Topolgization of Semi-Unital Quantales with Applications to C^* -Algebras

Ulrich Höhle

Bergische Universität, Wuppertal, Germany

Brno, October 3, 2019

Table of Contents

- Enriched Topologies
- Topological representation of Left-sided and Idempotent Quantales
- Topological Representation: The Extension from Left-sided Idempotent Quantales to Semi-Unital Quantales

Categorical foundations of the axioms of traditional topologies.

(i) The power set of a given set X is the free complete lattice generated by X in the sense of Sup.

- (i) The power set of a given set X is the free complete lattice generated by X in the sense of Sup.
- (ii) The axiom that arbitrary joins of open subsets are again open means that the inclusion map into the underlying power set is a morphism in Sup — i.e. join-preserving.

- (i) The power set of a given set X is the free complete lattice generated by X in the sense of Sup.
- (ii) The axiom that arbitrary joins of open subsets are again open means that the inclusion map into the underlying power set is a morphism in Sup — i.e. join-preserving.
- (iii) The universal upper bound of the power set is open.

- (i) The power set of a given set X is the free complete lattice generated by X in the sense of Sup.
- (ii) The axiom that arbitrary joins of open subsets are again open means that the inclusion map into the underlying power set is a morphism in Sup — i.e. join-preserving.
- (iii) The universal upper bound of the power set is open.
- (iv) The axiom that the intersection of two open subsets is again open means that ∩ is a binary operation in the sense of Sup i.e. it is join-preserving in each variable separately.

- (i) The power set of a given set X is the free complete lattice generated by X in the sense of Sup.
- (ii) The axiom that arbitrary joins of open subsets are again open means that the inclusion map into the underlying power set is a morphism in Sup — i.e. join-preserving.
- (iii) The universal upper bound of the power set is open.
- (iv) The axiom that the intersection of two open subsets is again open means that ∩ is a binary operation in the sense of Sup i.e. it is join-preserving in each variable separately.
 - Sup is the categorical framework for traditional topologies.

- (i) The power set of a given set X is the free complete lattice generated by X in the sense of Sup.
- (ii) The axiom that arbitrary joins of open subsets are again open means that the inclusion map into the underlying power set is a morphism in Sup — i.e. join-preserving.
- (iii) The universal upper bound of the power set is open.
- (iv) The axiom that the intersection of two open subsets is again open means that ∩ is a binary operation in the sense of Sup i.e. it is join-preserving in each variable separately.
 - Sup is the categorical framework for traditional topologies.
 - Sup(\mathfrak{Q}) is the categorical framework for \mathfrak{Q} -enriched topologies.

- (i) The power set of a given set X is the free complete lattice generated by X in the sense of Sup.
- (ii) The axiom that arbitrary joins of open subsets are again open means that the inclusion map into the underlying power set is a morphism in Sup — i.e. join-preserving.
- (iii) The universal upper bound of the power set is open.
- (iv) The axiom that the intersection of two open subsets is again open means that ∩ is a binary operation in the sense of Sup i.e. it is join-preserving in each variable separately.
 - Sup is the categorical framework for traditional topologies.
 - Sup(\mathfrak{Q}) is the categorical framework for \mathfrak{Q} -enriched topologies.
 - $\operatorname{Sup}(\mathfrak{Q}) \cong \operatorname{Mod}_r(\mathfrak{Q}).$

Identifying sets with discrete \mathfrak{Q} -preordered sets, then \mathfrak{Q}^{X} provided with the pointwise quantale multiplication from the right sided is the free right \mathfrak{Q} -modules generated by X.

 This observation goes back to A. Jogyal and M. Tierney 1984. They identified Ω^X as the free right Ω-module generated by the power set P(X) of X, namely: Ω^X ≅ P(X) ⊗ Ω.

- This observation goes back to A. Jogyal and M. Tierney 1984. They identified Ω^X as the free right Ω-module generated by the power set P(X) of X, namely: Ω^X ≅ P(X) ⊗ Ω.
- A <u>Q</u>-enriched topology on X is a right <u>Q</u>-submodule T of <u>Q</u>^X satisfying the following additional properties:

- This observation goes back to A. Jogyal and M. Tierney 1984. They identified Ω^X as the free right Ω-module generated by the power set P(X) of X, namely: Ω^X ≅ P(X) ⊗ Ω.
- A <u>Q</u>-enriched topology on X is a right <u>Q</u>-submodule T of <u>Q</u>^X satisfying the following additional properties:
- (T1) The universal upper bound $\underline{\top}$ of \mathfrak{Q}^X is contained in \mathcal{T} .

- This observation goes back to A. Jogyal and M. Tierney 1984. They identified Ω^X as the free right Ω-module generated by the power set P(X) of X, namely: Ω^X ≅ P(X) ⊗ Ω.
- A Q-enriched topology on X is a right Q-submodule T of Q^X satisfying the following additional properties:
- (T1) The universal upper bound $\underline{\top}$ of \mathfrak{Q}^X is contained in \mathcal{T} .
- (T2) If $f, g \in T$, then $f * g \in T$, where the multiplication is defined pointwisely.

- This observation goes back to A. Jogyal and M. Tierney 1984. They identified Ω^X as the free right Ω-module generated by the power set P(X) of X, namely: Ω^X ≅ P(X) ⊗ Ω.
- A Q-enriched topology on X is a right Q-submodule T of Q^X satisfying the following additional properties:
- (T1) The universal upper bound $\underline{\top}$ of \mathfrak{Q}^X is contained in \mathcal{T} .
- (T2) If $f, g \in T$, then $f * g \in T$, where the multiplication is defined pointwisely.
 - If T is a Q-enriched topology on X, then (X, T) is called a Q-topological space.

A map $(X, \mathcal{T}) \xrightarrow{\varphi} (Y, \mathcal{S})$ is \mathfrak{Q} -continuous if $g \circ \varphi \in \mathcal{T}$ for all $g \in \mathcal{S}$.

A map $(X, \mathcal{T}) \xrightarrow{\varphi} (Y, \mathcal{S})$ is \mathfrak{Q} -continuous if $g \circ \varphi \in \mathcal{T}$ for all $g \in \mathcal{S}$.

The category $\text{Top}(\mathfrak{Q})$ of \mathfrak{Q} -topological spaces and \mathfrak{Q} -continuous maps is topological over Set.

A map $(X, \mathcal{T}) \xrightarrow{\varphi} (Y, \mathcal{S})$ is \mathfrak{Q} -continuous if $g \circ \varphi \in \mathcal{T}$ for all $g \in \mathcal{S}$.

The category $\text{Top}(\mathfrak{Q})$ of \mathfrak{Q} -topological spaces and \mathfrak{Q} -continuous maps is topological over Set.

 The indiscrete Q-topology is given by all constant maps taking their value in the subquantale L(Q) of all left-sided elements Q. Hence Top(Q) is in general not well-fibred.

Let $(\mathfrak{Q}, *)$ be a not necessarily unital quantale. An element $p \in \mathfrak{Q}$ is prime, if $p \neq \top$ and the following implication holds:

$$\alpha * \beta \leq p \quad \Rightarrow \quad (\alpha * \top \leq p \quad \text{or} \quad \top * \beta \leq p).$$

Let $(\mathfrak{Q}, *)$ be a not necessarily unital quantale. An element $p \in \mathfrak{Q}$ is prime, if $p \neq \top$ and the following implication holds:

$$\alpha * \beta \leq p \quad \Rightarrow \quad (\alpha * \top \leq p \quad \text{or} \quad \top * \beta \leq p).$$

If p is prime, the following equivalence holds for all $\alpha, \beta \in \mathfrak{Q}$:

$$\alpha * \beta \leq p \quad \Leftrightarrow \quad (\alpha * \top \leq p \quad \text{or} \quad \top * \beta \leq p).$$

Let $(\mathfrak{Q}, *)$ be a not necessarily unital quantale. An element $p \in \mathfrak{Q}$ is prime, if $p \neq \top$ and the following implication holds:

$$\alpha * \beta \leq p \quad \Rightarrow \quad (\alpha * \top \leq p \quad \text{or} \quad \top * \beta \leq p).$$

If p is prime, the following equivalence holds for all $\alpha, \beta \in \mathfrak{Q}$:

$$\alpha * \beta \leq p \quad \Leftrightarrow \quad (\alpha * \top \leq p \quad \text{or} \quad \top * \beta \leq p).$$

• A quantale is spatial, if every element is an appropriate meet of prime elements.

Let $(\mathfrak{Q}, *)$ be a not necessarily unital quantale. An element $p \in \mathfrak{Q}$ is prime, if $p \neq \top$ and the following implication holds:

$$\alpha * \beta \leq p \quad \Rightarrow \quad (\alpha * \top \leq p \quad \text{or} \quad \top * \beta \leq p).$$

If p is prime, the following equivalence holds for all $\alpha, \beta \in \mathfrak{Q}$:

$$\alpha * \beta \leq p \quad \Leftrightarrow \quad (\alpha * \top \leq p \quad \text{or} \quad \top * \beta \leq p).$$

- A quantale is spatial, if every element is an appropriate meet of prime elements.
- A quantale \mathfrak{Q} is semi-integral, if $\alpha * \top * \beta \leq \alpha * \beta$ for all $\alpha, \beta \in \mathfrak{Q}$.

Let $(\mathfrak{Q}, *)$ be a not necessarily unital quantale. An element $p \in \mathfrak{Q}$ is prime, if $p \neq \top$ and the following implication holds:

$$\alpha * \beta \leq p \quad \Rightarrow \quad (\alpha * \top \leq p \quad \text{or} \quad \top * \beta \leq p).$$

If p is prime, the following equivalence holds for all $\alpha, \beta \in \mathfrak{Q}$:

$$\alpha * \beta \leq p \quad \Leftrightarrow \quad (\alpha * \top \leq p \quad \text{or} \quad \top * \beta \leq p).$$

- A quantale is spatial, if every element is an appropriate meet of prime elements.
- A quantale \mathfrak{Q} is semi-integral, if $\alpha * \top * \beta \leq \alpha * \beta$ for all $\alpha, \beta \in \mathfrak{Q}$.
- If \mathfrak{Q} is semi-integral, then maximal left-sided (right-sided) elements are prime.

Representation of left-sided and idempotent quantales

Let C₃ = {⊥, a, ⊤} be the three-chain and C₃^ℓ = (C₃, *_ℓ) be the leftsided, idempotent and non-commutative quantale. The quantale multiplication *_ℓ is uniquely determined by:

$$a*_{\ell} = a, \quad \top *_{\ell} a = a, \quad a*_{\ell} \top = \top.$$

Representation of left-sided and idempotent quantales

Let C₃ = {⊥, a, ⊤} be the three-chain and C₃^ℓ = (C₃, *_ℓ) be the leftsided, idempotent and non-commutative quantale. The quantale multiplication *_ℓ is uniquely determined by:

$$a*_{\ell} = a, \quad \top *_{\ell} a = a, \quad a*_{\ell} \top = \top.$$

If $\mathfrak{Q} \xrightarrow{h} C_3^{\ell}$ is a strong quantale homomorphism, then $p = \bigvee \{ \alpha \in \mathfrak{Q} \mid h(\alpha) \leq a \}$

is prime.

Representation of left-sided and idempotent quantales

Let C₃ = {⊥, a, ⊤} be the three-chain and C^ℓ₃ = (C₃, *_ℓ) be the leftsided, idempotent and non-commutative quantale. The quantale multiplication *_ℓ is uniquely determined by:

$$a*_{\ell} = a, \quad \top *_{\ell} a = a, \quad a*_{\ell} \top = \top.$$

If $\mathfrak{Q} \xrightarrow{h} C_3^{\ell}$ is a strong quantale homomorphism, then $p = \bigvee \{ \alpha \in \mathfrak{Q} \mid h(\alpha) \leq a \}$

is prime.

If 𝔅 is left-sided and idempotent and p is a prime element of 𝔅, then there exists a unique strong quantale homomorphism
 𝔅 → C₃^{h_p} C₃^ℓ such that

$$p = \bigvee \{ \alpha \in \mathfrak{Q} \mid h_p(\alpha) \le a \}.$$

Construction.

$$h_{p}(\alpha) = \left\{ \begin{array}{ll} \bot, & \alpha * \top \leq p \\ a, & \alpha \leq p, \, \alpha * \top \leq p, \\ \top, & \alpha \leq p. \end{array} \right\}, \qquad \alpha \in \mathfrak{Q}.$$

Construction.

$$h_{p}(\alpha) = \left\{ \begin{array}{ll} \bot, & \alpha * \top \leq p \\ \mathbf{a}, & \alpha \leq p, \, \alpha * \top \not\leq p, \\ \top, & \alpha \not\leq p. \end{array} \right\}, \qquad \alpha \in \mathfrak{Q}.$$

• If α is two-sided, then $h(\alpha) \in \{\bot, \top\}$.

$$h_{p}(\alpha) = \left\{ \begin{array}{ll} \bot, & \alpha * \top \leq p \\ a, & \alpha \leq p, \, \alpha * \top \leq p, \\ \top, & \alpha \leq p. \end{array} \right\}, \qquad \alpha \in \mathfrak{Q}.$$

- If α is two-sided, then $h(\alpha) \in \{\bot, \top\}$.
- If Ω is a spatial left-sided and idempotent quantale, which is not two-sided, then there exists a strong quantale homomorphism
 Ω → C^ℓ₃, which is three-valued.

$$h_{p}(\alpha) = \left\{ \begin{array}{ll} \bot, & \alpha * \top \leq p \\ a, & \alpha \leq p, \, \alpha * \top \leq p, \\ \top, & \alpha \leq p. \end{array} \right\}, \qquad \alpha \in \mathfrak{Q}.$$

- If α is two-sided, then $h(\alpha) \in \{\bot, \top\}$.
- If Q is a spatial left-sided and idempotent quantale, which is not two-sided, then there exists a strong quantale homomorphism
 Q → C^ℓ₃, which is three-valued.
- Hence the third value $a \in C_3$ comes from the non-commutativity of the quantale multiplication.

$$h_{p}(\alpha) = \left\{ \begin{array}{ll} \bot, & \alpha * \top \leq p \\ a, & \alpha \leq p, \, \alpha * \top \leq p, \\ \top, & \alpha \leq p. \end{array} \right\}, \qquad \alpha \in \mathfrak{Q}.$$

- If α is two-sided, then $h(\alpha) \in \{\bot, \top\}$.
- If Q is a spatial left-sided and idempotent quantale, which is not two-sided, then there exists a strong quantale homomorphism
 Q → C^ℓ₃, which is three-valued.
- Hence the third value $a \in C_3$ comes from the non-commutativity of the quantale multiplication.

Theorem. A left-sided and idempotent quantale \mathfrak{Q} is spatial if and only if strong quantale homomorphisms $\mathfrak{Q} \to C_3^{\ell}$ separate points in \mathfrak{Q} .

Let \mathfrak{Q} be a spatial, left-sided and idempotent quantale. The spectrum $\sigma(\mathfrak{Q})$ is the set of all prime elements of \mathfrak{Q} .

Let \mathfrak{Q} be a spatial, left-sided and idempotent quantale. The spectrum $\sigma(\mathfrak{Q})$ is the set of all prime elements of \mathfrak{Q} .

• Every element $\alpha \in \mathfrak{Q}$ can be identified with a map $\sigma(\mathfrak{Q}) \xrightarrow{\mathbb{A}_{\alpha}} C_{3}^{\ell}$ defined by:

$$\mathbb{A}_{oldsymbol{lpha}}(p)=h_{oldsymbol{p}}(lpha),\quad p\in\sigma(\mathfrak{Q})\quad ext{where}\quad p\leftrightarrow h_{oldsymbol{p}}.$$

Let \mathfrak{Q} be a spatial, left-sided and idempotent quantale. The spectrum $\sigma(\mathfrak{Q})$ is the set of all prime elements of \mathfrak{Q} .

• Every element $\alpha \in \mathfrak{Q}$ can be identified with a map $\sigma(\mathfrak{Q}) \xrightarrow{\mathbb{A}_{\alpha}} C_{3}^{\ell}$ defined by:

$$\mathbb{A}_{\alpha}(p) = h_{p}(\alpha), \quad p \in \sigma(\mathfrak{Q}) \quad \text{where} \quad p \leftrightarrow h_{p}.$$

Let \mathfrak{Q} be a spatial, left-sided and idempotent quantale. The spectrum $\sigma(\mathfrak{Q})$ is the set of all prime elements of \mathfrak{Q} .

• Every element $\alpha \in \mathfrak{Q}$ can be identified with a map $\sigma(\mathfrak{Q}) \xrightarrow{\mathbb{A}_{\alpha}} C_{3}^{\ell}$ defined by:

$$\mathbb{A}_{\alpha}(p) = h_p(\alpha), \quad p \in \sigma(\mathfrak{Q}) \quad \text{where} \quad p \leftrightarrow h_p.$$

•
$$\mathbb{A}_{\alpha} *_{\ell} \mathbb{A}_{\beta} = \mathbb{A}_{\alpha * \beta}$$

Let \mathfrak{Q} be a spatial, left-sided and idempotent quantale. The spectrum $\sigma(\mathfrak{Q})$ is the set of all prime elements of \mathfrak{Q} .

• Every element $\alpha \in \mathfrak{Q}$ can be identified with a map $\sigma(\mathfrak{Q}) \xrightarrow{\mathbb{A}_{\alpha}} C_{3}^{\ell}$ defined by:

$$\mathbb{A}_{\alpha}(p) = h_p(\alpha), \quad p \in \sigma(\mathfrak{Q}) \quad \text{where} \quad p \leftrightarrow h_p.$$

•
$$\mathbb{A}_{\alpha} *_{\ell} \mathbb{A}_{\beta} = \mathbb{A}_{\alpha * \beta},$$

• $\bigvee_{i \in I} \mathbb{A}_{\alpha_i} = \mathbb{A}_{\bigvee_{i \in I} \alpha_i},$

Let \mathfrak{Q} be a spatial, left-sided and idempotent quantale. The spectrum $\sigma(\mathfrak{Q})$ is the set of all prime elements of \mathfrak{Q} .

• Every element $\alpha \in \mathfrak{Q}$ can be identified with a map $\sigma(\mathfrak{Q}) \xrightarrow{\mathbb{A}_{\alpha}} C_{3}^{\ell}$ defined by:

$$\mathbb{A}_{\alpha}(p) = h_p(\alpha), \quad p \in \sigma(\mathfrak{Q}) \quad \text{where} \quad p \leftrightarrow h_p.$$

•
$$\mathbb{A}_{\alpha} *_{\ell} \mathbb{A}_{\beta} = \mathbb{A}_{\alpha * \beta},$$

- $\bigvee_{i\in I} \mathbb{A}_{\alpha_i} = \mathbb{A}_{\bigvee_{i\in I} \alpha_i},$
- $\mathbb{A}_{\top} = \underline{\top}.$

• The unitalization $\widehat{C_3^{\ell}}$ of C_3^{ℓ} .

• The unitalization $\widehat{C_3^{\ell}}$ of C_3^{ℓ} .

 $\widehat{C_3^\ell} = C_3^\ell \times \{0,1\}$ and we use the following notation:

$$\alpha = (\alpha, 0), \quad \widehat{\alpha} = (\alpha, 1), \quad e = (\bot, 1), \quad \widehat{\alpha} = \alpha \lor e.$$

• The unitalization $\widehat{C_3^{\ell}}$ of C_3^{ℓ} .

 $\widehat{C_3^\ell} = C_3^\ell \times \{0,1\}$ and we use the following notation:

$$\alpha = (\alpha, 0), \quad \widehat{\alpha} = (\alpha, 1), \quad e = (\bot, 1), \quad \widehat{\alpha} = \alpha \lor e.$$

• The Hasse diagram and the multiplication table are given by:

It follows from the multiplication table of the quantale multiplication \ast that

$$\mathcal{T}_{\mathfrak{Q}} = \{ \mathbb{A}_{\alpha} \lor (\mathbb{A}_{\beta} \ast_{\ell} \mathbf{a}) \mid \alpha, \beta \in \mathfrak{Q} \} \cup \{ \widehat{\top} \}$$

is a $\widehat{C_3^{\ell}}$ -enriched topology on the spectrum $\sigma(\mathfrak{Q})$ of \mathfrak{Q} .

.

It follows from the multiplication table of the quantale multiplication \ast that

$$\mathcal{T}_{\mathfrak{Q}} = \{ \mathbb{A}_{\alpha} \lor (\mathbb{A}_{\beta} \ast_{\ell} \mathbf{a}) \mid \alpha, \beta \in \mathfrak{Q} \} \cup \{ \widehat{\top} \}$$

is a $\widehat{C_3^{\ell}}$ -enriched topology on the spectrum $\sigma(\mathfrak{Q})$ of \mathfrak{Q} .

•
$$\{\mathbb{A}_{\alpha} \mid \alpha \in \mathfrak{Q}\} \cup \{\widehat{\bot}\}$$
 is a subbase of $\mathcal{T}_{\mathfrak{Q}}$.

.

It follows from the multiplication table of the quantale multiplication \ast that

$$\mathcal{T}_{\mathfrak{Q}} = \{ \mathbb{A}_{\alpha} \lor (\mathbb{A}_{\beta} \ast_{\ell} \mathbf{a}) \mid \alpha, \beta \in \mathfrak{Q} \} \cup \{ \widehat{\top} \}$$

is a $\widehat{C_3^{\ell}}$ -enriched topology on the spectrum $\sigma(\mathfrak{Q})$ of \mathfrak{Q} .

•
$$\{\mathbb{A}_{\alpha} \mid \alpha \in \mathfrak{Q}\} \cup \{\widehat{\bot}\}$$
 is a subbase of $\mathcal{T}_{\mathfrak{Q}}$.

• The previous construction leads to a topologization of the quantale of all closed left ideals of a non-commutative *C**-algebra.

The general strategy developed in the case of left-sided and idempotent quantales will not be chamged, only the underlying quantale.

The general strategy developed in the case of left-sided and idempotent quantales will not be chamged, only the underlying quantale.

 The element a ∈ C₃ = {⊥, a, ⊤} produces a non-commutative and idempotent quantale in two different ways:

The general strategy developed in the case of left-sided and idempotent quantales will not be chamged, only the underlying quantale.

 The element a ∈ C₃ = {⊥, a, ⊤} produces a non-commutative and idempotent quantale in two different ways:

One is the left-sided non-commutative and idempotent quantale C_3^{ℓ} , and the other one is the right-sided non-commutative and idempotent quantale C_3^{r} .

The general strategy developed in the case of left-sided and idempotent quantales will not be chamged, only the underlying quantale.

 The element a ∈ C₃ = {⊥, a, ⊤} produces a non-commutative and idempotent quantale in two different ways:

One is the left-sided non-commutative and idempotent quantale C_3^{ℓ} , and the other one is the right-sided non-commutative and idempotent quantale C_3^{r} .

• Their tensor product $\mathfrak{Q}_2 = C_3^\ell \otimes C_3^r$ is the coproduct of C_3^ℓ and C_3^r in the category of balanced and bisymmetric quantales with strong quantale homomorphisms. Therefore \mathfrak{Q}_2 is also called the quantization of **2**.

The Hasse diagram and the multiplication table of the quantization of **2** are given by:

The Hasse diagram and the multiplication table of the quantization of **2** are given by:

 Every prime element p of a semi-unital quantale Ω can be identified with a strong quantale homomorphism Ω → Ω₂ satisfying the condition:

 $p = \bigvee \{ \alpha \in \mathfrak{Q} \mid h_p(\alpha) \leq c \}$

Construction.

$$h_{p}(\alpha) = \begin{cases} \bot, & \top * \alpha * \top \leq p, \\ b, & \top * \alpha * \top \nleq p, \ \alpha * \top \leq p \text{ and } \top * \alpha \leq p, \\ a_{\ell}, & \alpha * \top \nleq p \text{ and } \top * \alpha \leq p, \\ a_{r}, & \alpha * \top \leq p \text{ and } \top * \alpha \nleq p, \\ c, & \alpha \leq p, \ \alpha * \top \nleq p \text{ and } \top * \alpha \nleq p, \\ \top, & \alpha \nleq p. \end{cases}$$

where $\alpha \in \mathfrak{Q}$.

$$h_{p}(\alpha) = \begin{cases} \bot, & \top * \alpha * \top \leq p, \\ b, & \top * \alpha * \top \nleq p, \ \alpha * \top \leq p \text{ and } \top * \alpha \leq p, \\ a_{\ell}, & \alpha * \top \nleq p \text{ and } \top * \alpha \leq p, \\ a_{r}, & \alpha * \top \leq p \text{ and } \top * \alpha \nleq p, \\ c, & \alpha \leq p, \ \alpha * \top \nleq p \text{ and } \top * \alpha \nleq p, \\ \top, & \alpha \nleq p. \end{cases}$$

where $\alpha \in \mathfrak{Q}$.

If $\mathfrak Q$ is left-sided, then the construction reduces to the previous construction in the case of left-sided and idempotent quantales.

$$h_{p}(\alpha) = \begin{cases} \bot, & \top * \alpha * \top \leq p, \\ b, & \top * \alpha * \top \nleq p, \ \alpha * \top \leq p \text{ and } \top * \alpha \leq p, \\ a_{\ell}, & \alpha * \top \nleq p \text{ and } \top * \alpha \leq p, \\ a_{r}, & \alpha * \top \leq p \text{ and } \top * \alpha \nleq p, \\ c, & \alpha \leq p, \ \alpha * \top \nleq p \text{ and } \top * \alpha \nleq p, \\ \top, & \alpha \nleq p. \end{cases}$$

where $\alpha \in \mathfrak{Q}$.

If $\mathfrak Q$ is left-sided, then the construction reduces to the previous construction in the case of left-sided and idempotent quantales.

Theorem. A semi-unital quantale Ω is spatial if and only if strong homomorphisms Ω → Ω₂ separate points in Ω.

The topologization of the spectrum of spatial semi-unital quantales

Unitalization of $\widehat{\mathfrak{Q}_2}$ =the quantization of 2 is given by:

The topologization of the spectrum of spatial semi-unital quantales

Unitalization of $\widehat{\mathfrak{Q}_2}$ **=the quantization of 2** is given by:

• The Hasse diagram of $\widehat{\mathfrak{Q}_2}$:

and the multiplication table of $\widehat{\mathfrak{Q}_{\mathbf{2}}}$:

*		b	a_ℓ	a _r	с	Т	e	b	$\widehat{a_{\ell}}$	â _r	ĉ	ÎT
\bot			\perp			\bot				\perp		
b	\perp	b	b	a _r	a _r	a _r	b	b	b	a _r	a _r	a _r
a_ℓ	\perp	a_ℓ	a_ℓ	Т	Т	Т	a_ℓ	a_ℓ	a_ℓ	Т	Т	Т
a _r	\perp	b	b	a _r	a _r	a _r	a _r	a _r	a _r	a _r	a _r	a _r
С	\perp	a_ℓ	a_ℓ	Т	Т	Т	С	С	С	Т	Т	Т
Т		a_ℓ	a_ℓ	Т	Т	Т	Т	Т	Т	Т	Т	Т
е	\bot	b	a_ℓ	a _r	с	Т	е	b	$\widehat{a_{\ell}}$	â _r	ĉ	Γ Î
b		b	a_ℓ	a _r	а	Т	b	b	$\widehat{a_{\ell}}$	â _r	ĉ	Γ ,
$\widehat{a_{\ell}}$		a_ℓ	a_ℓ	Т	Т	Т	$\widehat{a_{\ell}}$	$\widehat{a_{\ell}}$	$\widehat{a_{\ell}}$	Ť	Î	T
â _r		b	a_ℓ	a _r	с	Т	â _r	â _r	ĉ	â _r	ĉ	T
ĉ		a_ℓ	a_ℓ	Т	Т	Т	ĉ	ĉ	ĉ	Î	Î	Î
Ť		a_ℓ	a_ℓ	T	T	Т	Î	Î	Î	Î	Î	Î

•
$$a_{\ell} * \varkappa = \top * \varkappa$$
, $\varkappa * b = \varkappa * a_{\ell}$, $\varkappa * a_r = \varkappa * c = \varkappa * \top$.

•
$$a_{\ell} * \varkappa = \top * \varkappa$$
, $\varkappa * b = \varkappa * a_{\ell}$, $\varkappa * a_r = \varkappa * c = \varkappa * \top$.

• Hence
$$\mathcal{T}_{\mathfrak{Q}} = \{\mathbb{A}_{\alpha} \lor (\mathbb{A}_{\beta} \ast a_{\ell}) \mid \alpha, \beta \in \mathfrak{Q}\} \cup \{\widehat{\top}\}$$

is a $\widehat{\mathfrak{Q}_2}$ -enriched topology on the spectrum $\sigma(\mathfrak{Q})$ of \mathfrak{Q} .

•
$$a_{\ell} * \varkappa = \top * \varkappa$$
, $\varkappa * b = \varkappa * a_{\ell}$, $\varkappa * a_r = \varkappa * c = \varkappa * \top$.

• Hence
$$\mathcal{T}_{\mathfrak{Q}} = \{\mathbb{A}_{\alpha} \lor (\mathbb{A}_{\beta} \ast a_{\ell}) \mid \alpha, \beta \in \mathfrak{Q}\} \cup \{\widehat{\top}\}$$

is a $\widehat{\mathfrak{Q}_2}$ -enriched topology on the spectrum $\sigma(\mathfrak{Q})$ of \mathfrak{Q} .

•
$$\{\mathbb{A}_{\alpha} \mid \alpha \in \mathfrak{Q}\} \cup \{\widehat{\top}\}$$
 is a subbase of $\mathcal{T}_{\mathfrak{Q}}$.