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Let £ be a quantale such that the subquantale of all two-sided
elements has the form I(Q) = {L, T} (i.e. there does not exist
non-trivial two-sided elements).

If £ is semi-unital and left-sided, then the quantale
multiplication has the following form:

T

e |n particular, £ is idempotent.

e A prominent example is the ideal multiplication of left ideals of
square matrices in finite dimensional vector spaces.
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(9) = MV-algebra with three elements is the semi-unitalization
of the trivial quantale on {0, 1}.

(16)= binary meet on {_L,a, T} is the semi-unitalization of the
unique unital quantale 2 on {0, 1}.

(19) is a commutative Girard quantale, in which the unit
coincides with the dualizing and cyclic element.

On {L,a, T} all unital quantales are commutative.

2 quantales are non-commutative and two-sided — namely (7) is
strictly right-sided and not semi-unital, while (8) is strictly
left-sided and not semi-unital.
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On the chain G4 = {L,a, b, T} consisting of 4 elements (i.e.
1 < a < b < T) there exists exactly two non-commutative
and integral quantale structures.

There exists exactly two further non-commutative, non-integral
and unital quantale structures on Cy:
b istheunit axa=a, axT =a, Txa=T and

b istheunit axa=a, axT =T, Txa=a.

All 4 non-commutative quantales on C; cannot be provided with
an order-preserving involution, which is an quantale
anti-homomorphism.

The formation of Cs-enriched meets and Cy-enriched joins are
not dual concepts.
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Let Q¢ be the unital quantale of all join-preserving self-mappings
of GG={L1,a, T} Then Qg has six elements.
e The Hasse diagram and the multiplication table of Qg is given

by:
T
| « | L|bla|a|1]|T
e L L] L|L|L]L
RN bl L|L|b|L|b a
ay ar agJ_J_agJ_a@T
NS a, |L|b|blalala
b 1|L|blala|l]|T
| T Zlala | T[T[T
1

e Since (3 has a unique order reversing involution, there exists an
order preserving involution on Qg, which is a quantale
antihomomorphism:

T = T7 1= 1a 22 = ar, a: = ay, b = b, 1'=1.
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Theorem. Every unital quantale £ can be embedded into a
unital and involutive quantale.

e On the complete lattice L = £Q x Q°P there exists an order
reversing involution © defined by

(a.8)°=(B,2), (a,BeQ.

e On the unital quantale [L, L] of all join-preserving self maps
L 5 I there exists an involution ' determined by:

fa, ) = (F (0, 8)°)))°, (. 8) € L.

o O -2 [L, L] defined by:
(®()) (. B) = (%), (B %)  x€Q

is a unital quantale monomorphism.
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x = (x1,...,X,) € X are called decision variables.

The goal function is map X £+ [0, +00] having the form

g(x)=>_ ¢ x.

i=1
Main Task:
Optimize the restriction of the goal function g to a finite family
of non-deterministic constraints which can be expresed as
follows:
there exist a probability space (Q, %, 7),
s-dimensional random vectors h and T;, j =1 ..., n such that
such that x € X is subjected to the following linear random
inequality system:

- ((xw) :=§:1Tj<w>-xj—h(w) <0, weq
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Goal in SLP

e The goal in stochastic linear programming is to achieve a
probability distribution of ((x,w) with advantageous properties,
where x is considered as deterministic.

(see P. Kall and J. Mayer, Stochastic Linear Programming,
Springer-Verlag 2011).

e |n order to give a quantitative meaning to the term
advantageous we find various approaches in SLP — e.g.

e The introduction of an evaluation function L°(RR®) < R for
s-dimensional random vectors, which transforms the given
non-deterministic restrictions into deterministic ones by:

V(x) = o(¢(x,w)) < 0.

e The the following deterministic optimization problem is
considered:

max. X £ [0,+00] under V(x)= o(¢(x,w)) < 0.
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Observations

e The non-deterministic constrains give rise to a random set on
the space X of decision variables S:

w— S(w) ={x € X | ¢(x,w) <0}.

The distribution of the random set S induces a map X [0, 1]
by

f(x)=m({we Q| x e Sw)}), x e X.

Problems:

What is the restriction of the goal function g to f or what is the
image of f under g7

What is the supremmum of the image of f under g?
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Reformulation and the perspective of solution

e The map f can be considered as a fuzzy subset of X.

e The image of f under the goal function g is obviously a fuzzy
subset of [0, +00].

e What is the supremum of a fuzzy subset of [0, 4+00] ?

e The solution is given by module theory in the category Sup of
complete lattices and join-preserving maps.

e As a monoid in Sup we choose the real unit interval [0, 1]
provided with tukasiewicz arithmetic conjunction:

ax* f=max(a+ [ —1,0), o, €1[0,1].
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Join-completeness

Let (X, <) be a preordered set. A subset A C X is downclosed if
z < x and x € A implies z € A.

Dwn(X) is the set of all downclosed subsets of X ordered by
set-inclusion.

There is an isotone map X =% Dwn(X) defined by

nx(x) =lx={zeX| z<x}. xeX.

C.J. Mikkelsen 1976:

A preordered set (X, <) is join-complete (i.e. every subset has a
join) if an only if X 2% Dwn(X) has a left adjoint map
Dwn(X) =25 X.

The proof requires the Axiom of Choice.

Replacement of 2 by the unital commutative quantale ([0, 1], *).
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A [0, 1]-preorder on a set X is a map X x X £ [0, 1] satisfying
the conditions:

- 1=p(x,x), xe€X,
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e Let (X, p) be a [0, 1]-preordered set. A map X SN [0,1] is a
[0, 1]-enriched presheaf if f is left-extensional w.r.t. p — i.e.

p(z,x)+f(x)—1<f(z), x,zeX.

e The [0, 1]-preorder d on the set (X, p) of all [0, 1]-enriched
presheaves on (X.p) is given by:

d(f,g) = Xigf(min(l —f(x)+g(x),1), f,geP(X,p).
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[0, 1]-Enriched join-completeness
The [0, 1]-enriched Yoneda embedding (X, p) BEEN P(X, p) is
given by:

(W(X,p)(x))(z) = p(z,x), x,y € X.

e (X,p)is [0,1]-enriched join-complete if and only if 7x p) has a
left adjoint map P(X, p) DX e

p(sup(X,p)(f)7y) = d(f,p(_, Z))a yeX, fe P(X,p).

e Example. The space (]P(X,p), d) is [0, 1]-enriched
join-complete. The left adjoint map suppx ,) is given by:

<sup(P(X7p)7d)(F)) (x) = sup max(f(x)+ F(f)—1,0)

felP(X,p)

where F € IP(]P(X,p), d) and x € X.
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A [0, 1]-enriched join-complete lattice is a right [0, 1]-module X
in Sup.

e Due to the universal property of the tensor product a right
action on a complete lattice X can always be identified with a
map X x [0, 1] s X, which is join-preserving in each variable
separately and satisfies the following conditions for all
xeX,a,pe[0,1]

xHl=x and (xEa)Bs=xE(max(a+p—1,0)),

e If (X,[0) is a right [0, 1]-module, then the corresponding
intrinsic [0, 1]-preorder p and the formation of [0, 1]-enriched
joins are given by:

plx.y) =sup{a € [0,1] | xHa <y}, x,yeX,
sup(Xyp)(f) =V xBf(x), feP(X,p).

xeX
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Let [J be a right action on [0, +o00] with the corresponding
[0, 1]-preorder p.
e Every set X is understood as the set provided with its discrete
[0, 1]-preorder py — i.e.

po(x,x) =1 and p(x;,%) =0 for x; # x.

e Hence every fuzzy subset X [0,1] of X is a [0, 1]-enriched
presheaf on (X, po).

e The image g(f) of a fuzzy subset f of X under a map
X £5 [0, +00] in the sense of the monad of [0, 1]-enriched
presheaves is given by:

g(f)(z) = sup{max(p(z, g(x))+7(x),0) | x € X}, z € [0, 4o0].



e The [0, 1]-enriched join of g(f) is given by:

SUP([o,+oo],p)(g(f)) =V zBg(f)(2)

z€[0,400]

=V g(x)Ef(x)

xeX



e The [0, 1]-enriched join of g(f) is given by:

SUP([o,+oo],p)(g(f)) =V zBg(f)(2)

z€[0,400]

= V g(x)Ef(x)

xeX

e The previous expression is the solution (i.e. optimum) of the
stochastic linear programming problem (SLPP).



e The [0, 1]-enriched join of g(f) is given by:

SUP([o,+oo],p)(g(f)) =V zBg(f)(2)

z€[0,400]

=V g(x)Ef(x)

xeX

e The previous expression is the solution (i.e. optimum) of the
stochastic linear programming problem (SLPP).

e The solution of SLPP depends on the chosen right action on the
extended non-negative real line.




The [0, 1]-enriched join of g(f) is given by:

SUP([o,+oo],p)(g(f)) =V zBg(f)(2)

z€[0,400]

=V g(x)Ef(x)

xeX

The previous expression is the solution (i.e. optimum) of the
stochastic linear programming problem (SLPP).

The solution of SLPP depends on the chosen right action on the
extended non-negative real line.

As an illustration we choose now different right actions [-] on
[0, +o0].



Different [0, 1]-enriched versions of suprema for SLPP

(A) Let [0, 4+o00] x [0,1] =, [0, +00] be the trivial right action:

z, a=1,
zDa—{ 0, z#L1



Different [0, 1]-enriched versions of suprema for SLPP

(A) Let [0, 4+o00] x [0,1] =, [0, +00] be the trivial right action:

z, a=1,
zDa—{ 0, z#L1

e Then the [0, 1]-preorder p on [0, +o0] is the characteristic
function of the usual order on [0, +oc] and

SUP([o,+00],5) (&()) = sup{g(x) | 1 = f(x)}.



Different [0, 1]-enriched versions of suprema for SLPP
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z, a=1,
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e Then the [0, 1]-preorder p on [0, +o0] is the characteristic
function of the usual order on [0, +oc] and

SUP([o,+00],5) (&()) = sup{g(x) | 1 = f(x)}.
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stochastic linear programming problem.
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implication.

tukasiewicz implication is a right action on [0,1]°° —i.e. [0, 1]
is provided with its dual order and

xBa=a—x=min(l-a+x,1), x,a€][0,]1]
Infact: xH1=x, (xHa)Bs=xE(max(a+/5—1,0)).
z — exp(—2z) is an order-isomorphism from [0, +-o00] to [0, 1]°P.

Hence the right action [J on [0, +00] has the form:

z[a = — In(min(1 — o + exp(—2z), 1)), z € [0, +o0], a € [0,1].

The corresponding [0, 1]-preorder on [0, +o¢] is given by:

p(z1,z2) = min(1 — exp(—2z2) + exp(—z), 1), 71,2, € [0, +0o0].
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A non-deterministic solution of SLPP

SUP((0. o] p)(&(F)) = sup —In((1 — f(x) + exp(—g(x)), 1)).

xeX
e The expression 1 — f(x) is the probability that x violates the
constraints.

e It is interesting to see how this value enters the construction of
the [0, 1]-enriched supremum of the stochastic linear
programming problem.

e This value can be seen as costs caused by some kind of penalty
strategy.

e The real number of the non-deterministic solution is larger than
the result related to the deterministic supremum in (A).

e Non-deterministic solutions depend obviously on an order
isomorphism between [0, +0c] — [0, 1]°? and seem to play an
interesting role in stochastic linear programming.
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Result:

Right actions on [0, +00] and therewith enriched suprema play a
significant role in the construction of solutions of the stochastic
linear programming problem.
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