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Some Properties of Quantales
A quantale Q is semi-unital, if α ≤ > ∗ α and α ≤ α ∗ > for all
α ∈ Q.

• The semi-unitalization of every quantale Q exists.

• Construction. Let ω 6∈ Q. Then Q = Q ∪ {ω}, ω is the
universal upper bound in Q and the multiplication ∗ is extended
as follows:

α∗β = α∗β, α∗ω = α∨(α∗>), ω∗α = α∨(>∗α), ω∗ω = ω.

• A quantale Q is two-sided if and only if its semi-unitalization Q
is integral.

• The semi-unitalization of a quantale is always a subquantale of
its unitalization.
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Let Q be a quantale such that the subquantale of all two-sided
elements has the form I(Q) = {⊥,>} (i.e. there does not exist
non-trivial two-sided elements).

If Q is semi-unital and left-sided, then the quantale
multiplication has the following form:

• α ∗ β =

{
β, α 6= ⊥,
⊥, α = ⊥. , α, β ∈ Q.

• In particular, Q is idempotent.

• A prominent example is the ideal multiplication of left ideals of
square matrices in finite dimensional vector spaces.
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All quantales on the chain C3 = {⊥, a,>}

(1)

∗ ⊥ a >
⊥ ⊥ ⊥ ⊥
a ⊥ ⊥ ⊥
> ⊥ ⊥ ⊥

(2)

∗ ⊥ a >
⊥ ⊥ ⊥ ⊥
a ⊥ ⊥ ⊥
> ⊥ ⊥ a

(6)

∗ ⊥ a >
⊥ ⊥ ⊥ ⊥
a ⊥ ⊥ ⊥
> ⊥ ⊥ >

(7)

∗ ⊥ a >
⊥ ⊥ ⊥ ⊥
a ⊥ ⊥ a

> ⊥ ⊥ >
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(8)

∗ ⊥ a >
⊥ ⊥ ⊥ ⊥
a ⊥ ⊥ ⊥
> ⊥ a >

(9)

∗ ⊥ a >
⊥ ⊥ ⊥ ⊥
a ⊥ ⊥ a
> ⊥ a >

(15)

∗ ⊥ a >
⊥ ⊥ ⊥ ⊥
a ⊥ a a
> ⊥ a a

(16)

∗ ⊥ a >
⊥ ⊥ ⊥ ⊥
a ⊥ a a
> ⊥ a >
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(17)

∗ ⊥ a >
⊥ ⊥ ⊥ ⊥
a ⊥ a >
> ⊥ a >

(18)

∗ ⊥ a >
⊥ ⊥ ⊥ ⊥
a ⊥ a a
> ⊥ > >

(19)

∗ ⊥ a >
⊥ ⊥ ⊥ ⊥
a ⊥ a >
> ⊥ > >

(20)

∗ ⊥ a >
⊥ ⊥ ⊥ ⊥
a ⊥ > >
> ⊥ > >
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• (9) = MV -algebra with three elements is the semi-unitalization
of the trivial quantale on {0, 1}.

• (16)= binary meet on {⊥, a,>} is the semi-unitalization of the
unique unital quantale 2 on {0, 1}.

• (19) is a commutative Girard quantale, in which the unit
coincides with the dualizing and cyclic element.

• On {⊥, a,>} all unital quantales are commutative.

• 2 quantales are non-commutative and two-sided — namely (7) is
strictly right-sided and not semi-unital, while (8) is strictly
left-sided and not semi-unital.
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• On the chain C4 = {⊥, a, b,>} consisting of 4 elements (i.e.
⊥ < a < b < >) there exists exactly two non-commutative
and integral quantale structures.

• There exists exactly two further non-commutative, non-integral
and unital quantale structures on C4:

• b is the unit a ∗ a = a, a ∗ > = a, > ∗ a = > and

• b is the unit a ∗ a = a, a ∗ > = >, > ∗ a = a.

• All 4 non-commutative quantales on C4 cannot be provided with
an order-preserving involution, which is an quantale
anti-homomorphism.

The formation of C4-enriched meets and C4-enriched joins are
not dual concepts.
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Let Q6 be the unital quantale of all join-preserving self-mappings
of C3 = {⊥, a,>}. Then Q6 has six elements.

• The Hasse diagram and the multiplication table of Q6 is given
by:

>

e

a` ar

b

⊥

∗ ⊥ b a` ar 1 >
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
b ⊥ ⊥ b ⊥ b ar
a` ⊥ ⊥ a` ⊥ a` >
ar ⊥ b b ar ar ar
1 ⊥ b a` ar 1 >
> ⊥ a` a` > > >

• Since C3 has a unique order reversing involution, there exists an
order preserving involution on Q6, which is a quantale
antihomomorphism:

>′ = >, 1′ = 1, a′` = ar , a′r = a`, b′ = b, ⊥′ = ⊥.
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Theorem. Every unital quantale Q can be embedded into a
unital and involutive quantale.

• On the complete lattice L = Q×Qop there exists an order
reversing involution o defined by

(α, β)o = (β, α), (α, β ∈ Q.

• On the unital quantale [L, L] of all join-preserving self maps

L
f−→ L there exists an involution ′ determined by:

f ′(α, β) =
(
f `((α, β)0))

)0
, (α, β) ∈ L.

• Q
Φ−→ [L, L] defined by:(

Φ(κ)
)
(α, β) =

(
(κ ∗ α), (β ↙ κ)

)
κ ∈ Q

is a unital quantale monomorphism.



Part I: Three-Valuedness: The first Step to Many-valuedness Part II: Application of Modules Theory to Linear Stochastic Programming

Theorem. Every unital quantale Q can be embedded into a
unital and involutive quantale.

• On the complete lattice L = Q×Qop there exists an order
reversing involution o defined by

(α, β)o = (β, α), (α, β ∈ Q.

• On the unital quantale [L, L] of all join-preserving self maps

L
f−→ L there exists an involution ′ determined by:

f ′(α, β) =
(
f `((α, β)0))

)0
, (α, β) ∈ L.

• Q
Φ−→ [L, L] defined by:(

Φ(κ)
)
(α, β) =

(
(κ ∗ α), (β ↙ κ)

)
κ ∈ Q

is a unital quantale monomorphism.



Part I: Three-Valuedness: The first Step to Many-valuedness Part II: Application of Modules Theory to Linear Stochastic Programming

Theorem. Every unital quantale Q can be embedded into a
unital and involutive quantale.

• On the complete lattice L = Q×Qop there exists an order
reversing involution o defined by

(α, β)o = (β, α), (α, β ∈ Q.

• On the unital quantale [L, L] of all join-preserving self maps

L
f−→ L there exists an involution ′ determined by:

f ′(α, β) =
(
f `((α, β)0))

)0
, (α, β) ∈ L.

• Q
Φ−→ [L, L] defined by:(

Φ(κ)
)
(α, β) =

(
(κ ∗ α), (β ↙ κ)

)
κ ∈ Q

is a unital quantale monomorphism.



Part I: Three-Valuedness: The first Step to Many-valuedness Part II: Application of Modules Theory to Linear Stochastic Programming

Theorem. Every unital quantale Q can be embedded into a
unital and involutive quantale.

• On the complete lattice L = Q×Qop there exists an order
reversing involution o defined by

(α, β)o = (β, α), (α, β ∈ Q.

• On the unital quantale [L, L] of all join-preserving self maps

L
f−→ L there exists an involution ′ determined by:

f ′(α, β) =
(
f `((α, β)0))

)0
, (α, β) ∈ L.

• Q
Φ−→ [L, L] defined by:(

Φ(κ)
)
(α, β) =

(
(κ ∗ α), (β ↙ κ)

)
κ ∈ Q

is a unital quantale monomorphism.



Part I: Three-Valuedness: The first Step to Many-valuedness Part II: Application of Modules Theory to Linear Stochastic Programming

Basic issue of SLP
X ⊂ Rn is a convex and compact subset. The components of
x = (x1, . . . , xn) ∈ X are called decision variables.

• The goal function is map X
g−→ [0,+∞] having the form

g(x) =
n∑

i=1

ci · xi .

• Main Task:
Optimize the restriction of the goal function g to a finite family
of non-deterministic constraints which can be expresed as
follows:

– there exist a probability space (Ω,A, π),

– s-dimensional random vectors h and Tj , j = 1 . . . , n such that
such that x ∈ X is subjected to the following linear random
inequality system:

– ζ(x , ω) :=
n∑

j=1

Tj(ω) · xj − h(ω) ≤ 0, ω ∈ Ω.
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– there exist a probability space (Ω,A, π),

– s-dimensional random vectors h and Tj , j = 1 . . . , n such that
such that x ∈ X is subjected to the following linear random
inequality system:

– ζ(x , ω) :=
n∑

j=1

Tj(ω) · xj − h(ω) ≤ 0, ω ∈ Ω.
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Goal in SLP
• The goal in stochastic linear programming is to achieve a

probability distribution of ζ(x , ω) with advantageous properties,
where x is considered as deterministic.
(see P. Kall and J. Mayer, Stochastic Linear Programming,
Springer-Verlag 2011).

• In order to give a quantitative meaning to the term
advantageous we find various approaches in SLP — e.g.

• The introduction of an evaluation function L0(Rs)
%−→ R for

s-dimensional random vectors, which transforms the given
non-deterministic restrictions into deterministic ones by:

V (x) = %(ζ(x , ω)) ≤ 0.

• The the following deterministic optimization problem is
considered:

max. X
g−→ [0,+∞] under V (x) = %(ζ(x , ω)) ≤ 0.
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Observations

• The non-deterministic constrains give rise to a random set on
the space X of decision variables S :

ω 7−→ S(ω) = {x ∈ X | ζ(x , ω) ≤ 0}.

• The distribution of the random set S induces a map X
f−→ [0, 1]

by
f (x) = π

(
{ω ∈ Ω | x ∈ S(ω)}

)
, x ∈ X .

• Problems:

– What is the restriction of the goal function g to f or what is the
image of f under g?

– What is the supremmum of the image of f under g?
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Part I: Three-Valuedness: The first Step to Many-valuedness Part II: Application of Modules Theory to Linear Stochastic Programming

Reformulation and the perspective of solution

• The map f can be considered as a fuzzy subset of X .

• The image of f under the goal function g is obviously a fuzzy
subset of [0,+∞].

• What is the supremum of a fuzzy subset of [0,+∞] ?

• The solution is given by module theory in the category Sup of
complete lattices and join-preserving maps.

• As a monoid in Sup we choose the real unit interval [0, 1]
provided with  Lukasiewicz arithmetic conjunction:

α ∗ β = max(α + β − 1, 0), α, β ∈ [0, 1].
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Join-completeness
Let (X ,≤) be a preordered set. A subset A ⊆ X is downclosed if
z ≤ x and x ∈ A implies z ∈ A.

• Dwn(X ) is the set of all downclosed subsets of X ordered by
set-inclusion.

• There is an isotone map X
ηX−−→ Dwn(X ) defined by

ηX (x) = ↓x = {z ∈ X | z ≤ x}. x ∈ X .

• C.J. Mikkelsen 1976:

A preordered set (X ,≤) is join-complete (i.e. every subset has a

join) if an only if X
ηX−−→ Dwn(X ) has a left adjoint map

Dwn(X )
sup−−→ X .

The proof requires the Axiom of Choice.

• Replacement of 2 by the unital commutative quantale ([0, 1], ∗).



Part I: Three-Valuedness: The first Step to Many-valuedness Part II: Application of Modules Theory to Linear Stochastic Programming

Join-completeness
Let (X ,≤) be a preordered set. A subset A ⊆ X is downclosed if
z ≤ x and x ∈ A implies z ∈ A.

• Dwn(X ) is the set of all downclosed subsets of X ordered by
set-inclusion.

• There is an isotone map X
ηX−−→ Dwn(X ) defined by

ηX (x) = ↓x = {z ∈ X | z ≤ x}. x ∈ X .

• C.J. Mikkelsen 1976:

A preordered set (X ,≤) is join-complete (i.e. every subset has a

join) if an only if X
ηX−−→ Dwn(X ) has a left adjoint map

Dwn(X )
sup−−→ X .

The proof requires the Axiom of Choice.

• Replacement of 2 by the unital commutative quantale ([0, 1], ∗).



Part I: Three-Valuedness: The first Step to Many-valuedness Part II: Application of Modules Theory to Linear Stochastic Programming

Join-completeness
Let (X ,≤) be a preordered set. A subset A ⊆ X is downclosed if
z ≤ x and x ∈ A implies z ∈ A.

• Dwn(X ) is the set of all downclosed subsets of X ordered by
set-inclusion.

• There is an isotone map X
ηX−−→ Dwn(X ) defined by

ηX (x) = ↓x = {z ∈ X | z ≤ x}. x ∈ X .

• C.J. Mikkelsen 1976:

A preordered set (X ,≤) is join-complete (i.e. every subset has a

join) if an only if X
ηX−−→ Dwn(X ) has a left adjoint map

Dwn(X )
sup−−→ X .

The proof requires the Axiom of Choice.

• Replacement of 2 by the unital commutative quantale ([0, 1], ∗).



Part I: Three-Valuedness: The first Step to Many-valuedness Part II: Application of Modules Theory to Linear Stochastic Programming

Join-completeness
Let (X ,≤) be a preordered set. A subset A ⊆ X is downclosed if
z ≤ x and x ∈ A implies z ∈ A.

• Dwn(X ) is the set of all downclosed subsets of X ordered by
set-inclusion.

• There is an isotone map X
ηX−−→ Dwn(X ) defined by

ηX (x) = ↓x = {z ∈ X | z ≤ x}. x ∈ X .

• C.J. Mikkelsen 1976:

A preordered set (X ,≤) is join-complete (i.e. every subset has a

join) if an only if X
ηX−−→ Dwn(X ) has a left adjoint map

Dwn(X )
sup−−→ X .

The proof requires the Axiom of Choice.

• Replacement of 2 by the unital commutative quantale ([0, 1], ∗).



Part I: Three-Valuedness: The first Step to Many-valuedness Part II: Application of Modules Theory to Linear Stochastic Programming

Join-completeness
Let (X ,≤) be a preordered set. A subset A ⊆ X is downclosed if
z ≤ x and x ∈ A implies z ∈ A.

• Dwn(X ) is the set of all downclosed subsets of X ordered by
set-inclusion.

• There is an isotone map X
ηX−−→ Dwn(X ) defined by

ηX (x) = ↓x = {z ∈ X | z ≤ x}. x ∈ X .

• C.J. Mikkelsen 1976:

A preordered set (X ,≤) is join-complete (i.e. every subset has a

join) if an only if X
ηX−−→ Dwn(X ) has a left adjoint map

Dwn(X )
sup−−→ X .

The proof requires the Axiom of Choice.

• Replacement of 2 by the unital commutative quantale ([0, 1], ∗).



Part I: Three-Valuedness: The first Step to Many-valuedness Part II: Application of Modules Theory to Linear Stochastic Programming

Join-completeness
Let (X ,≤) be a preordered set. A subset A ⊆ X is downclosed if
z ≤ x and x ∈ A implies z ∈ A.

• Dwn(X ) is the set of all downclosed subsets of X ordered by
set-inclusion.

• There is an isotone map X
ηX−−→ Dwn(X ) defined by

ηX (x) = ↓x = {z ∈ X | z ≤ x}. x ∈ X .

• C.J. Mikkelsen 1976:

A preordered set (X ,≤) is join-complete (i.e. every subset has a

join) if an only if X
ηX−−→ Dwn(X ) has a left adjoint map

Dwn(X )
sup−−→ X .

The proof requires the Axiom of Choice.

• Replacement of 2 by the unital commutative quantale ([0, 1], ∗).



Part I: Three-Valuedness: The first Step to Many-valuedness Part II: Application of Modules Theory to Linear Stochastic Programming

Enriched join-completeness based on ([0, 1], ∗)
A [0, 1]-preorder on a set X is a map X × X

p−→ [0, 1] satisfying
the conditions:

– 1 = p(x , x), x ∈ X ,
– p(x , y) + p(y , z)− 1 ≤ p(x , z), x , y , z ∈ X .

• A [0, 1]-preorder is antisymmetric if the following property holds:

1 = p(x , y) ∧ p(y , x)) ⇒ x = y .

• Let (X , p) be a [0, 1]-preordered set. A map X
f−→ [0, 1] is a

[0, 1]-enriched presheaf if f is left-extensional w.r.t. p — i.e.

p(z , x) + f (x)− 1 ≤ f (z), x , z ∈ X .

• The [0, 1]-preorder d on the set P(X , p) of all [0, 1]-enriched
presheaves on (X .p) is given by:

d(f , g) = inf
x∈X

min(1− f (x) + g(x), 1), f , g ∈ P(X , p).
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[0, 1]-Enriched join-completeness
The [0, 1]-enriched Yoneda embedding (X , p)

η(X ,p)−−−→ P(X , p) is
given by: (

η(X ,p)(x)
)
(z) = p(z , x), x , y ∈ X .

• (X , p) is [0, 1]-enriched join-complete if and only if η(X ,p) has a

left adjoint map P(X , p)
sup(X ,p)−−−−→ X — i.e.

p(sup(X ,p)(f ), y) = d
(
f , p( , z)

)
, y ∈ X , f ∈ P(X , p).

• Example. The space
(
P(X , p), d

)
is [0, 1]-enriched

join-complete. The left adjoint map supP(X ,p) is given by:(
sup(

P(X ,p),d)
(F )
)
(x) = sup

f ∈P(X ,p)

max(f (x) + F (f )− 1, 0)

where F ∈ P
(
P(X , p), d

)
and x ∈ X .
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A [0, 1]-enriched join-complete lattice is a right [0, 1]-module X
in Sup.

• Due to the universal property of the tensor product a right
action on a complete lattice X can always be identified with a

map X × [0, 1]
�−→ X , which is join-preserving in each variable

separately and satisfies the following conditions for all
x ∈ X , α, β ∈ [0, 1]:

x � 1 = x and (x � α) � β = x �
(
max(α + β − 1, 0)

)
, .

• If (X ,�) is a right [0, 1]-module, then the corresponding
intrinsic [0, 1]-preorder p and the formation of [0, 1]-enriched
joins are given by:

p(x , y) = sup{α ∈ [0, 1] | x � α ≤ y}, x , y ∈ X ,

sup(X ,p)(f ) =
∨
x∈X

x � f (x), f ∈ P(X , p).
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action on a complete lattice X can always be identified with a

map X × [0, 1]
�−→ X , which is join-preserving in each variable

separately and satisfies the following conditions for all
x ∈ X , α, β ∈ [0, 1]:

x � 1 = x and (x � α) � β = x �
(
max(α + β − 1, 0)

)
, .

• If (X ,�) is a right [0, 1]-module, then the corresponding
intrinsic [0, 1]-preorder p and the formation of [0, 1]-enriched
joins are given by:

p(x , y) = sup{α ∈ [0, 1] | x � α ≤ y}, x , y ∈ X ,
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[0,+∞] as a right [0, 1]-module
Let � be a right action on [0,+∞] with the corresponding
[0, 1]-preorder p.

• Every set X is understood as the set provided with its discrete
[0, 1]-preorder p0 — i.e.

p0(x , x) = 1 and p(x1, x2) = 0 for x1 6= x2.

• Hence every fuzzy subset X
f−→ [0, 1] of X is a [0, 1]-enriched

presheaf on (X , p0).

• The image g(f ) of a fuzzy subset f of X under a map

X
g−→ [0,+∞] in the sense of the monad of [0, 1]-enriched

presheaves is given by:

g(f )(z) = sup{max(p(z , g(x))+f (x), 0) | x ∈ X}, z ∈ [0,+∞].
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• The [0, 1]-enriched join of g(f ) is given by:

sup([0,+∞],p)

(
g(f )

)
=

∨
z∈[0,+∞]

z � g(f )(z)

=
∨
x∈X

g(x) � f (x)
.

• The previous expression is the solution (i.e. optimum) of the
stochastic linear programming problem (SLPP).

• The solution of SLPP depends on the chosen right action on the
extended non-negative real line.

• As an illustration we choose now different right actions � on
[0,+∞].
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Different [0, 1]-enriched versions of suprema for SLPP

(A) Let [0,+∞]× [0, 1]
�−→ [0,+∞] be the trivial right action:

z � α =

{
z , α = 1,
0, z 6= 1.

• Then the [0, 1]-preorder p on [0,+∞] is the characteristic
function of the usual order on [0,+∞] and

sup([0,+∞],p)(g(f )) = sup{g(x) | 1 = f (x)}.

• Hence the previous formula is the deterministic solution of the
stochastic linear programming problem.
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(B) The right action � on [0,+∞] is induced by the  Lukasiewicz
implication.

•  Lukasiewicz implication is a right action on [0, 1]op — i.e. [0, 1]
is provided with its dual order and

x � α = α→ x = min(1− α + x , 1), x , α ∈ [0, 1]

In fact: x � 1 = x , (x � α) � β = x � (max(α + β − 1, 0)).

• z 7−→ exp(−z) is an order-isomorphism from [0,+∞] to [0, 1]op.

• Hence the right action � on [0,+∞] has the form:

z�α = − ln
(
min(1− α + exp(−z), 1)

)
, z ∈ [0,+∞], α ∈ [0, 1].

• The corresponding [0, 1]-preorder on [0,+∞] is given by:

p(z1, z2) = min(1− exp(−z2) + exp(−z1), 1), z1, z2 ∈ [0,+∞].
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A non-deterministic solution of SLPP

sup([0,+∞],p)(g(f )) = sup
x∈X
− ln

(
(1− f (x) + exp(−g(x)), 1)

)
.

• The expression 1− f (x) is the probability that x violates the
constraints.

• It is interesting to see how this value enters the construction of
the [0, 1]-enriched supremum of the stochastic linear
programming problem.

• This value can be seen as costs caused by some kind of penalty
strategy.

• The real number of the non-deterministic solution is larger than
the result related to the deterministic supremum in (A).

• Non-deterministic solutions depend obviously on an order
isomorphism between [0,+∞] −→ [0, 1]op and seem to play an
interesting role in stochastic linear programming.
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Result:

Right actions on [0,+∞] and therewith enriched suprema play a
significant role in the construction of solutions of the stochastic
linear programming problem.
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