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Enriched Topologies

Categorical foundations of the axioms of traditional topologies.

The power set of a given set X is the free complete lattice
generated by X in the sense of Sup.

The axiom that arbitrary joins of open subsets are again open
means that the inclusion map into the underlying power set is a
morphism in Sup — i.e. join-preserving.

The universal upper bound of the power set is open.

The axiom that the intersection of two open subsets is again
open means that M is a binary operation in the sense of Sup —
i.e. it is join-preserving in each variable separately.

Sup is the categorical framework for traditional topologies.
Sup(£Q) is the categorical framework for £)-enriched topologies.

Sup(9Q) = Mod,(9Q).
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This observation goes back to A. Jogyal and M. Tierney 1984.
They identified QX as the free right Q-module generated by the
power set P(X) of X, namely: Q% =~ P(X) @ Q.

A 9-enriched topology on X is a right Q-submodule 7 of QX
satisfying the following additional properties:

The universal upper bound T of QX is contained in 7.

If f,g € T, then f x g € T, where the multipication is defined
pointwisely.

If 7 is a Q-enriched topology on X, then (X, T) is called a
Q-topological space.
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A map (X, T) % (Y,S8) is Q-continuous if g o g € T for all
ges.

The category Top(£Q) of Q-topological spaces and Q-continuous
maps is topological over Set.

e The indiscrete Q-topology is given by all constant maps taking
their value in the subquantale IL(Q) of all left-sided elements Q.
Hence Top(R) is in general not well-fibred.
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Prime elements of quantales
Let (9, *) be a not necessarily unital quantale. An element
p € 9 is prime, if p# T and the following implication holds:
axf<p = (axT<p o Tx5<p).

If p is prime, the following equivalence holds for all o, 5 € 2Q:

axf<p & (axT<p or Txp<p).

e A quantale is spatial, if every element is an appropriate meet of
prime elements.

e A quantale £ is semi-integral, if ax T % § < a x (3 for all
a, B € Q.

e If 9 is semi-integral, then maximal left-sided (right-sided)
elements are prime.
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Representation of left-sided and idempotent quantales

e Let GG ={L1,a, T} be the three-chain and C{ = (G, *;) be the
leftsided, idempotent and non-commutative quantale. The
quantale multiplication *, is uniquely determined by:

axy=a, | xpa=a, ax | =T7T.

If Q- C} is a strong quantale homomorphism, then
p=\V{aeQ| h(a) < a}

is prime.
e If Q is left-sided and idempotent and p is a prime element of Q,
then there exists a unique strong quantale homomorphism

Q- C} such that
p=Vi{a el hya) < a)
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Construction.

1, axT<p
hp(a): a, OZSP,O[*Tgp, ) CYEQ-
T, a<np.

e If o is two-sided, then h(a) € {1, T}.

e If £ is a spatial left-sided and idempotent quantale, which is not
two-sided, then there exists a strong quantale homomorphism
Q2 ¢!, which is three-valued.

e Hence the third value a € (3 comes from the non-commutativity
of the quantale multiplication.

Theorem. A left-sided and idempotent quantale £ is spatial if
and only if strong quantale homomorphisms £ — C¥ separate
points in £.
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The topologization of the spectrum

Let 9 be a spatial, left-sided and idempotent quantale. The
spectrum ¢() is the set of all prime elements of Q.

e Every element o € £ can be identified with a map
7(Q) 225 ¢! defined by:

A,(p) = hy(a), pea(Q) where p< hy.

The family {A,, | @ € Q} satisfies the following properties:
° Aa Xy AB = Aa*ﬂ,
A, = Ay,
¢ /6\/1 ' \/ielo‘i

[ ] AT:I
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C{ = C} x {0,1} and we use the following notation:

a=(a,0), a=(a1), e=(L,1), a=aVe

The Hasse diagram and the multiplication table are given by:
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It follows from the multiplication table of the quantale
multiplication * that

Ta={A.V(Asxa)| o,B€Q}U{T}

is a Ci-enriched topology on the spectrum o () of Q.

e {A,| € Q}U{T} is a subbase of Tg.

e The previous construction leads to a topologization of the
quantale of all closed left ideals of a non-commutative
C*-algebra.
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The general case of semi-unital quantales

The general strategy developed in the case of left-sided and
idempotent quantales will not be chamged, only the underlying
quantale.

e The element a € G3 = {1, a, T} produces a non-commutative
and idempotent quantale in two different ways:

One is the left-sided non-commutative and idempotent quantale
C¢, and the other one is the right-sided non-commutative and
idempotent quantale Cj.

e Their tensor product Qy = C§ ® Cj is the coproduct of Cf and
(3 in the category of balanced and bisymmetric quantales with
strong quantale homomorphisms. Therefore £, is also called the
quantization of 2.
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e Every prime element p of a semi-unital quantale £ can be

identified with a strong quantale homomorphism £ fo, 9
satisfying the condition:

p=V{aea| ha) < c}
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Construction.

’J_’
b,

dy,

\ Y

where a € Q.

TxaxT < p,

TxaxT L£p, axT <pand T*xa < p,
axT Lpand T xa < p,

axT <pand Txa £ p,

a<p axT Lpand T*xa L p,

a £ p.

If 9 is left-sided, then the construction reduces to the previous
construction in the case of left-sided and idempotent quantales.

e Theorem. A semi-unital quantale £ is spatial if and only if
strong homomorphisms £ — £J, separate points in Q.
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and the multiplication table of 1/1\2:
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The multiplication table shows that for all »c € 9, the following
relation holds:

o ayxx= 1% xmxb=x%xay, »x*xa, =x*xC=oxx*].
e Hence Ta={A.V(As*a)| a,8€QU{T}
is a 5/3\2-enriched topology on the spectrum o(Q) of Q.

e {A,| a € QYU{T} is a subbase of Ta.
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