Possible Applications of Quantales and Module Theory

Ulrich Höhle

Bergische Universität, Wuppertal, Germany

Brno, October 4, 2019

Table of Contents

(1) Part I: Three-Valuedness: The first Step to Many-valuedness
(2) Part II: Application of Modules Theory to Linear Stochastic Programming

Some Properties of Quantales

A quantale \mathfrak{Q} is semi-unital, if $\alpha \leq \top * \alpha$ and $\alpha \leq \alpha * \top$ for all $\alpha \in \mathfrak{Q}$.

Some Properties of Quantales

A quantale \mathfrak{Q} is semi-unital, if $\alpha \leq \top * \alpha$ and $\alpha \leq \alpha * \top$ for all $\alpha \in \mathfrak{Q}$.

- The semi-unitalization of every quantale \mathfrak{Q} exists.

Some Properties of Quantales

A quantale \mathfrak{Q} is semi-unital, if $\alpha \leq \top * \alpha$ and $\alpha \leq \alpha * \top$ for all $\alpha \in \mathfrak{Q}$.

- The semi-unitalization of every quantale \mathfrak{Q} exists.
- Construction. Let $\omega \notin \mathfrak{Q}$. Then $\overline{\mathfrak{Q}}=\mathfrak{Q} \cup\{\omega\}, \omega$ is the universal upper bound in $\overline{\mathfrak{Q}}$ and the multiplication $*$ is extended as follows:

Some Properties of Quantales

A quantale \mathfrak{Q} is semi-unital, if $\alpha \leq \top * \alpha$ and $\alpha \leq \alpha * \top$ for all $\alpha \in \mathfrak{Q}$.

- The semi-unitalization of every quantale \mathfrak{Q} exists.
- Construction. Let $\omega \notin \mathfrak{Q}$. Then $\overline{\mathfrak{Q}}=\mathfrak{Q} \cup\{\omega\}, \omega$ is the universal upper bound in $\overline{\mathfrak{Q}}$ and the multiplication $*$ is extended as follows:

$$
\alpha \bar{*} \beta=\alpha * \beta, \quad \alpha \bar{*} \omega=\alpha \vee(\alpha * \top), \quad \omega \bar{*} \alpha=\alpha \vee(\top * \alpha), \quad \omega \bar{*} \omega=\omega .
$$

Some Properties of Quantales

A quantale \mathfrak{Q} is semi-unital, if $\alpha \leq \top * \alpha$ and $\alpha \leq \alpha * \top$ for all $\alpha \in \mathfrak{Q}$.

- The semi-unitalization of every quantale \mathfrak{Q} exists.
- Construction. Let $\omega \notin \mathfrak{Q}$. Then $\overline{\mathfrak{Q}}=\mathfrak{Q} \cup\{\omega\}, \omega$ is the universal upper bound in $\overline{\mathfrak{Q}}$ and the multiplication $*$ is extended as follows:
$\alpha \bar{*} \beta=\alpha * \beta, \quad \alpha \bar{*} \omega=\alpha \vee(\alpha * \top), \omega \bar{*} \alpha=\alpha \vee(\top * \alpha), \omega \bar{*} \omega=\omega$.
- A quantale \mathfrak{Q} is two-sided if and only if its semi-unitalization $\overline{\mathfrak{Q}}$ is integral.

Some Properties of Quantales

A quantale \mathfrak{Q} is semi-unital, if $\alpha \leq \top * \alpha$ and $\alpha \leq \alpha * \top$ for all $\alpha \in \mathfrak{Q}$.

- The semi-unitalization of every quantale \mathfrak{Q} exists.
- Construction. Let $\omega \notin \mathfrak{Q}$. Then $\overline{\mathfrak{Q}}=\mathfrak{Q} \cup\{\omega\}, \omega$ is the universal upper bound in $\overline{\mathfrak{Q}}$ and the multiplication $*$ is extended as follows:
$\alpha \bar{*} \beta=\alpha * \beta, \quad \alpha \nexists \omega=\alpha \vee(\alpha * \top), \omega \bar{*} \alpha=\alpha \vee(\top * \alpha), \omega \neq \omega=\omega$.
- A quantale \mathfrak{Q} is two-sided if and only if its semi-unitalization $\overline{\mathfrak{Q}}$ is integral.
- The semi-unitalization of a quantale is always a subquantale of its unitalization.

Let \mathfrak{Q} be a quantale such that the subquantale of all two-sided elements has the form $\mathbb{I}(\mathfrak{Q})=\{\perp, \top\}$ (i.e. there does not exist non-trivial two-sided elements).
If \mathfrak{Q} is semi-unital and left-sided, then the quantale multiplication has the following form:

Let \mathfrak{Q} be a quantale such that the subquantale of all two-sided elements has the form $\mathbb{I}(\mathfrak{Q})=\{\perp, \top\}$ (i.e. there does not exist non-trivial two-sided elements).
If \mathfrak{Q} is semi-unital and left-sided, then the quantale multiplication has the following form:

$$
\alpha * \beta=\left\{\begin{array}{ll}
\beta, & \alpha \neq \perp, \\
\perp, & \alpha=\perp .
\end{array} \quad \alpha, \beta \in \mathfrak{Q} .\right.
$$

Let \mathfrak{Q} be a quantale such that the subquantale of all two-sided elements has the form $\mathbb{I}(\mathfrak{Q})=\{\perp, \top\}$ (i.e. there does not exist non-trivial two-sided elements).
If \mathfrak{Q} is semi-unital and left-sided, then the quantale multiplication has the following form:

$$
\alpha * \beta=\left\{\begin{array}{ll}
\beta, & \alpha \neq \perp, \\
\perp, & \alpha=\perp .
\end{array} \quad \alpha, \beta \in \mathfrak{Q} .\right.
$$

- In particular, \mathfrak{Q} is idempotent.

Let \mathfrak{Q} be a quantale such that the subquantale of all two-sided elements has the form $\mathbb{I}(\mathfrak{Q})=\{\perp, \top\}$ (i.e. there does not exist non-trivial two-sided elements).
If \mathfrak{Q} is semi-unital and left-sided, then the quantale multiplication has the following form:

$$
\alpha * \beta=\left\{\begin{array}{ll}
\beta, & \alpha \neq \perp, \\
\perp, & \alpha=\perp .
\end{array} \quad \alpha, \beta \in \mathfrak{Q}\right.
$$

- In particular, \mathfrak{Q} is idempotent.
- A prominent example is the ideal multiplication of left ideals of square matrices in finite dimensional vector spaces.

All quantales on the chain $C_{3}=\{\perp, a, \top\}$

(1) \quad| $*$ | \perp | a | \top |
| :---: | :---: | :---: | :---: |
| \perp | \perp | \perp | \perp |
| a | \perp | \perp | \perp |
| \top | \perp | \perp | \perp |

(2) \quad| $*$ | \perp | a | \top |
| :---: | :---: | :---: | :---: |
| \perp | \perp | \perp | \perp |
| a | \perp | \perp | \perp |
| \top | \perp | \perp | a |

(6) \quad| $*$ | \perp | a | \top |
| :---: | :---: | :---: | :---: |
| \perp | \perp | \perp | \perp |
| a | \perp | \perp | \perp |
| \top | \perp | \perp | \top |

(7) \quad| $*$ | \perp | a | \top |
| :---: | :---: | :---: | :---: |
| \perp | \perp | \perp | \perp |
| a | \perp | \perp | a |
| \top | \perp | \perp | \top |

(8) \quad| $*$ | \mid | \perp | a |
| :---: | :---: | :---: | :---: |

(9)

$*$	\perp	a	T
\perp	\perp	\perp	\perp
a	\perp	\perp	a
T	\perp	a	T

(16)

$*$	\perp	a	T
\perp	\perp	\perp	\perp
a	\perp	a	a
T	\perp	a	T

(17)

$*$	\perp	a	T
\perp	\perp	\perp	\perp
a	\perp	a	T
T	\perp	a	T

(18)

$*$	\perp	a	T
\perp	\perp	\perp	\perp
a	\perp	a	a
T	\perp	T	T

(19) | $*$ | \perp | a | T |
| :---: | :---: | :---: | :---: |
| \perp | \perp | \perp | \perp |
| a | \perp | a | T |
| T | \perp | T | T |

(20)

$*$	\perp	a	T
\perp	\perp	\perp	\perp
a	\perp	T	T
T	\perp	T	T

- (9) = MV-algebra with three elements is the semi-unitalization of the trivial quantale on $\{0,1\}$.
- (9) $=M V$-algebra with three elements is the semi-unitalization of the trivial quantale on $\{0,1\}$.
- (16) $=$ binary meet on $\{\perp, a, \top\}$ is the semi-unitalization of the unique unital quantale 2 on $\{0,1\}$.
- (9) $=M V$-algebra with three elements is the semi-unitalization of the trivial quantale on $\{0,1\}$.
- (16) $=$ binary meet on $\{\perp, a, \top\}$ is the semi-unitalization of the unique unital quantale 2 on $\{0,1\}$.
- (19) is a commutative Girard quantale, in which the unit coincides with the dualizing and cyclic element.
- (9) $=M V$-algebra with three elements is the semi-unitalization of the trivial quantale on $\{0,1\}$.
- (16) $=$ binary meet on $\{\perp, a, \top\}$ is the semi-unitalization of the unique unital quantale 2 on $\{0,1\}$.
- (19) is a commutative Girard quantale, in which the unit coincides with the dualizing and cyclic element.
- On $\{\perp, a, \top\}$ all unital quantales are commutative.
- (9) $=M V$-algebra with three elements is the semi-unitalization of the trivial quantale on $\{0,1\}$.
- (16) $=$ binary meet on $\{\perp, a, \top\}$ is the semi-unitalization of the unique unital quantale 2 on $\{0,1\}$.
- (19) is a commutative Girard quantale, in which the unit coincides with the dualizing and cyclic element.
- On $\{\perp, a, \top\}$ all unital quantales are commutative.
- 2 quantales are non-commutative and two-sided - namely (7) is strictly right-sided and not semi-unital, while (8) is strictly left-sided and not semi-unital.
- On the chain $C_{4}=\{\perp, a, b, \top\}$ consisting of 4 elements (i.e. $\perp<a<b<\top$) there exists exactly two non-commutative and integral quantale structures.
- On the chain $C_{4}=\{\perp, a, b, \top\}$ consisting of 4 elements (i.e. $\perp<a<b<\top$) there exists exactly two non-commutative and integral quantale structures.
- There exists exactly two further non-commutative, non-integral and unital quantale structures on C_{4} :
- On the chain $C_{4}=\{\perp, a, b, T\}$ consisting of 4 elements (i.e. $\perp<a<b<\top$) there exists exactly two non-commutative and integral quantale structures.
- There exists exactly two further non-commutative, non-integral and unital quantale structures on C_{4} :
- b is the unit $a * a=a, \quad a * \top=a, \quad \top * a=\top$ and
- On the chain $C_{4}=\{\perp, a, b, \top\}$ consisting of 4 elements (i.e. $\perp<a<b<\top$) there exists exactly two non-commutative and integral quantale structures.
- There exists exactly two further non-commutative, non-integral and unital quantale structures on C_{4} :
- b is the unit $a * a=a, \quad a * \top=a, \quad \top * a=\top$ and
- b is the unit $a * a=a, \quad a * \top=\top, \quad \top * a=a$.
- On the chain $C_{4}=\{\perp, a, b, \top\}$ consisting of 4 elements (i.e. $\perp<a<b<\top$) there exists exactly two non-commutative and integral quantale structures.
- There exists exactly two further non-commutative, non-integral and unital quantale structures on C_{4} :
- b is the unit $a * a=a, \quad a * T=a, \quad \top * a=\top$ and
- b is the unit $a * a=a, \quad a * \top=\top, \quad \top * a=a$.
- All 4 non-commutative quantales on C_{4} cannot be provided with an order-preserving involution, which is an quantale anti-homomorphism.
- On the chain $C_{4}=\{\perp, a, b, \top\}$ consisting of 4 elements (i.e. $\perp<a<b<\top$) there exists exactly two non-commutative and integral quantale structures.
- There exists exactly two further non-commutative, non-integral and unital quantale structures on C_{4} :
- b is the unit $a * a=a, \quad a * T=a, \quad \top * a=\top$ and
- b is the unit $a * a=a, \quad a * \top=\top, \quad \top * a=a$.
- All 4 non-commutative quantales on C_{4} cannot be provided with an order-preserving involution, which is an quantale anti-homomorphism.
The formation of C_{4}-enriched meets and C_{4}-enriched joins are not dual concepts.

Let \mathfrak{Q}_{6} be the unital quantale of all join-preserving self-mappings of $C_{3}=\{\perp, a, \top\}$. Then \mathfrak{Q}_{6} has six elements.

Let \mathfrak{Q}_{6} be the unital quantale of all join-preserving self-mappings of $C_{3}=\{\perp, a, \top\}$. Then \mathfrak{Q}_{6} has six elements.

- The Hasse diagram and the multiplication table of \mathfrak{Q}_{6} is given by:

$*$	\perp	b	a_{ℓ}	a_{r}	1	\top
\perp						
b	\perp	\perp	b	\perp	b	a_{r}
a_{ℓ}	\perp	\perp	a_{ℓ}	\perp	a_{ℓ}	\top
a_{r}	\perp	b	b	a_{r}	a_{r}	a_{r}
1	\perp	b	a_{ℓ}	a_{r}	1	\top
\top	\perp	a_{ℓ}	a_{ℓ}	\top	\top	\top

Let \mathfrak{Q}_{6} be the unital quantale of all join-preserving self-mappings of $C_{3}=\{\perp, a, \top\}$. Then \mathfrak{Q}_{6} has six elements.

- The Hasse diagram and the multiplication table of \mathfrak{Q}_{6} is given by:

$*$	\perp	b	a_{ℓ}	a_{r}	1	\top
\perp						
b	\perp	\perp	b	\perp	b	a_{r}
a_{ℓ}	\perp	\perp	a_{ℓ}	\perp	a_{ℓ}	\top
a_{r}	\perp	b	b	a_{r}	a_{r}	a_{r}
1	\perp	b	a_{ℓ}	a_{r}	1	\top
\top	\perp	a_{ℓ}	a_{ℓ}	\top	\top	\top

- Since C_{3} has a unique order reversing involution, there exists an order preserving involution on \mathfrak{Q}_{6}, which is a quantale antihomomorphism:

$$
\top^{\prime}=\top, \quad 1^{\prime}=1, a_{\ell}^{\prime}=a_{r}, \quad a_{r}^{\prime}=a_{\ell}, \quad b^{\prime}=b, \quad \perp^{\prime}=\perp .
$$

Theorem. Every unital quantale \mathfrak{Q} can be embedded into a unital and involutive quantale.

Theorem. Every unital quantale \mathfrak{Q} can be embedded into a unital and involutive quantale.

- On the complete lattice $L=\mathfrak{Q} \times \mathfrak{Q}^{o p}$ there exists an order reversing involution ${ }^{\circ}$ defined by

$$
(\alpha, \beta)^{\circ}=(\beta, \alpha), \quad(\alpha, \beta \in \mathfrak{Q}
$$

Theorem. Every unital quantale \mathfrak{Q} can be embedded into a unital and involutive quantale.

- On the complete lattice $L=\mathfrak{Q} \times \mathfrak{Q}^{o p}$ there exists an order reversing involution ${ }^{\circ}$ defined by

$$
(\alpha, \beta)^{\circ}=(\beta, \alpha), \quad(\alpha, \beta \in \mathfrak{Q}
$$

- On the unital quantale $[L, L]$ of all join-preserving self maps $L \xrightarrow{f} L$ there exists an involution ' determined by:

$$
\left.f^{\prime}(\alpha, \beta)=\left(f^{\vdash}\left((\alpha, \beta)^{0}\right)\right)\right)^{0}, \quad(\alpha, \beta) \in L .
$$

Theorem. Every unital quantale \mathfrak{Q} can be embedded into a unital and involutive quantale.

- On the complete lattice $L=\mathfrak{Q} \times \mathfrak{Q}^{o p}$ there exists an order reversing involution ${ }^{\circ}$ defined by

$$
(\alpha, \beta)^{\circ}=(\beta, \alpha), \quad(\alpha, \beta \in \mathfrak{Q}
$$

- On the unital quantale $[L, L]$ of all join-preserving self maps $L \xrightarrow{f} L$ there exists an involution ${ }^{\prime}$ determined by:

$$
\left.f^{\prime}(\alpha, \beta)=\left(f^{\vdash}\left((\alpha, \beta)^{0}\right)\right)\right)^{0}, \quad(\alpha, \beta) \in L
$$

- $\mathfrak{Q} \xrightarrow{\Phi}[L, L]$ defined by:

$$
(\Phi(\varkappa))(\alpha, \beta)=((\varkappa * \alpha),(\beta \swarrow \varkappa)) \quad \varkappa \in \mathfrak{Q}
$$

is a unital quantale monomorphism.

Basic issue of SLP

$X \subset \mathbb{R}^{n}$ is a convex and compact subset. The components of $x=\left(x_{1}, \ldots, x_{n}\right) \in X$ are called decision variables.

Basic issue of SLP

$X \subset \mathbb{R}^{n}$ is a convex and compact subset. The components of $x=\left(x_{1}, \ldots, x_{n}\right) \in X$ are called decision variables.

- The goal function is map $X \xrightarrow{g}[0,+\infty]$ having the form

$$
g(x)=\sum_{i=1}^{n} c_{i} \cdot x_{i} .
$$

Basic issue of SLP

$X \subset \mathbb{R}^{n}$ is a convex and compact subset. The components of $x=\left(x_{1}, \ldots, x_{n}\right) \in X$ are called decision variables.

- The goal function is map $X \xrightarrow{g}[0,+\infty]$ having the form $g(x)=\sum_{i=1}^{n} c_{i} \cdot x_{i}$.
- Main Task:

Optimize the restriction of the goal function g to a finite family of non-deterministic constraints which can be expresed as follows:

Basic issue of SLP

$X \subset \mathbb{R}^{n}$ is a convex and compact subset. The components of $x=\left(x_{1}, \ldots, x_{n}\right) \in X$ are called decision variables.

- The goal function is map $X \xrightarrow{g}[0,+\infty]$ having the form $g(x)=\sum_{i=1}^{n} c_{i} \cdot x_{i}$.
- Main Task:

Optimize the restriction of the goal function g to a finite family of non-deterministic constraints which can be expresed as follows:

- there exist a probability space $(\Omega, \mathfrak{A}, \pi)$,

Basic issue of SLP

$X \subset \mathbb{R}^{n}$ is a convex and compact subset. The components of $x=\left(x_{1}, \ldots, x_{n}\right) \in X$ are called decision variables.

- The goal function is map $X \xrightarrow{g}[0,+\infty]$ having the form $g(x)=\sum_{i=1}^{n} c_{i} \cdot x_{i}$.
- Main Task:

Optimize the restriction of the goal function g to a finite family of non-deterministic constraints which can be expresed as follows:

- there exist a probability space $(\Omega, \mathfrak{A}, \pi)$,
- s-dimensional random vectors h and $T_{j}, j=1 \ldots, n$ such that such that $x \in X$ is subjected to the following linear random inequality system:

Basic issue of SLP

$X \subset \mathbb{R}^{n}$ is a convex and compact subset. The components of $x=\left(x_{1}, \ldots, x_{n}\right) \in X$ are called decision variables.

- The goal function is map $X \xrightarrow{g}[0,+\infty]$ having the form $g(x)=\sum_{i=1}^{n} c_{i} \cdot x_{i}$.
- Main Task:

Optimize the restriction of the goal function g to a finite family of non-deterministic constraints which can be expresed as follows:

- there exist a probability space $(\Omega, \mathfrak{A}, \pi)$,
- s-dimensional random vectors h and $T_{j}, j=1 \ldots, n$ such that such that $x \in X$ is subjected to the following linear random inequality system:
$-\zeta(x, \omega):=\sum_{j=1}^{n} T_{j}(\omega) \cdot x_{j}-h(\omega) \leq 0, \quad \omega \in \Omega$.

Goal in SLP

- The goal in stochastic linear programming is to achieve a probability distribution of $\zeta(x, \omega)$ with advantageous properties, where x is considered as deterministic. (see P. Kall and J. Mayer, Stochastic Linear Programming, Springer-Verlag 2011).

Goal in SLP

- The goal in stochastic linear programming is to achieve a probability distribution of $\zeta(x, \omega)$ with advantageous properties, where x is considered as deterministic. (see P. Kall and J. Mayer, Stochastic Linear Programming, Springer-Verlag 2011).
- In order to give a quantitative meaning to the term advantageous we find various approaches in SLP - e.g.

Goal in SLP

- The goal in stochastic linear programming is to achieve a probability distribution of $\zeta(x, \omega)$ with advantageous properties, where x is considered as deterministic.
(see P. Kall and J. Mayer, Stochastic Linear Programming, Springer-Verlag 2011).
- In order to give a quantitative meaning to the term advantageous we find various approaches in SLP - e.g.
- The introduction of an evaluation function $L^{0}\left(\mathbb{R}^{s}\right) \xrightarrow{\varrho} \mathbb{R}$ for s-dimensional random vectors, which transforms the given non-deterministic restrictions into deterministic ones by:

$$
V(x)=\varrho(\zeta(x, \omega)) \leq 0
$$

Goal in SLP

- The goal in stochastic linear programming is to achieve a probability distribution of $\zeta(x, \omega)$ with advantageous properties, where x is considered as deterministic.
(see P. Kall and J. Mayer, Stochastic Linear Programming, Springer-Verlag 2011).
- In order to give a quantitative meaning to the term advantageous we find various approaches in SLP - e.g.
- The introduction of an evaluation function $L^{0}\left(\mathbb{R}^{s}\right) \xrightarrow{\varrho} \mathbb{R}$ for s-dimensional random vectors, which transforms the given non-deterministic restrictions into deterministic ones by:

$$
V(x)=\varrho(\zeta(x, \omega)) \leq 0
$$

- The the following deterministic optimization problem is considered:

$$
\max . \quad X \xrightarrow{g}[0,+\infty] \quad \text { under } \quad V(x)=\varrho(\zeta(x, \omega)) \leq 0 .
$$

Observations

- The non-deterministic constrains give rise to a random set on the space X of decision variables S :

$$
\omega \longmapsto S(\omega)=\{x \in X \mid \zeta(x, \omega) \leq 0\} .
$$

Observations

- The non-deterministic constrains give rise to a random set on the space X of decision variables S :

$$
\omega \longmapsto S(\omega)=\{x \in X \mid \zeta(x, \omega) \leq 0\} .
$$

- The distribution of the random set S induces a map $X \xrightarrow{f}[0,1]$ by

$$
f(x)=\pi(\{\omega \in \Omega \mid x \in S(\omega)\}), \quad x \in X
$$

Observations

- The non-deterministic constrains give rise to a random set on the space X of decision variables S :

$$
\omega \longmapsto S(\omega)=\{x \in X \mid \zeta(x, \omega) \leq 0\} .
$$

- The distribution of the random set S induces a map $X \xrightarrow{f}[0,1]$ by

$$
f(x)=\pi(\{\omega \in \Omega \mid x \in S(\omega)\}), \quad x \in X
$$

- Problems:

Observations

- The non-deterministic constrains give rise to a random set on the space X of decision variables S :

$$
\omega \longmapsto S(\omega)=\{x \in X \mid \zeta(x, \omega) \leq 0\} .
$$

- The distribution of the random set S induces a map $X \xrightarrow{f}[0,1]$ by

$$
f(x)=\pi(\{\omega \in \Omega \mid x \in S(\omega)\}), \quad x \in X
$$

- Problems:
- What is the restriction of the goal function g to f or what is the image of f under g ?

Observations

- The non-deterministic constrains give rise to a random set on the space X of decision variables S :

$$
\omega \longmapsto S(\omega)=\{x \in X \mid \zeta(x, \omega) \leq 0\} .
$$

- The distribution of the random set S induces a map $X \xrightarrow{f}[0,1]$ by

$$
f(x)=\pi(\{\omega \in \Omega \mid x \in S(\omega)\}), \quad x \in X
$$

- Problems:
- What is the restriction of the goal function g to f or what is the image of f under g ?
- What is the supremmum of the image of f under g ?

Reformulation and the perspective of solution

- The map f can be considered as a fuzzy subset of X.

Reformulation and the perspective of solution

- The map f can be considered as a fuzzy subset of X.
- The image of f under the goal function g is obviously a fuzzy subset of $[0,+\infty]$.

Reformulation and the perspective of solution

- The map f can be considered as a fuzzy subset of X.
- The image of f under the goal function g is obviously a fuzzy subset of $[0,+\infty]$.
- What is the supremum of a fuzzy subset of $[0,+\infty]$?

Reformulation and the perspective of solution

- The map f can be considered as a fuzzy subset of X.
- The image of f under the goal function g is obviously a fuzzy subset of $[0,+\infty]$.
- What is the supremum of a fuzzy subset of $[0,+\infty]$?
- The solution is given by module theory in the category Sup of complete lattices and join-preserving maps.

Reformulation and the perspective of solution

- The map f can be considered as a fuzzy subset of X.
- The image of f under the goal function g is obviously a fuzzy subset of $[0,+\infty]$.
- What is the supremum of a fuzzy subset of $[0,+\infty]$?
- The solution is given by module theory in the category Sup of complete lattices and join-preserving maps.
- As a monoid in Sup we choose the real unit interval $[0,1]$ provided with Łukasiewicz arithmetic conjunction:

$$
\alpha * \beta=\max (\alpha+\beta-1,0), \quad \alpha, \beta \in[0,1]
$$

Join-completeness

Let (X, \leq) be a preordered set. A subset $A \subseteq X$ is downclosed if $z \leq x$ and $x \in A$ implies $z \in A$.

Join-completeness

Let (X, \leq) be a preordered set. A subset $A \subseteq X$ is downclosed if $z \leq x$ and $x \in A$ implies $z \in A$.

- $\operatorname{Dwn}(X)$ is the set of all downclosed subsets of X ordered by set-inclusion.

Join-completeness

Let (X, \leq) be a preordered set. A subset $A \subseteq X$ is downclosed if $z \leq x$ and $x \in A$ implies $z \in A$.

- $\operatorname{Dwn}(X)$ is the set of all downclosed subsets of X ordered by set-inclusion.
- There is an isotone map $X \xrightarrow{\eta_{X}} \operatorname{Dwn}(X)$ defined by

$$
\eta_{X}(x)=\downarrow x=\{z \in X \mid z \leq x\} . \quad x \in X
$$

Join-completeness

Let (X, \leq) be a preordered set. A subset $A \subseteq X$ is downclosed if $z \leq x$ and $x \in A$ implies $z \in A$.

- $\operatorname{Dwn}(X)$ is the set of all downclosed subsets of X ordered by set-inclusion.
- There is an isotone map $X \xrightarrow{\eta_{X}} \operatorname{Dwn}(X)$ defined by

$$
\eta_{X}(x)=\downarrow x=\{z \in X \mid z \leq x\} . \quad x \in X
$$

- C.J. Mikkelsen 1976:

A preordered set (X, \leq) is join-complete (i.e. every subset has a join) if an only if $X \xrightarrow{\eta_{X}} \operatorname{Dwn}(X)$ has a left adjoint map $\operatorname{Dwn}(X) \xrightarrow{\text { sup }} X$.

Join-completeness

Let (X, \leq) be a preordered set. A subset $A \subseteq X$ is downclosed if $z \leq x$ and $x \in A$ implies $z \in A$.

- $\operatorname{Dwn}(X)$ is the set of all downclosed subsets of X ordered by set-inclusion.
- There is an isotone map $X \xrightarrow{\eta_{X}} \operatorname{Dwn}(X)$ defined by

$$
\eta_{X}(x)=\downarrow x=\{z \in X \mid z \leq x\} . \quad x \in X
$$

- C.J. Mikkelsen 1976:

A preordered set (X, \leq) is join-complete (i.e. every subset has a join) if an only if $X \xrightarrow{\eta_{X}} \operatorname{Dwn}(X)$ has a left adjoint map $\operatorname{Dwn}(X) \xrightarrow{\text { sup }} X$.
The proof requires the Axiom of Choice.

Join-completeness

Let (X, \leq) be a preordered set. A subset $A \subseteq X$ is downclosed if $z \leq x$ and $x \in A$ implies $z \in A$.

- $\operatorname{Dwn}(X)$ is the set of all downclosed subsets of X ordered by set-inclusion.
- There is an isotone map $X \xrightarrow{\eta_{X}} \operatorname{Dwn}(X)$ defined by

$$
\eta_{X}(x)=\downarrow x=\{z \in X \mid z \leq x\} . \quad x \in X
$$

- C.J. Mikkelsen 1976:

A preordered set (X, \leq) is join-complete (i.e. every subset has a join) if an only if $X \xrightarrow{\eta_{X}} \operatorname{Dwn}(X)$ has a left adjoint map $\operatorname{Dwn}(X) \xrightarrow{\text { sup }} X$.
The proof requires the Axiom of Choice.

- Replacement of 2 by the unital commutative quantale ([0, 1], *).

Enriched join-completeness based on $([0,1], *)$

$\mathrm{A}[0,1]$-preorder on a set X is a map $X \times X \xrightarrow{p}[0,1]$ satisfying the conditions:

$$
\begin{aligned}
& \text { - } 1=p(x, x), \quad x \in X, \\
& \text { - } p(x, y)+p(y, z)-1 \leq p(x, z), \quad x, y, z \in X .
\end{aligned}
$$

Enriched join-completeness based on $([0,1], *)$

$\mathrm{A}[0,1]$-preorder on a set X is a map $X \times X \xrightarrow{p}[0,1]$ satisfying the conditions:

$$
\begin{aligned}
& \text { - } 1=p(x, x), \quad x \in X \\
& \text { - } p(x, y)+p(y, z)-1 \leq p(x, z), \quad x, y, z \in X
\end{aligned}
$$

- A $[0,1]$-preorder is antisymmetric if the following property holds:

$$
1=p(x, y) \wedge p(y, x)) \quad \Rightarrow \quad x=y
$$

Enriched join-completeness based on $([0,1], *)$

$\mathrm{A}[0,1]$-preorder on a set X is a map $X \times X \xrightarrow{p}[0,1]$ satisfying the conditions:

$$
\begin{aligned}
& -1=p(x, x), \quad x \in X \\
& -p(x, y)+p(y, z)-1 \leq p(x, z), \quad x, y, z \in X
\end{aligned}
$$

- A $[0,1]$-preorder is antisymmetric if the following property holds:

$$
1=p(x, y) \wedge p(y, x)) \quad \Rightarrow \quad x=y
$$

- Let (X, p) be a $[0,1]$-preordered set. $\mathrm{A} \operatorname{map} X \xrightarrow{f}[0,1]$ is a [0,1]-enriched presheaf if f is left-extensional w.r.t. $p-$ i.e.

$$
p(z, x)+f(x)-1 \leq f(z), \quad x, z \in X
$$

Enriched join-completeness based on $([0,1], *)$

$\mathrm{A}[0,1]$-preorder on a set X is a map $X \times X \xrightarrow{p}[0,1]$ satisfying the conditions:

$$
\begin{aligned}
& \text { - } 1=p(x, x), \quad x \in X \\
& \text { - } p(x, y)+p(y, z)-1 \leq p(x, z), \quad x, y, z \in X
\end{aligned}
$$

- A $[0,1]$-preorder is antisymmetric if the following property holds:

$$
1=p(x, y) \wedge p(y, x)) \quad \Rightarrow \quad x=y
$$

- Let (X, p) be a $[0,1]$-preordered set. $\mathrm{A} \operatorname{map} X \xrightarrow{f}[0,1]$ is a [0,1]-enriched presheaf if f is left-extensional w.r.t. $p-$ i.e.

$$
p(z, x)+f(x)-1 \leq f(z), \quad x, z \in X
$$

- The $[0,1]$-preorder d on the set $\mathbb{P}(X, p)$ of all $[0,1]$-enriched presheaves on ($X . p$) is given by:

$$
d(f, g)=\inf _{x \in X} \min (1-f(x)+g(x), 1), \quad f, g \in \mathbb{P}(X, p)
$$

[0, 1]-Enriched join-completeness

The $[0,1]$-enriched Yoneda embedding $(X, p) \xrightarrow{\eta_{(X, p)}} \mathbb{P}(X, p)$ is given by:

$$
\left(\eta_{(X, p)}(x)\right)(z)=p(z, x), \quad x, y \in X
$$

[0, 1]-Enriched join-completeness

The $[0,1]$-enriched Yoneda embedding $(X, p) \xrightarrow{\eta_{(X, p)}} \mathbb{P}(X, p)$ is given by:

$$
\left(\eta_{(X, p)}(x)\right)(z)=p(z, x), \quad x, y \in X
$$

- (X, p) is $[0,1]$-enriched join-complete if and only if $\eta_{(X, p)}$ has a left adjoint map $\mathbb{P}(X, p) \xrightarrow{\sup _{(X, p)}} X$ - i.e.

$$
p\left(\sup _{(X, p)}(f), y\right)=d\left(f, p\left(_, z\right)\right), \quad y \in X, f \in \mathbb{P}(X, p)
$$

[0, 1]-Enriched join-completeness

The $[0,1]$-enriched Yoneda embedding $(X, p) \xrightarrow{\eta_{(X, p)}} \mathbb{P}(X, p)$ is given by:

$$
\left(\eta_{(X, p)}(x)\right)(z)=p(z, x), \quad x, y \in X
$$

- (X, p) is $[0,1]$-enriched join-complete if and only if $\eta_{(X, p)}$ has a left adjoint map $\mathbb{P}(X, p) \xrightarrow{\sup _{(X, p)}} X$ - i.e.

$$
p\left(\sup _{(X, p)}(f), y\right)=d\left(f, p\left(_, z\right)\right), \quad y \in X, f \in \mathbb{P}(X, p)
$$

- Example. The space $(\mathbb{P}(X, p), d)$ is $[0,1]$-enriched join-complete. The left adjoint map $\sup _{\mathbb{P}(X, p)}$ is given by:

$$
\left(\sup _{(\mathbb{P}(X, p), d)}(F)\right)(x)=\sup _{f \in \mathbb{P}(X, p)} \max (f(x)+F(f)-1,0)
$$

where $F \in \mathbb{P}(\mathbb{P}(X, p), d)$ and $x \in X$.

A $[0,1]$-enriched join-complete lattice is a right $[0,1]$-module X in Sup.

A $[0,1]$-enriched join-complete lattice is a right $[0,1]$-module X in Sup.

- Due to the universal property of the tensor product a right action on a complete lattice X can always be identified with a map $X \times[0,1] \xrightarrow{\square} X$, which is join-preserving in each variable separately and satisfies the following conditions for all $x \in X, \alpha, \beta \in[0,1]:$
$x \boxtimes 1=x \quad$ and $\quad(x \backsim \alpha) \boxtimes \beta=x \boxminus(\max (\alpha+\beta-1,0))$,

A $[0,1]$-enriched join-complete lattice is a right $[0,1]$-module X in Sup.

- Due to the universal property of the tensor product a right action on a complete lattice X can always be identified with a map $X \times[0,1] \xrightarrow{\square} X$, which is join-preserving in each variable separately and satisfies the following conditions for all $x \in X, \alpha, \beta \in[0,1]:$
$x \boxtimes 1=x \quad$ and $\quad(x \boxtimes \alpha) \boxtimes \beta=x \boxtimes(\max (\alpha+\beta-1,0))$,
- If (X, \boxtimes) is a right $[0,1]$-module, then the corresponding intrinsic $[0,1]$-preorder p and the formation of $[0,1]$-enriched joins are given by:

$$
\begin{aligned}
& p(x, y)=\sup \{\alpha \in[0,1] \mid x \boxtimes \alpha \leq y\}, \quad x, y \in X, \\
& \sup _{(X, p)}(f)=\bigvee_{x \in X} x \boxtimes f(x), \quad f \in \mathbb{P}(X, p)
\end{aligned}
$$

$[0,+\infty]$ as a right $[0,1]$-module
Let \square be a right action on $[0,+\infty]$ with the corresponding [0, 1]-preorder p.
$[0,+\infty]$ as a right $[0,1]$-module
Let \square be a right action on $[0,+\infty]$ with the corresponding [0, 1]-preorder p.

- Every set X is understood as the set provided with its discrete [0, 1]-preorder p_{0} - i.e.

$$
p_{0}(x, x)=1 \quad \text { and } \quad p\left(x_{1}, x_{2}\right)=0 \quad \text { for } \quad x_{1} \neq x_{2} .
$$

$[0,+\infty]$ as a right $[0,1]$-module
Let \square be a right action on $[0,+\infty]$ with the corresponding [0, 1]-preorder p.

- Every set X is understood as the set provided with its discrete [0,1$]$-preorder p_{0} - i.e.

$$
p_{0}(x, x)=1 \quad \text { and } \quad p\left(x_{1}, x_{2}\right)=0 \quad \text { for } \quad x_{1} \neq x_{2} .
$$

- Hence every fuzzy subset $X \xrightarrow{f}[0,1]$ of X is a $[0,1]$-enriched presheaf on $\left(X, p_{0}\right)$.

$[0,+\infty]$ as a right $[0,1]$-module

 Let \square be a right action on $[0,+\infty]$ with the corresponding [0,1$]$-preorder p.- Every set X is understood as the set provided with its discrete [0,1$]$-preorder p_{0} - i.e.

$$
p_{0}(x, x)=1 \quad \text { and } \quad p\left(x_{1}, x_{2}\right)=0 \quad \text { for } \quad x_{1} \neq x_{2} .
$$

- Hence every fuzzy subset $X \xrightarrow{f}[0,1]$ of X is a $[0,1]$-enriched presheaf on $\left(X, p_{0}\right)$.
- The image $g(f)$ of a fuzzy subset f of X under a map $X \xrightarrow{g}[0,+\infty]$ in the sense of the monad of $[0,1]$-enriched presheaves is given by:

$$
g(f)(z)=\sup \{\max (p(z, g(x))+f(x), 0) \mid x \in X\}, \quad z \in[0,+\infty] .
$$

- The $[0,1]$-enriched join of $g(f)$ is given by:

$$
\begin{aligned}
\sup _{([0,+\infty], p)}(g(f))= & \bigvee_{z \in[0,+\infty]} z \boxtimes g(f)(z) \\
& =\bigvee_{x \in X} g(x) \boxtimes f(x)
\end{aligned}
$$

- The $[0,1]$-enriched join of $g(f)$ is given by:

$$
\begin{aligned}
\sup _{([0,+\infty], p)}(g(f))= & \bigvee_{z \in[0,+\infty]} z \boxtimes g(f)(z) \\
& =\bigvee_{x \in X} g(x) \boxtimes f(x)
\end{aligned}
$$

- The previous expression is the solution (i.e. optimum) of the stochastic linear programming problem (SLPP).
- The $[0,1]$-enriched join of $g(f)$ is given by:

$$
\begin{aligned}
\sup _{([0,+\infty], p)}(g(f))= & \bigvee_{z \in[0,+\infty]} z \boxtimes g(f)(z) \\
& =\bigvee_{x \in X} g(x) \bullet f(x)
\end{aligned}
$$

- The previous expression is the solution (i.e. optimum) of the stochastic linear programming problem (SLPP).
- The solution of SLPP depends on the chosen right action on the extended non-negative real line.
- The $[0,1]$-enriched join of $g(f)$ is given by:

$$
\begin{aligned}
\sup _{([0,+\infty], p)}(g(f))= & \bigvee_{z \in[0,+\infty]} z \boxtimes g(f)(z) \\
& =\bigvee_{x \in X} g(x) \bullet f(x)
\end{aligned}
$$

- The previous expression is the solution (i.e. optimum) of the stochastic linear programming problem (SLPP).
- The solution of SLPP depends on the chosen right action on the extended non-negative real line.
- As an illustration we choose now different right actions \square on $[0,+\infty]$.

Different $[0,1]$-enriched versions of suprema for SLPP

(A) Let $[0,+\infty] \times[0,1] \xrightarrow{\square}[0,+\infty]$ be the trivial right action:

$$
z \boxtimes \alpha= \begin{cases}z, & \alpha=1, \\ 0, & z \neq 1\end{cases}
$$

Different $[0,1]$-enriched versions of suprema for SLPP

(A) Let $[0,+\infty] \times[0,1] \xrightarrow{\square}[0,+\infty]$ be the trivial right action:

$$
z \boxminus \alpha= \begin{cases}z, & \alpha=1, \\ 0, & z \neq 1 .\end{cases}
$$

- Then the $[0,1]$-preorder p on $[0,+\infty]$ is the characteristic function of the usual order on $[0,+\infty]$ and

$$
\sup _{([0,+\infty], p)}(g(f))=\sup \{g(x) \mid 1=f(x)\}
$$

Different $[0,1]$-enriched versions of suprema for SLPP

(A) Let $[0,+\infty] \times[0,1] \xrightarrow{\square}[0,+\infty]$ be the trivial right action:

$$
z \boxminus \alpha= \begin{cases}z, & \alpha=1, \\ 0, & z \neq 1 .\end{cases}
$$

- Then the $[0,1]$-preorder p on $[0,+\infty]$ is the characteristic function of the usual order on $[0,+\infty]$ and

$$
\sup _{([0,+\infty], p)}(g(f))=\sup \{g(x) \mid 1=f(x)\} .
$$

- Hence the previous formula is the deterministic solution of the stochastic linear programming problem.
(B) The right action \square on $[0,+\infty]$ is induced by the Łukasiewicz implication.
(B) The right action \square on $[0,+\infty]$ is induced by the Łukasiewicz implication.
- Łukasiewicz implication is a right action on $[0,1]^{o p}$ - i.e. $[0,1]$ is provided with its dual order and

$$
x \boxtimes \alpha=\alpha \rightarrow x=\min (1-\alpha+x, 1), \quad x, \alpha \in[0,1]
$$

In fact: $x \boxtimes 1=x, \quad(x \boxtimes \alpha) \boxtimes \beta=x \boxtimes(\max (\alpha+\beta-1,0))$.
(B) The right action \square on $[0,+\infty]$ is induced by the Łukasiewicz implication.

- Łukasiewicz implication is a right action on $[0,1]^{o p}$ - i.e. $[0,1]$ is provided with its dual order and

$$
x \backsim \alpha=\alpha \rightarrow x=\min (1-\alpha+x, 1), \quad x, \alpha \in[0,1]
$$

In fact: $x \boxtimes 1=x, \quad(x \boxtimes \alpha) \boxtimes \beta=x \boxtimes(\max (\alpha+\beta-1,0))$.

- $z \longmapsto \exp (-z)$ is an order-isomorphism from $[0,+\infty]$ to $[0,1]^{o p}$.
(B) The right action \square on $[0,+\infty]$ is induced by the Łukasiewicz implication.
- Łukasiewicz implication is a right action on $[0,1]^{\text {op }}$ - i.e. $[0,1]$ is provided with its dual order and

$$
x \backsim \alpha=\alpha \rightarrow x=\min (1-\alpha+x, 1), \quad x, \alpha \in[0,1]
$$

In fact: $x \boxtimes 1=x, \quad(x \boxtimes \alpha) \boxtimes \beta=x \boxtimes(\max (\alpha+\beta-1,0))$.

- $z \longmapsto \exp (-z)$ is an order-isomorphism from $[0,+\infty]$ to $[0,1]^{o p}$.
- Hence the right action \square on $[0,+\infty]$ has the form:

$$
z \square \alpha=-\ln (\min (1-\alpha+\exp (-z), 1)), \quad z \in[0,+\infty], \alpha \in[0,1] .
$$

(B) The right action \square on $[0,+\infty]$ is induced by the Łukasiewicz implication.

- Łukasiewicz implication is a right action on $[0,1]^{\text {op }}$ - i.e. $[0,1]$ is provided with its dual order and

$$
x \backsim \alpha=\alpha \rightarrow x=\min (1-\alpha+x, 1), \quad x, \alpha \in[0,1]
$$

In fact: $x \boxtimes 1=x, \quad(x \boxtimes \alpha) \boxtimes \beta=x \boxtimes(\max (\alpha+\beta-1,0))$.

- $z \longmapsto \exp (-z)$ is an order-isomorphism from $[0,+\infty]$ to $[0,1]^{o p}$.
- Hence the right action \square on $[0,+\infty]$ has the form:

$$
z \square \alpha=-\ln (\min (1-\alpha+\exp (-z), 1)), \quad z \in[0,+\infty], \alpha \in[0,1] .
$$

- The corresponding $[0,1]$-preorder on $[0,+\infty]$ is given by:

$$
p\left(z_{1}, z_{2}\right)=\min \left(1-\exp \left(-z_{2}\right)+\exp \left(-z_{1}\right), 1\right), \quad z_{1}, z_{2} \in[0,+\infty] .
$$

A non-deterministic solution of SLPP

$$
\sup _{([0,+\infty], p)}(g(f))=\sup _{x \in X}-\ln ((1-f(x)+\exp (-g(x)), 1)) .
$$

A non-deterministic solution of SLPP

$$
\sup _{([0,+\infty], p)}(g(f))=\sup _{x \in X}-\ln ((1-f(x)+\exp (-g(x)), 1)) .
$$

- The expression $1-f(x)$ is the probability that x violates the constraints.

A non-deterministic solution of SLPP

$$
\sup _{([0,+\infty], p)}(g(f))=\sup _{x \in X}-\ln ((1-f(x)+\exp (-g(x)), 1)) .
$$

- The expression $1-f(x)$ is the probability that x violates the constraints.
- It is interesting to see how this value enters the construction of the $[0,1]$-enriched supremum of the stochastic linear programming problem.

A non-deterministic solution of SLPP

$$
\sup _{([0,+\infty], p)}(g(f))=\sup _{x \in X}-\ln ((1-f(x)+\exp (-g(x)), 1)) .
$$

- The expression $1-f(x)$ is the probability that x violates the constraints.
- It is interesting to see how this value enters the construction of the $[0,1]$-enriched supremum of the stochastic linear programming problem.
- This value can be seen as costs caused by some kind of penalty strategy.

A non-deterministic solution of SLPP

$$
\sup _{([0,+\infty], p)}(g(f))=\sup _{x \in X}-\ln ((1-f(x)+\exp (-g(x)), 1)) .
$$

- The expression $1-f(x)$ is the probability that x violates the constraints.
- It is interesting to see how this value enters the construction of the $[0,1]$-enriched supremum of the stochastic linear programming problem.
- This value can be seen as costs caused by some kind of penalty strategy.
- The real number of the non-deterministic solution is larger than the result related to the deterministic supremum in (A).

A non-deterministic solution of SLPP

$$
\sup _{([0,+\infty], p)}(g(f))=\sup _{x \in X}-\ln ((1-f(x)+\exp (-g(x)), 1)) .
$$

- The expression $1-f(x)$ is the probability that x violates the constraints.
- It is interesting to see how this value enters the construction of the $[0,1]$-enriched supremum of the stochastic linear programming problem.
- This value can be seen as costs caused by some kind of penalty strategy.
- The real number of the non-deterministic solution is larger than the result related to the deterministic supremum in (A).
- Non-deterministic solutions depend obviously on an order isomorphism between $[0,+\infty] \rightarrow[0,1]^{o p}$ and seem to play an interesting role in stochastic linear programming.

Result:

Result:

Right actions on $[0,+\infty]$ and therewith enriched suprema play a significant role in the construction of solutions of the stochastic linear programming problem.

