Preservation of Projective Right Modules in Sup under Duality

Ulrich Höhle

Brno, October 7, 2019

Table of Contents

 Main Theorem 1 (Stubbe 2007) Characterization of Projective Right Modules

Main Theorem 2 (Gutiérrez García, Hö, Kubiak 2019)
 Preservation of Projective Objects under Duality

The \mathfrak{Q} -valued totally below relation

Let $\mathfrak{Q} = (\mathfrak{Q}, *, 1)$ be a unital quantale and M be a right \mathfrak{Q} -module with its intrinsic \mathfrak{Q} -preorder p.

Let $\mathfrak{Q} = (\mathfrak{Q}, *, 1)$ be a unital quantale and M be a right \mathfrak{Q} -module with its intrinsic \mathfrak{Q} -preorder p.

• The \mathfrak{Q} -valued totally below relation \lhd is defined by:

 $\triangleleft (n,m) = \bigwedge_{f \in \mathbb{P}(M,p)} (f(n) \swarrow p(m, \sup_M (f))), \qquad m, n \in M.$

where $\alpha \swarrow \beta = \bigvee \{ \gamma \in \mathfrak{Q} \mid \gamma * \beta \leq \alpha \}$ for $\alpha, \beta \in \mathfrak{Q}$.

- Let $\mathfrak{Q} = (\mathfrak{Q}, *, 1)$ be a unital quantale and M be a right \mathfrak{Q} -module with its intrinsic \mathfrak{Q} -preorder p.
- The \mathfrak{Q} -valued totally below relation \lhd is defined by:

 $\triangleleft (n,m) = \bigwedge_{f \in \mathbb{P}(M,p)} (f(n) \swarrow p(m, \sup_M (f))), \quad m, n \in M.$

where $\alpha \swarrow \beta = \bigvee \{ \gamma \in \mathfrak{Q} \mid \gamma * \beta \leq \alpha \}$ for $\alpha, \beta \in \mathfrak{Q}$.

 \lhd satisfies the following properties:

- Let $\mathfrak{Q} = (\mathfrak{Q}, *, 1)$ be a unital quantale and M be a right \mathfrak{Q} -module with its intrinsic \mathfrak{Q} -preorder p.
- The \mathfrak{Q} -valued totally below relation \lhd is defined by:

 $\triangleleft (n,m) = \bigwedge_{f \in \mathbb{P}(M,p)} (f(n) \swarrow p(m, \sup_M (f))), \quad m, n \in M.$

where $\alpha \swarrow \beta = \bigvee \{ \gamma \in \mathfrak{Q} \mid \gamma * \beta \leq \alpha \}$ for $\alpha, \beta \in \mathfrak{Q}$.

 \lhd satisfies the following properties:

•
$$p(n_2, n_1) * \lhd (n_1, m) \leq \lhd (n_2, m).$$

- Let $\mathfrak{Q} = (\mathfrak{Q}, *, 1)$ be a unital quantale and M be a right \mathfrak{Q} -module with its intrinsic \mathfrak{Q} -preorder p.
- The \mathfrak{Q} -valued totally below relation \lhd is defined by:

 $\triangleleft (n,m) = \bigwedge_{f \in \mathbb{P}(M,p)} (f(n) \swarrow p(m, \sup_M (f))), \quad m, n \in M.$

where $\alpha \swarrow \beta = \bigvee \{ \gamma \in \mathfrak{Q} \mid \gamma * \beta \leq \alpha \}$ for $\alpha, \beta \in \mathfrak{Q}$.

 \lhd satisfies the following properties:

- $p(n_2, n_1) * \lhd (n_1, m) \leq \lhd (n_2, m).$
- $\lhd(n, m_1) * p(m_1, m_2) \leq \lhd (n, m_2).$

- Let $\mathfrak{Q} = (\mathfrak{Q}, *, 1)$ be a unital quantale and M be a right \mathfrak{Q} -module with its intrinsic \mathfrak{Q} -preorder p.
- The \mathfrak{Q} -valued totally below relation \lhd is defined by:

 $\triangleleft (n,m) = \bigwedge_{f \in \mathbb{P}(M,p)} (f(n) \swarrow p(m, \sup_M (f))), \quad m, n \in M.$

where $\alpha \swarrow \beta = \bigvee \{ \gamma \in \mathfrak{Q} \mid \gamma * \beta \leq \alpha \}$ for $\alpha, \beta \in \mathfrak{Q}$.

 \lhd satisfies the following properties:

- $p(n_2, n_1) * \lhd (n_1, m) \leq \lhd (n_2, m).$
- \lhd $(n, m_1) * p(m_1, m_2) \leq \lhd (n, m_2).$

Hence $\triangleleft(_, m)$ is a contravariant \mathfrak{Q} -presheaf on (M, p) and the correspondence $m \longmapsto \triangleleft(_, m)$ is a \mathfrak{Q} -homomorphism $(M, p) \rightarrow \mathbb{P}(M, p)$.

Since
$$\bigwedge_{r \in M} \widetilde{r}(n) \swarrow p(m, \sup_{M}(\widetilde{r})) = p(n, m)$$
,

Since
$$\bigwedge_{r\in M} \widetilde{r}(n) \swarrow p(m, \sup_M(\widetilde{r})) = p(n, m),$$

• the definition of \triangleleft implies: $\triangleleft(n,m) \leq p(n,m)$, and hence

Since
$$\bigwedge_{r\in M} \widetilde{r}(n) \swarrow p(m, \sup_M(\widetilde{r})) = p(n, m),$$

- the definition of \triangleleft implies: $\triangleleft(n, m) \leq p(n, m)$, and hence
- $\sup_M(\triangleleft(_, m)) \leq m$ for all $m \in M$.

Since
$$\bigwedge_{r \in M} \widetilde{r}(n) \swarrow p(m, \sup_M(\widetilde{r})) = p(n, m),$$

- the definition of \triangleleft implies: $\triangleleft(n, m) \leq p(n, m)$, and hence
- $\sup_M(\triangleleft(_, m)) \leq m$ for all $m \in M$.
- Further for all $f \in \mathbb{P}(M, p)$ the definition of \triangleleft implies:

$$p(m, \sup_M(f)) \leq \bigwedge_{n \in M} \lhd (n, m) \searrow f(n) = d(\lhd (_, m), f).$$

Since
$$\bigwedge_{r \in M} \widetilde{r}(n) \swarrow p(m, \sup_M(\widetilde{r})) = p(n, m),$$

- the definition of \triangleleft implies: $\triangleleft(n,m) \leq p(n,m)$, and hence
- $\sup_M(\triangleleft(\underline{\ }, m)) \leq m$ for all $m \in M$.
- Further for all $f \in \mathbb{P}(M, p)$ the definition of \triangleleft implies:

$$p(m, \sup_M(f)) \leq \bigwedge_{n \in M} \lhd (n, m) \searrow f(n) = d(\lhd (_, m), f).$$

• Hence $m \mapsto \triangleleft(_, m)$ is left adjoint to \sup_M if and only if

 $d(\triangleleft(_,m),f) \leq p(m,\sup_M(f)), \qquad m \in M, f \in \mathbb{P}(M,p),$

if and only if $m \leq \sup_M (\triangleleft(_, m))$ for all $m \in M$.

m → ⊲(_, *m*) is left adjoint to sup_M if and only if ⊲ is approximating.

m → ⊲(_, *m*) is left adjoint to sup_M if and only if ⊲ is approximating.

If we replace \mathfrak{Q} by **2**, then \lhd coincides with the totally below relation of a complete lattice in the traditional sense.

m → ⊲(_, *m*) is left adjoint to sup_M if and only if ⊲ is approximating.

If we replace \mathfrak{Q} by $\mathbf{2}$, then \lhd coincides with the totally below relation of a complete lattice in the traditional sense.

Further, it is well know that a complete lattice is completely distributive if and only if m → {n ∈ M | n ⊲ m} is left adjoint to sup (see Raney 1953).

m → ⊲(_, *m*) is left adjoint to sup_M if and only if ⊲ is approximating.

If we replace \mathfrak{Q} by $\mathbf{2}$, then \lhd coincides with the totally below relation of a complete lattice in the traditional sense.

 Further, it is well know that a complete lattice is completely distributive if and only if m → {n ∈ M | n ⊲ m} is left adjoint to sup (see Raney 1953).

Hence the previous results suggest the following terminology:

A right \mathfrak{Q} -module is called \mathfrak{Q} -enriched completely distributive, if its \mathfrak{Q} -valued totally below relation is approximating.

Terminology: \triangleleft is called approximating, if $m = \sup_M (\triangleleft(_, m))$ for all $m \in M$.

m → ⊲(_, *m*) is left adjoint to sup_M if and only if ⊲ is approximating.

If we replace \mathfrak{Q} by $\mathbf{2}$, then \lhd coincides with the totally below relation of a complete lattice in the traditional sense.

 Further, it is well know that a complete lattice is completely distributive if and only if m → {n ∈ M | n ⊲ m} is left adjoint to sup (see Raney 1953).

Hence the previous results suggest the following terminology:

A right \mathfrak{Q} -module is called \mathfrak{Q} -enriched completely distributive, if its \mathfrak{Q} -valued totally below relation is approximating.

• **Questions**. Do Q-enriched completely distributive right Q-modules exist?

Projective right *Q*-modules

 In Mod_r(Q) surjective right Q-module homomorphisms, epimorphisms and regular epimorphisms are equivalent concepts.

Projective right **Q**-modules

 In Mod_r(Q) surjective right Q-module homomorphisms, epimorphisms and regular epimorphisms are equivalent concepts.

A right \mathfrak{Q} -module P is projective, if for every surjective right \mathfrak{Q} -module homomorphism $A \xrightarrow{f} B$ and for every right \mathfrak{Q} -module homomorphism $P \xrightarrow{g} B$ there exists a right \mathfrak{Q} -module homomorphism $P \xrightarrow{h} A$ making the following diagram commutative:

Projective right *Q*-modules

 In Mod_r(Ω) surjective right Ω-module homomorphisms, epimorphisms and regular epimorphisms are equivalent concepts.

A right \mathfrak{Q} -module P is projective, if for every surjective right \mathfrak{Q} -module homomorphism $A \xrightarrow{f} B$ and for every right \mathfrak{Q} -module homomorphism $P \xrightarrow{g} B$ there exists a right \mathfrak{Q} -module homomorphism $P \xrightarrow{h} A$ making the following diagram commutative:

• A retract of a projective object in $Mod_r(\mathfrak{Q})$ is again projective.

Lemma (Stubbe 2007). Let (X, p) be a \mathfrak{Q} -preordered set. Then the free right \mathfrak{Q} -module $\mathbb{P}(X, p)$ generated by (X, p) is projectrive.

Lemma (Stubbe 2007). Let (X, p) be a \mathfrak{Q} -preordered set. Then the free right \mathfrak{Q} -module $\mathbb{P}(X, p)$ generated by (X, p) is projectrive.

Since A → B is a surjective right Q-homomorphism, we know from Thursday that f has a right adjoint Q-homomorphism f⁺. The surjectivity of f implies f ∘ f⁺ = 1_B.

Lemma (Stubbe 2007). Let (X, p) be a \mathfrak{Q} -preordered set. Then the free right \mathfrak{Q} -module $\mathbb{P}(X, p)$ generated by (X, p) is projectrive.

- Since A → B is a surjective right Q-homomorphism, we know from Thursday that f has a right adjoint Q-homomorphism f⁺. The surjectivity of f implies f ∘ f⁺ = 1_B.
- Since P(X, p) is freely generated by (X, p) there exists a unique right Ω-module homomorphism P(X, p) → A such that h ∘ η_(X,p) = f[⊢] ∘ g ∘ η_(X,p).

Lemma (Stubbe 2007). Let (X, p) be a \mathfrak{Q} -preordered set. Then the free right \mathfrak{Q} -module $\mathbb{P}(X, p)$ generated by (X, p) is projectrive.

- Since A → B is a surjective right Q-homomorphism, we know from Thursday that f has a right adjoint Q-homomorphism f⁺. The surjectivity of f implies f ∘ f⁺ = 1_B.
- Since P(X, p) is freely generated by (X, p) there exists a unique right Ω-module homomorphism P(X, p) → A such that h ∘ η_(X,p) = f[⊢] ∘ g ∘ η_(X,p).
- Hence $f \circ h \circ \eta_{(X,p)} = g \circ \eta_{(X,p)}$. Since the extension to a free right \mathfrak{Q} -module is unique, the relation $f \circ h = g$ follows. Q.E.D.

Let M be a right \mathfrak{Q} with its intrinsic \mathfrak{Q} -preorder. Then the following assertions are equivalent:

(i) M is projective.

- (i) *M* is projective.
- (ii) $\sup_{(M,p)}$ has a left adjoint \mathfrak{Q} -homomorphism.

- (i) M is projective.
- (ii) $\sup_{(M,p)}$ has a left adjoint \mathfrak{Q} -homomorphism.
- (iii) The $\hat{\Omega}$ -valued totally below relation \triangleleft is approximating.

- (i) *M* is projective.
- (ii) $\sup_{(M,p)}$ has a left adjoint \mathfrak{Q} -homomorphism.
- (iii) The \mathfrak{Q} -valued totally below relation \lhd is approximating.
 - ((i) ⇒ (ii)). Since M is projective, there exists a right Ω-module homomorphism M → P(M, p) such that sup_M ∘ h = 1_M. In order to verify that h is left adjoint to sup_M it is sufficient to show h ∘ sup_M ≤ 1_{P(M,p)}.

- (i) *M* is projective.
- (ii) $\sup_{(M,p)}$ has a left adjoint \mathfrak{Q} -homomorphism.
- (iii) The \mathfrak{Q} -valued totally below relation \lhd is approximating.
 - ((i) ⇒ (ii)). Since M is projective, there exists a right Ω-module homomorphism M → P(M, p) such that sup_M ∘ h = 1_M. In order to verify that h is left adjoint to sup_M it is sufficient to show h ∘ sup_M ≤ 1_{P(M,p)}.
 - h ≤ η_(M,p) ∘ sup_M ∘ h = η_(M,p) follows from the right adjointness of η_(M,p) to sup_M. Then:

$$h(\sup_{M}(f)) = \bigvee_{m \in M} h(m) * f(m) \le \bigvee_{m \in M} \widetilde{m} * f(m) = f.$$

Let M be a right \mathfrak{Q} with its intrinsic \mathfrak{Q} -preorder. Then the following assertions are equivalent:

- (i) *M* is projective.
- (ii) $\sup_{(M,p)}$ has a left adjoint \mathfrak{Q} -homomorphism.
- (iii) The \mathfrak{Q} -valued totally below relation \lhd is approximating.
 - ((i) ⇒ (ii)). Since M is projective, there exists a right Ω-module homomorphism M → P(M, p) such that sup_M ∘ h = 1_M. In order to verify that h is left adjoint to sup_M it is sufficient to show h ∘ sup_M ≤ 1_{P(M,p)}.
 - h ≤ η_(M,p) ∘ sup_M ∘ h = η_(M,p) follows from the right adjointness of η_(M,p) to sup_M. Then:

$$h(\sup_{M}(f)) = \bigvee_{m \in M} h(m) * f(m) \le \bigvee_{m \in M} \widetilde{m} * f(m) = f.$$

• ((ii) \Rightarrow (i)) follows from the previous Lemma.

• ((ii) \Rightarrow (iii)) Since sup_M is surjective, the left adjoint \mathfrak{Q} -homomorphism $M \xrightarrow{h} \mathbb{P}(M, p)$ is a section of sup_M.

- - ((ii) \Rightarrow (iii)) Since \sup_M is surjective, the left adjoint \mathfrak{Q} -homomorphism $M \xrightarrow{h} \mathbb{P}(M, p)$ is a section of \sup_M .

$$h(m)(n) \leq \bigwedge_{f \in \mathbb{P}(M,p)} (f(n) \swarrow d(h(m), f))$$

=
$$\bigwedge_{f \in \mathbb{P}(M,p)} (f(n) \swarrow p(m, \sup_{(M,p)} (f))) = \triangleleft (n, m).$$

- - ((ii) \Rightarrow (iii)) Since \sup_M is surjective, the left adjoint \mathfrak{Q} -homomorphism $M \xrightarrow{h} \mathbb{P}(M, p)$ is a section of \sup_M .

$$h(m)(n) \leq \bigwedge_{f \in \mathbb{P}(M,p)} (f(n) \swarrow d(h(m), f))$$

=
$$\bigwedge_{f \in \mathbb{P}(M,p)} (f(n) \swarrow p(m, \sup_{(M,p)} (f))) = \triangleleft (n, m).$$

• ((iii)
$$\Rightarrow$$
 (ii)) is obvious. Q.E.D.

- - ((ii) \Rightarrow (iii)) Since \sup_M is surjective, the left adjoint \mathfrak{Q} -homomorphism $M \xrightarrow{h} \mathbb{P}(M, p)$ is a section of \sup_M .

$$h(m)(n) \leq \bigwedge_{f \in \mathbb{P}(M,p)} (f(n) \swarrow d(h(m), f))$$

=
$$\bigwedge_{f \in \mathbb{P}(M,p)} (f(n) \swarrow p(m, \sup_{(M,p)} (f))) = \triangleleft (n, m).$$

- ((iii) \Rightarrow (ii)) is obvious. Q.E.D.
- Let \$\mathcal{Q} = (\mathcal{Q}, *, 1, ')\$ be an involutive and unital quantale. On \$M^{op}\$ there exists a right action determined by:

$$m \boxdot^{op} \alpha = \bigvee \{ n \in M \mid n \boxdot \alpha' \le m \}, \qquad \alpha \in \mathfrak{Q}, \ m \in M.$$

- - ((ii) \Rightarrow (iii)) Since sup_M is surjective, the left adjoint \mathfrak{Q} -homomorphism $M \xrightarrow{h} \mathbb{P}(M, p)$ is a section of sup_M.

$$h(m)(n) \leq \bigwedge_{f \in \mathbb{P}(M,p)} (f(n) \swarrow d(h(m), f))$$

=
$$\bigwedge_{f \in \mathbb{P}(M,p)} (f(n) \swarrow p(m, \sup_{(M,p)} (f))) = \triangleleft (n, m).$$

- ((iii) \Rightarrow (ii)) is obvious. Q.E.D.
- Let \$\mathcal{Q} = (\mathcal{Q}, *, 1, ')\$ be an involutive and unital quantale. On \$M^{op}\$ there exists a right action determined by:

$$m \boxdot^{op} \alpha = \bigvee \{ n \in M \mid n \boxdot \alpha' \le m \}, \qquad \alpha \in \mathfrak{Q}, \ m \in M.$$

Then (M^{op}, ⊡^{op}) is a right Ω-module and is called the dual right Ω-module of M. The intrinsic Ω-preorder of M^{op} coincides with the dual Ω-preorder p^{op}.

Selfduality in $Mod_r(\mathfrak{Q})$

The object function $M \mapsto M^{op}$ can be extended to a contravariant endofunctor S of $Mod_r(\mathfrak{Q})$ as follows:

Selfduality in $Mod_r(\mathfrak{Q})$

The object function $M \mapsto M^{op}$ can be extended to a contravariant endofunctor S of $Mod_r(\mathfrak{Q})$ as follows:

If M → N is a right Ω-module homomorphims, then the right adjoint map h[⊢] of h is a right Ω-module homomorphims.

Selfduality in $Mod_r(\mathfrak{Q})$

The object function $M \mapsto M^{op}$ can be extended to a contravariant endofunctor S of $Mod_r(\mathfrak{Q})$ as follows:

If M → N is a right Ω-module homomorphims, then the right adjoint map h[⊢] of h is a right Ω-module homomorphims.

$$m \leq h^{\vdash}(n \odot^{op} \alpha) \quad \Leftrightarrow \quad h(m) \leq n \odot^{op} \alpha$$

$$\Leftrightarrow \quad h(m) \boxdot \alpha' \le n$$

$$\Leftrightarrow \quad h(m \boxdot \alpha') \leq n$$

$$\Leftrightarrow \quad \mathbf{m} \boxdot \alpha' \leq \mathbf{h}^{\vdash}(\mathbf{n})$$

$$\Leftrightarrow \quad m \leq h^{\vdash}(n) \boxdot^{op} \alpha.$$

If the involutive and unital quantale \mathfrak{Q} has a dualizing element, then the self-duality preserves the projectivity — i.e. if M is projective, then M^{op} is projective.

If the involutive and unital quantale \mathfrak{Q} has a dualizing element, then the self-duality preserves the projectivity — i.e. if M is projective, then M^{op} is projective.

On the dual lattice (P[†](X, p))^{op} of P[†](X, p) we introduce a right action ⊡, which is determined as follows:

$$(f \boxdot \alpha)(x) = \alpha \searrow f(x), \qquad x \in X, \ \alpha \in \mathfrak{Q}, \ f \in \mathbb{P}^{\dagger}(X, p).$$

If the involutive and unital quantale \mathfrak{Q} has a dualizing element, then the self-duality preserves the projectivity — i.e. if M is projective, then M^{op} is projective.

On the dual lattice (P[†](X, p))^{op} of P[†](X, p) we introduce a right action ⊡, which is determined as follows:

$$(f \boxdot \alpha)(x) = \alpha \searrow f(x), \qquad x \in X, \ \alpha \in \mathfrak{Q}, \ f \in \mathbb{P}^{\dagger}(X, p).$$

 Then the intrinsic Q-preorder d[†] of the right Q-module is given by:

$$d^{\dagger}(f,g) = \bigwedge_{x \in X} (f(x) \swarrow g(x)), \qquad f,g \in \mathbb{P}^{\dagger}(X,p).$$

If the involutive and unital quantale \mathfrak{Q} has a dualizing element, then the self-duality preserves the projectivity — i.e. if M is projective, then M^{op} is projective.

On the dual lattice (P[†](X, p))^{op} of P[†](X, p) we introduce a right action ⊡, which is determined as follows:

$$(f \boxdot \alpha)(x) = \alpha \searrow f(x), \qquad x \in X, \ \alpha \in \mathfrak{Q}, \ f \in \mathbb{P}^{\dagger}(X, p).$$

 Then the intrinsic Q-preorder d[†] of the right Q-module is given by:

$$d^{\dagger}(f,g) = \bigwedge_{x \in X} (f(x) \swarrow g(x)), \qquad f,g \in \mathbb{P}^{\dagger}(X,p).$$

Theorem 1. If 𝔅 has a dualizing element, then ℙ[†](X, p)^{op} is projective.

•
$$d^{\dagger}((\delta \swarrow p(\underline{\ }, x)), f) = \delta \swarrow f(x), \qquad x \in X.$$

• $d^{\dagger}((\delta \swarrow p(\underline{x})), f) = \delta \swarrow f(x), \qquad x \in X.$

Notation. $\overline{x} = \delta \swarrow p(\underline{\ }, x), \quad x \in X.$

•
$$d^{\dagger}((\delta \swarrow p(\underline{\ }, x)), f) = \delta \swarrow f(x), \qquad x \in X.$$

Notation. $\overline{x} = \delta \swarrow p(\underline{\ }, x), \quad x \in X.$

 D-enriched join of any contravariant D-presheaf F on (P[†](X, p), d[†]) can be expressed as follows:

$$(\sup_{(\mathbb{P}^{\dagger}(X,p),d^{\dagger})}(F))(x) = \bigvee_{f \in \mathbb{P}^{\dagger}(X,p)}^{op} (f \boxdot F(f))(x)$$
$$= \bigwedge_{f \in \mathbb{P}^{\dagger}(X,p)} (F(f) \searrow f(x))$$
$$= \bigwedge_{f \in \mathbb{P}^{\dagger}(X,p)} (((\delta \swarrow f(x)) * F(f)) \searrow \delta)$$
$$= (\bigvee_{f \in \mathbb{P}^{\dagger}(X,p)} (d^{\dagger}(\overline{x},f) * F(f))) \searrow \delta$$
$$= F(\overline{x}) \searrow \delta.$$

- - A Q-homomorphism $(\mathbb{P}^{\dagger}(X, p), d^{\dagger}) \xrightarrow{\psi} (\mathbb{P}(\mathbb{P}^{\dagger}(X, p), d^{\dagger}), d)$ is defined by:

$$(\psi(f))(g) = \bigvee_{x \in X} (d^{\dagger}(g, \overline{x}) * d^{\dagger}(\overline{x}, f)), \qquad f, g \in \mathbb{P}^{\dagger}(X, p).$$

- - A \mathfrak{Q} -homomorphism $(\mathbb{P}^{\dagger}(X, p), d^{\dagger}) \xrightarrow{\psi} (\mathbb{P}(\mathbb{P}^{\dagger}(X, p), d^{\dagger}), d)$ is defined by:

$$(\psi(f))(g) = \bigvee_{x \in X} (d^{\dagger}(g, \overline{x}) * d^{\dagger}(\overline{x}, f)), \qquad f, g \in \mathbb{P}^{\dagger}(X, p).$$

• Since δ is dualizing, we have: $(\delta \swarrow \alpha) \searrow \beta = \alpha \swarrow (\beta \searrow \delta)$.

- - A \mathfrak{Q} -homomorphism $(\mathbb{P}^{\dagger}(X, p), d^{\dagger}) \xrightarrow{\psi} (\mathbb{P}(\mathbb{P}^{\dagger}(X, p), d^{\dagger}), d)$ is defined by:

$$(\psi(f))(g) = \bigvee_{x \in X} (d^{\dagger}(g, \overline{x}) * d^{\dagger}(\overline{x}, f)), \qquad f, g \in \mathbb{P}^{\dagger}(X, p).$$

Since δ is dualizing, we have: (δ ∠ α) ↘ β = α ∠ (β ↘ δ).

$$d^{\dagger}(f, \sup_{(\mathbb{P}^{\dagger}(X, \rho))^{op}}(F)) = \bigwedge_{x \in X} f(x) \swarrow (F(\overline{x}) \searrow \delta))$$
$$= \bigwedge_{x \in X} (\delta \swarrow f(x)) \searrow F(\overline{x})$$
$$= \bigwedge_{x \in X} d^{\dagger}(\overline{x}, f) \searrow F(\overline{x})$$

- - A \mathfrak{Q} -homomorphism $(\mathbb{P}^{\dagger}(X, p), d^{\dagger}) \xrightarrow{\psi} (\mathbb{P}(\mathbb{P}^{\dagger}(X, p), d^{\dagger}), d)$ is defined by:

$$(\psi(f))(g) = \bigvee_{x \in X} (d^{\dagger}(g, \overline{x}) * d^{\dagger}(\overline{x}, f)), \qquad f, g \in \mathbb{P}^{\dagger}(X, p).$$

• Since δ is dualizing, we have: $(\delta \swarrow \alpha) \searrow \beta = \alpha \swarrow (\beta \searrow \delta)$.

$$d^{\dagger}(f, \sup_{(\mathbb{P}^{\dagger}(X, \rho))^{op}}(F)) = \bigwedge_{x \in X} f(x) \swarrow (F(\overline{x}) \searrow \delta))$$
$$= \bigwedge_{x \in X} (\delta \swarrow f(x)) \searrow F(\overline{x})$$
$$= \bigwedge_{x \in X} d^{\dagger}(\overline{x}, f) \searrow F(\overline{x})$$

• Since
$$F(\overline{x}) = \bigwedge_{g \in (\mathbb{P}^{\dagger}(X, \rho))^{op}} d^{\dagger}(g, \overline{x}) \searrow F(g)),$$

- - A \mathfrak{Q} -homomorphism $(\mathbb{P}^{\dagger}(X, p), d^{\dagger}) \xrightarrow{\psi} (\mathbb{P}(\mathbb{P}^{\dagger}(X, p), d^{\dagger}), d)$ is defined by:

$$(\psi(f))(g) = \bigvee_{x \in X} (d^{\dagger}(g, \overline{x}) * d^{\dagger}(\overline{x}, f)), \qquad f, g \in \mathbb{P}^{\dagger}(X, p).$$

• Since δ is dualizing, we have: $(\delta \swarrow \alpha) \searrow \beta = \alpha \swarrow (\beta \searrow \delta)$.

$$d^{\dagger}(f, \sup_{(\mathbb{P}^{\dagger}(X, \rho))^{op}}(F)) = \bigwedge_{x \in X} f(x) \swarrow (F(\overline{x}) \searrow \delta))$$
$$= \bigwedge_{x \in X} (\delta \swarrow f(x)) \searrow F(\overline{x})$$
$$= \bigwedge_{x \in X} d^{\dagger}(\overline{x}, f) \searrow F(\overline{x})$$

• Since
$$F(\overline{x}) = \bigwedge_{g \in (\mathbb{P}^{\dagger}(X,p))^{op}} d^{\dagger}(g,\overline{x}) \searrow F(g)),$$

•
$$d^{\dagger}(f, \sup_{(\mathbb{P}^{\dagger}(X, p))^{op}}(F)) = \bigwedge_{g \in (\mathbb{P}^{\dagger}(X, p))^{op}} (\psi(f))(g) \searrow F(g)$$

• $f \in \mathbb{P}(X, p)$ if and only if $f' \in \mathbb{P}^{\dagger}(X, p^{op})$.

- $f \in \mathbb{P}(X, p)$ if and only if $f' \in \mathbb{P}^{\dagger}(X, p^{op})$.
- For $f \in \mathbb{P}(X, p)$ and $\alpha \in \mathfrak{Q}$ we have:

$$(f \boxdot^{op} \alpha)' = (f \swarrow \alpha')' = \alpha \searrow f' = f' \boxdot \alpha.$$

- $f \in \mathbb{P}(X, p)$ if and only if $f' \in \mathbb{P}^{\dagger}(X, p^{op})$.
- For $f \in \mathbb{P}(X, p)$ and $\alpha \in \mathfrak{Q}$ we have:

$$(f \boxdot^{op} \alpha)' = (f \swarrow \alpha')' = \alpha \searrow f' = f' \boxdot \alpha.$$

Proof of Main Theorem 2.

 If M is projective, then the Q-valued totally below relation is approximating.

- $f \in \mathbb{P}(X, p)$ if and only if $f' \in \mathbb{P}^{\dagger}(X, p^{op})$.
- For $f \in \mathbb{P}(X, p)$ and $\alpha \in \mathfrak{Q}$ we have:

$$(f \boxdot^{op} \alpha)' = (f \swarrow \alpha')' = \alpha \searrow f' = f' \boxdot \alpha.$$

- If *M* is projective, then the \mathfrak{Q} -valued totally below relation is approximating.
- The Ω-homomorphism h given by m →< _, m) is left adjoint to sup_M and consequently a right Ω-module homomorphism (cf. Theorem 4 at Thursday morning).

- $f \in \mathbb{P}(X, p)$ if and only if $f' \in \mathbb{P}^{\dagger}(X, p^{op})$.
- For $f \in \mathbb{P}(X, p)$ and $\alpha \in \mathfrak{Q}$ we have:

$$(f \boxdot^{op} \alpha)' = (f \swarrow \alpha')' = \alpha \searrow f' = f' \boxdot \alpha.$$

- If *M* is projective, then the \mathfrak{Q} -valued totally below relation is approximating.
- The Q-homomorphism h given by m →< _, m) is left adjoint to sup_M and consequently a right Q-module homomorphism (cf. Theorem 4 at Thursday morning).
- Since h is a section of \sup_M , $\mathbb{P}(X, p)^{op} \xrightarrow{h^{\vdash}} M^{op}$ is a retraction.

- $f \in \mathbb{P}(X, p)$ if and only if $f' \in \mathbb{P}^{\dagger}(X, p^{op})$.
- For $f \in \mathbb{P}(X, p)$ and $\alpha \in \mathfrak{Q}$ we have:

$$(f \boxdot^{op} \alpha)' = (f \swarrow \alpha')' = \alpha \searrow f' = f' \boxdot \alpha.$$

- If *M* is projective, then the \mathfrak{Q} -valued totally below relation is approximating.
- The Q-homomorphism h given by m →< _, m) is left adjoint to sup_M and consequently a right Q-module homomorphism (cf. Theorem 4 at Thursday morning).
- Since h is a section of \sup_M , $\mathbb{P}(X, p)^{op} \xrightarrow{h^{\vdash}} M^{op}$ is a retraction.
- *M*^{op} is a retraction of a projective object (cf. Theorem 1, Theorem 2), and hence also projective.

Theorem 3. Let \mathfrak{Q} be an involutive and integral quantale. The self-duality in $Mod_r(\mathfrak{Q})$ preserves projective objects of $Mod_r(\mathfrak{Q})$ if and only if \mathfrak{Q} has a dualizing element, which is necessarily the bottom element of \mathfrak{Q} .

Theorem 3. Let \mathfrak{Q} be an involutive and integral quantale. The self-duality in $Mod_r(\mathfrak{Q})$ preserves projective objects of $Mod_r(\mathfrak{Q})$ if and only if \mathfrak{Q} has a dualizing element, which is necessarily the bottom element of \mathfrak{Q} .

Since the right Ω-module Ω is projective, Ω^{op} must be projective and hence the isomorphic right Ω-module (Q^{op}, ⊡) with β ⊡ α = α ↘ β must also be projective.

Theorem 3. Let \mathfrak{Q} be an involutive and integral quantale. The self-duality in $Mod_r(\mathfrak{Q})$ preserves projective objects of $Mod_r(\mathfrak{Q})$ if and only if \mathfrak{Q} has a dualizing element, which is necessarily the bottom element of \mathfrak{Q} .

- Since the right Ω-module Ω is projective, Ω^{op} must be projective and hence the isomorphic right Ω-module (Q^{op}, ⊡) with β ⊡ α = α ↘ β must also be projective.
- The intrinsic \mathfrak{Q} -preorder p of $(\mathfrak{Q}^{op}, \boxdot)$ is given by

$$p(\alpha,\beta) = \alpha \swarrow \beta, \qquad \alpha,\beta \in \mathfrak{Q}.$$

Theorem 3. Let \mathfrak{Q} be an involutive and integral quantale. The self-duality in $Mod_r(\mathfrak{Q})$ preserves projective objects of $Mod_r(\mathfrak{Q})$ if and only if \mathfrak{Q} has a dualizing element, which is necessarily the bottom element of \mathfrak{Q} .

- Since the right Ω-module Ω is projective, Ω^{op} must be projective and hence the isomorphic right Ω-module (Q^{op}, ⊡) with β ⊡ α = α ↘ β must also be projective.
- The intrinsic \mathfrak{Q} -preorder p of $(\mathfrak{Q}^{op}, \boxdot)$ is given by

$$p(\alpha,\beta) = \alpha \swarrow \beta, \qquad \alpha,\beta \in \mathfrak{Q}.$$

• For $f \in \mathbb{P}(\mathfrak{Q}, p)$ we have:

 $\sup_{\mathfrak{Q}^{op}}(f) = \bigwedge_{\beta \in \mathfrak{Q}} f(\beta) \searrow \beta.$

• Since $\sup_{\mathfrak{Q}^{op}}(\underline{\perp}) = \top$ and \top is the unit, we have:

• Since $\sup_{\mathfrak{Q}^{op}}(\underline{\perp}) = \top$ and \top is the unit, we have: • $\triangleleft(\beta, \alpha) \leq \perp \swarrow \alpha, \quad \beta \in \mathfrak{Q}.$

- Since $\sup_{\mathfrak{Q}^{op}}(\underline{\perp}) = \top$ and \top is the unit, we have: • $\triangleleft(\beta, \alpha) \leq \perp \swarrow \alpha, \quad \beta \in \mathfrak{Q}.$
- Since \lhd is approximating and

$$\sup_{\mathfrak{Q}^{op}}(\underline{\perp \swarrow \alpha}) = (\perp \swarrow \alpha) \searrow \bot,$$

- Since $\sup_{\mathfrak{Q}^{op}}(\underline{\perp}) = \top$ and \top is the unit, we have: • $\triangleleft(\beta, \alpha) \leq \perp \swarrow \alpha, \quad \beta \in \mathfrak{Q}.$
- Since \lhd is approximating and

$$\sup_{\mathfrak{Q}^{op}}(\underline{\perp \swarrow \alpha}) = (\perp \swarrow \alpha) \searrow \bot,$$

• we obtain:

$$\alpha = \sup_{\mathfrak{Q}^{op}} (\triangleleft(\underline{\ }, \alpha)) \leq \overset{op}(\bot \swarrow \alpha) \searrow \bot.$$

- Since $\sup_{\mathfrak{Q}^{op}}(\underline{\perp}) = \top$ and \top is the unit, we have: • $\triangleleft(\beta, \alpha) \leq \perp \swarrow \alpha, \qquad \beta \in \mathfrak{Q}.$
- Since ⊲ is approximating and

$$\sup_{\mathfrak{Q}^{op}}(\underline{\perp \swarrow \alpha}) = (\perp \swarrow \alpha) \searrow \bot,$$

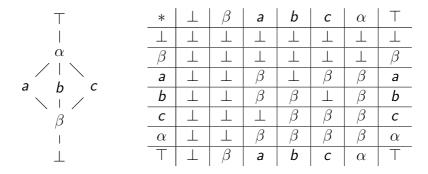
• we obtain:

$$\alpha = \sup_{\mathfrak{Q}^{op}} (\triangleleft(\underline{\ }, \alpha)) \leq \overset{op}{(\perp \swarrow \alpha)} \searrow \bot.$$

• $(\perp \swarrow \alpha) \searrow \perp) \leq \alpha$. Since \mathfrak{Q} is involutive, \perp is dualizing.

Example of an integral, involutive Frobenius quantale

• The Hasse diagram and the multiplication table of a quantale consisting of 7 elements is given by:



The involution is determined by:

 $\top' = \top$, $\alpha' = \alpha$, a' = a, b' = c, c' = b, $\beta' = \beta$, $\perp' = \bot$. \perp is not cyclic, because $b * c = \bot$, but $c * b = \beta$.

Beyond integral quantales

Let \mathfrak{Q} be an unital and involutive quantale and \mathfrak{Q}^{op} be the right \mathfrak{Q} -module provided with the right action determined by:

$$\beta \boxdot \alpha = \alpha \searrow \beta, \qquad \beta, \alpha \in \mathfrak{Q}.$$

Beyond integral quantales

Let \mathfrak{Q} be an unital and involutive quantale and \mathfrak{Q}^{op} be the right \mathfrak{Q} -module provided with the right action determined by:

$$\beta \boxdot \alpha = \alpha \searrow \beta, \qquad \beta, \alpha \in \mathfrak{Q}.$$

• An element $\delta \in \mathfrak{Q}$ is designated if for all $\alpha, \beta \in \mathfrak{Q}$ the following relation holds:

$$\lhd (\beta, \alpha) \leq ((\beta \swarrow \delta) * (\delta \swarrow \alpha)) \land ((\beta \swarrow \delta') * (\delta' \swarrow \alpha)).$$

Beyond integral quantales

Let \mathfrak{Q} be an unital and involutive quantale and \mathfrak{Q}^{op} be the right \mathfrak{Q} -module provided with the right action determined by:

$$\beta \boxdot \alpha = \alpha \searrow \beta, \qquad \beta, \alpha \in \mathfrak{Q}.$$

• An element $\delta \in \mathfrak{Q}$ is designated if for all $\alpha, \beta \in \mathfrak{Q}$ the following relation holds:

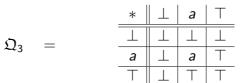
$$\lhd (\beta, \alpha) \leq ((\beta \swarrow \delta) * (\delta \swarrow \alpha)) \land ((\beta \swarrow \delta') * (\delta' \swarrow \alpha)).$$

Theorem 4. Let

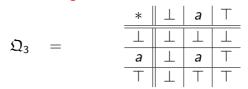
 \Overline be a unital and involutive quantale with a
 designated element. The duality in Mod_r(
 O) preserves
 projectivity if and only if every designated element of
 O is
 dualizing.

Let \mathfrak{Q}_1 and \mathfrak{Q}_2 be the two integral quantales on $C_3 = \{\bot, a, \top\}$. On \mathfrak{Q}_1 we use the binary minimum and on \mathfrak{Q}_2 the multiplication of the three-valued *MV*-algebra.

Let \mathfrak{Q}_1 and \mathfrak{Q}_2 be the two integral quantales on $C_3 = \{\bot, a, \top\}$. On \mathfrak{Q}_1 we use the binary minimum and on \mathfrak{Q}_2 the multiplication of the three-valued MV-algebra.

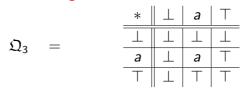


Let \mathfrak{Q}_1 and \mathfrak{Q}_2 be the two integral quantales on $C_3 = \{\bot, a, \top\}$. On \mathfrak{Q}_1 we use the binary minimum and on \mathfrak{Q}_2 the multiplication of the three-valued MV-algebra.



 The element (⊥, a) of 𝔅₁ × 𝔅₃ is designated, but not dualizing. Hence the duality in Mod_r(𝔅₁ × 𝔅₃) does not preserve projectivity.

Let \mathfrak{Q}_1 and \mathfrak{Q}_2 be the two integral quantales on $C_3 = \{\bot, a, \top\}$. On \mathfrak{Q}_1 we use the binary minimum and on \mathfrak{Q}_2 the multiplication of the three-valued MV-algebra.



- The element (⊥, a) of 𝔅₁ × 𝔅₃ is designated, but not dualizing. Hence the duality in Mod_r(𝔅₁ × 𝔅₃) does not preserve projectivity.
- The element (⊥, a) of 𝔅₂ × 𝔅₃ is designated, but dualizing. Hence the duality in Mod_r(𝔅₂ × 𝔅₃) preserves projectivity.