfrak{Q} -module homomorphism $\mathbb{P}(X, p) \xrightarrow{h^{\sharp}} M$ making the following diagram commutative:

In particular, $h^{\sharp}(f) = \bigvee_{x \in X} h(x) \boxdot f(x)$ for $f \in \mathbb{P}(X, p)$. Hence $\mathbb{P}(X, p)$ is the free right \mathfrak{Q} -module generated by (X, p).

Theorem 2. Let M be a right \mathfrak{Q} -module and p be its intrinsic \mathfrak{Q} -preorder. Then (M, p) is a \mathfrak{Q} -enriched join-complete \mathfrak{Q} -preordered set. In particular, the formation of \mathfrak{Q} -enriched joins $\mathbb{P}(M, p) \xrightarrow{\sup_{M}} M$ is given by:

$$\sup_M(f) = \bigvee_{m \in M} m \boxdot f(m), \qquad f \in \mathbb{P}(M, p)$$

Theorem 2. Let M be a right \mathfrak{Q} -module and p be its intrinsic \mathfrak{Q} -preorder. Then (M, p) is a \mathfrak{Q} -enriched join-complete \mathfrak{Q} -preordered set. In particular, the formation of \mathfrak{Q} -enriched joins $\mathbb{P}(M, p) \xrightarrow{\sup_{M}} M$ is given by:

$$\sup_{M}(f) = \bigvee_{m \in M} m \boxdot f(m), \qquad f \in \mathbb{P}(M, p).$$

Proof.

$$p(\sup_{M}(f), n) = \bigwedge_{m \in M} p((m \boxdot f(m)), n)$$
$$= \bigwedge_{m \in M} (f(m) \searrow p(m, n))$$
$$= d(f, \tilde{n}) = d(f, \eta_{(M,p)}(n)).$$

Theorem 2. Let M be a right \mathfrak{Q} -module and p be its intrinsic \mathfrak{Q} -preorder. Then (M, p) is a \mathfrak{Q} -enriched join-complete \mathfrak{Q} -preordered set. In particular, the formation of \mathfrak{Q} -enriched joins $\mathbb{P}(M, p) \xrightarrow{\sup_M} M$ is given by:

$$\sup_{M}(f) = \bigvee_{m \in M} m \boxdot f(m), \qquad f \in \mathbb{P}(M, p).$$

Proof.

$$p(\sup_{M}(f), n) = \bigwedge_{m \in M} p((m \boxdot f(m)), n)$$
$$= \bigwedge_{m \in M} (f(m) \searrow p(m, n))$$
$$= d(f, \tilde{n}) = d(f, \eta_{(M,p)}(n)).$$

Example. Consider the right \mathfrak{Q} -module \mathfrak{Q} . Then for $\mathfrak{Q} \xrightarrow{t} \mathfrak{Q}$ we have:

$$\sup_{\mathfrak{Q}}(\downarrow f) = \bigvee_{\alpha \in \mathfrak{Q}} \alpha * f(\alpha).$$

Theorem 3. Let (X, p) be a \mathfrak{Q} -enriched join-complete, antisymmetric \mathfrak{Q} -preordered set. Then X provided with the underlying partial order is complete in the traditional sense, and there exists a right action \boxdot on X determined by:

 $x \boxdot \alpha = \sup_{(X,p)} (\widetilde{x} * \alpha), \qquad x \in X, \ \alpha \in \mathfrak{Q}.$

Hence right Ω -modules and Ω -enriched join-complete, antisymmetric Ω -preordered sets are equivalent concepts.

Theorem 3. Let (X, p) be a \mathfrak{Q} -enriched join-complete, antisymmetric \mathfrak{Q} -preordered set. Then X provided with the underlying partial order is complete in the traditional sense, and there exists a right action \boxdot on X determined by:

 $x \boxdot \alpha = \sup_{(X,p)} (\tilde{x} * \alpha), \qquad x \in X, \, \alpha \in \mathfrak{Q}.$

Hence right Ω -modules and Ω -enriched join-complete, antisymmetric Ω -preordered sets are equivalent concepts.

Theorem 4. Let M and N be right \mathfrak{Q} -modules with the respective intrinsic \mathfrak{Q} -preorders p and q. Further, let $(M, p) \xrightarrow{h} (N, q)$ be a \mathfrak{Q} -homomorphism. Then $M \xrightarrow{h} N$ is a right \mathfrak{Q} -module homomorphism if and only if h has a right adjoint \mathfrak{Q} -homomorphism.

Since for \mathfrak{Q} -homomorphisms *h* the existence of right adjoint \mathfrak{Q} -homomorphisms h^{\vdash} means \mathfrak{Q} -enriched join-preservation of *h*, Stubbe's theorem follows as corollary of Theorem 3 and Theorem 4.

Since for \mathfrak{Q} -homomorphisms *h* the existence of right adjoint \mathfrak{Q} -homomorphisms h^{\vdash} means \mathfrak{Q} -enriched join-preservation of *h*, Stubbe's theorem follows as corollary of Theorem 3 and Theorem 4.

Corollary (Stubbe 2006 and 2007). The category $Mod_r(\mathfrak{Q})$ of right \mathfrak{Q} -modules is isomorphic to the category of $Sup(\mathfrak{Q})$ of \mathfrak{Q} -enriched join-complete, antisymmetric \mathfrak{Q} -preordered sets with \mathfrak{Q} -enriched join-preserving \mathfrak{Q} -homomorphisms.

(1) A set of the se

 $\ensuremath{\mathfrak{Q}}\xspace$ -Enriched meets in right modules in Sup.

The second function of the second function of the second second function of the second s second s second s second se

 $\ensuremath{\mathfrak{Q}}\xspace$ -Enriched meets in right modules in Sup.

Let *M* be a right \mathfrak{Q} -module and *p* be its intrinsic \mathfrak{Q} -preorder.

Q-Enriched meets in right modules in Sup.

Let M be a right \mathfrak{Q} -module and p be its intrinsic \mathfrak{Q} -preorder. • If $f \in \mathbb{P}^{\dagger}(M, p)$, then

$$\inf_{(M,p)}(f) = \bigvee_{m \in M} m \boxdot \left(\bigvee_{n \in M} p(m,n) \swarrow f(n)\right)$$
$$= \bigwedge_{m \in M} \left(\bigvee \{n \in M \mid n \boxdot f(m) \le m\}\right).$$

Q-Enriched meets in right modules in Sup.

Let M be a right \mathfrak{Q} -module and p be its intrinsic \mathfrak{Q} -preorder. • If $f \in \mathbb{P}^{\dagger}(M, p)$, then

$$\inf_{(M,p)}(f) = \bigvee_{m \in M} m \boxdot \left(\bigvee_{n \in M} p(m,n) \swarrow f(n)\right)$$
$$= \bigwedge_{m \in M} \left(\bigvee \{n \in M \mid n \boxdot f(m) \le m\}\right).$$

• Question. Are \mathfrak{Q} -enriched meets a dual concept of \mathfrak{Q} -enriched joins?

 $\mathfrak{Q}\text{-}\mathsf{Enriched}$ meets in right modules in Sup.

Let M be a right \mathfrak{Q} -module and p be its intrinsic \mathfrak{Q} -preorder. • If $f \in \mathbb{P}^{\dagger}(M, p)$, then

$$\inf_{(M,p)}(f) = \bigvee_{m \in M} m \boxdot \left(\bigvee_{n \in M} p(m,n) \swarrow f(n)\right)$$
$$= \bigwedge_{m \in M} \left(\bigvee \{n \in M \mid n \boxdot f(m) \le m\}\right).$$

- **Question**. Are Q-enriched meets a dual concept of Q-enriched joins?
- On the dual lattice *M^{op}* we introduce a left action ⊙ determined by:

$$\alpha \odot m = \bigvee \{ n \in M \mid n \boxdot \alpha \le m \}, \qquad \alpha \in \mathfrak{Q}, \ m \in M.$$

 $\ensuremath{\mathfrak{Q}}\xspace$ -Enriched meets in right modules in Sup.

Let M be a right \mathfrak{Q} -module and p be its intrinsic \mathfrak{Q} -preorder. • If $f \in \mathbb{P}^{\dagger}(M, p)$, then

$$\inf_{(M,p)}(f) = \bigvee_{m \in M} m \boxdot \left(\bigvee_{n \in M} p(m,n) \swarrow f(n)\right)$$
$$= \bigwedge_{m \in M} \left(\bigvee \{n \in M \mid n \boxdot f(m) \le m\}\right).$$

- **Question**. Are Q-enriched meets a dual concept of Q-enriched joins?
- On the dual lattice *M*^{op} we introduce a left action ⊙ determined by:

$$\alpha \odot m = \bigvee \{ n \in M \mid n \boxdot \alpha \le m \}, \qquad \alpha \in \mathfrak{Q}, \ m \in M.$$

• Since $\inf_{M}(f) = \bigvee_{m \in M}^{op} f(m) \odot m$, the **Answer** is in general negative.

Let $\mathfrak{Q} = (\mathfrak{Q}, *, 1, ')$ be an involutive and unital quantale.

Let $\mathfrak{Q} = (\mathfrak{Q}, *, 1, ')$ be an involutive and unital quantale.

• Every unital quantale can be embedded into an involutive and unital quantale. Therefore the previous assumption does not impose a restriction on the non-commutativity of quantales. The second function of the second function of the second second function of the second s second s second s second se

Let $\mathfrak{Q} = (\mathfrak{Q}, *, 1, ')$ be an involutive and unital quantale.

- Every unital quantale can be embedded into an involutive and unital quantale. Therefore the previous assumption does not impose a restriction on the non-commutativity of quantales.
- The left action on M^{op} induces a right action on M^{op} by:

$$m \boxdot^{op} \alpha = \alpha' \odot m, \qquad m \in M, \ \alpha \in \mathfrak{Q}.$$

Let $\mathfrak{Q} = (\mathfrak{Q}, *, 1, ')$ be an involutive and unital quantale.

- Every unital quantale can be embedded into an involutive and unital quantale. Therefore the previous assumption does not impose a restriction on the non-commutativity of quantales.
- The left action on M^{op} induces a right action on M^{op} by:

$$m \boxdot^{op} \alpha = \alpha' \odot m, \qquad m \in M, \ \alpha \in \mathfrak{Q}.$$

Then (M^{op}, ⊡^{op}) is the dual right Ω-module of M, and its intrinsic Ω-preorder of coincides with the dual Ω-preorder of p:

$$p^{op}(m,n) = p(n,m)', \qquad m,n \in M.$$

Figure 1. For a set 1. Set

Let $\mathfrak{Q} = (\mathfrak{Q}, *, 1, ')$ be an involutive and unital quantale.

- Every unital quantale can be embedded into an involutive and unital quantale. Therefore the previous assumption does not impose a restriction on the non-commutativity of quantales.
- The left action on M^{op} induces a right action on M^{op} by:

$$m \boxdot^{op} \alpha = \alpha' \odot m, \qquad m \in M, \ \alpha \in \mathfrak{Q}.$$

Then (M^{op}, ⊡^{op}) is the dual right Ω-module of M, and its intrinsic Ω-preorder of coincides with the dual Ω-preorder of p:

$$p^{op}(m,n) = p(n,m)', \qquad m,n \in M.$$

• $f \in \mathbb{P}^{\dagger}(M,p) \quad \Leftrightarrow \quad f' \in \mathbb{P}(M,p^{op}).$

Let $\mathfrak{Q} = (\mathfrak{Q}, *, 1, ')$ be an involutive and unital quantale.

- Every unital quantale can be embedded into an involutive and unital quantale. Therefore the previous assumption does not impose a restriction on the non-commutativity of quantales.
- The left action on M^{op} induces a right action on M^{op} by:

$$m \boxdot^{op} \alpha = \alpha' \odot m, \qquad m \in M, \ \alpha \in \mathfrak{Q}.$$

Then (M^{op}, ⊡^{op}) is the dual right Ω-module of M, and its intrinsic Ω-preorder of coincides with the dual Ω-preorder of p:

$$p^{op}(m,n) = p(n,m)', \qquad m,n \in M.$$

•
$$f \in \mathbb{P}^{\dagger}(M,p) \quad \Leftrightarrow \quad f' \in \mathbb{P}(M,p^{op}).$$

•
$$\inf_{(M,p)}(f) = \bigvee_{m \in M}^{op} f(m) \odot m = \bigvee_{m \in M}^{op} m \boxdot^{op} f(m)' = \sup_{M^{op}} (f').$$

Summary

The replacement of the unique unital quantale **2** on $\{0,1\}$ by an arbitrary involutive and unital quantale leads to a complete to algebraization of the theory of complete lattices.