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Abstract. Starting from enriched order-theoretic properties of right modules over
a unital quantale in the category Sup, this paper presents the following theorem. If

the underlying quantale is unital and involutive with a designated element, then the

duality of right modules preserves projectivity if and only if the underlying quantale
has a dualizing element.

1. Introduction

It follows from the work by I. Stubbe (cf. [7, 8]) that projective right

modules over a unital quantale Q (projective right Q-modules for short) are

enriched completely distributive and enriched join-complete Q-preordered sets.

Hence the question arises under which necessary and sufficient condition the

projectivity of right Q-modules is preserved under duality. In the topos-

theoretic context we have a positive answer, and the necessary and sufficient

condition can be expressed by the requirement that the order-theoretic struc-

ture of the subobject classifier is Boolean (cf. [9]). A continuation of these

investigations has been carried out by H. Lai and L. Shen. In the context

of integral and commutative quantales they proved that the duality preserves

projective right Q-modules if and only if the underlying quantale is given by

an integral and commutative Girard quantale (cf. [4, Theorem 8.2]).

In this paper we give a rather complete answer to this dualization problem.

In the general framework of unital and involutive quantales with a designated

element we show that the duality in the category of right Q-modules preserves

projective right Q-modules if and only if the underlying quantale has a dual-

izing element (cf. Section 5). We prepare this result by a short survey on

enriched order-theoretic properties of right Q-modules (cf. Section 3).

2. Preliminaries

In order to fix notation we first recall some basic facts of the theory of

quantales and quantale-valued preordered sets. For more details the reader is

referred to [2].
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Let Sup be the symmetric and monoidal closed category of complete lattices

and join-preserving maps. A unital quantale Q = (Q, ∗, 1) is a monoid in Sup.

Due to the universal property of the tensor product ⊗ in Sup the multiplication

in Q can be identified with a binary map Q×Q
∗−→ Q such that (Q, ∗, 1) is

a monoid in Set and ∗ is join-preserving in each variable separately — i.e. the

following relations hold for α, β ∈ Q and A,B ⊆M :

α ∗ (
∨
B) =

∨
β∈B

(α ∗ β), (
∨
A) ∗ β =

∨
α∈A

(α ∗ β).

A unital quantale Q is integral if the universal upper bound coincides with

the unit of Q, and Q is involutive if there exists an order-preserving involution
′ on Q, which is also an anti-homomorphisms — i.e.

(α ∗ β)′ = β′ ∗ α′, α, β ∈ Q.

The right and the left implications of a quantale Q are given by:

α↘ β =
∨
{γ ∈ Q | α ∗ γ 6 β}, β ↙ α =

∨
{γ ∈ Q | γ ∗ α 6 β},

where α, β ∈ Q. An element δ of Q is dualizing, if δ satisfies the following

property:

(δ ↙ α)↘ δ = α = δ ↙ (α↘ δ), α ∈ Q.

For every dualizing element δ the following relation holds:

(δ ↙ α)↘ β = α↙ (β ↘ δ), α, β ∈ Q. (2.1)

Let Q be a unital quantale and X be a set. A Q-preorder on X is map

X ×X p−→ Q satisfying the following axioms:

(P1) 1 6 p(x, x), x ∈ X, (Reflexivity)

(P2) p(x, y) ∗ p(y, z) 6 p(x, z), x, y, z ∈ X. (Transitivity)

If p is Q-preorder on X, then the pair (X, p) is called a Q-preordered set.

Since every unital quantale Q can be viewed as a biclosed monoidal category,

Q-enriched category theory based on Q is available. In this context Q-pre-

ordered sets are equivalent to Q-enriched categories. The reflexivity axiom

(P1) corresponds to the axiom of Q-enriched identities and the axiom (P2) is

equivalent to the Q-enriched composition law. Since every Q-enriched category

has an underlying ordinary category, the underlying preorder 6p of a Q-pre-

order p has the following form:

6p= {(x, z) ∈ X ×X | 1 6 p(x, z)}.

A Q-preorder p on X is antisymmetric (or, the corresponding Q-enriched

category is skeletal), if the underlying preorder 6q is antisymmetric. If Q =

(Q, ∗, 1, ′) is a unital and involutive quantale, then also the dual Q-preorder

pop exists and is given by:

pop(x, z) = p(z, x)′, x, z ∈ X.
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Morphisms between Q-preordered sets (X, p) and (Y, q) are Q-homomor-

phisms — these are maps X
ϕ−→ Y satisfying the condition

p(x1, x2) 6 q(ϕ(x1), ϕ(x2)), x1, x2 ∈ X

The related category is denoted by Preord(Q) and is complete and cocomplete

(cf. [2, p. 259]).

Adjointness between Q-homomorphisms can be expressed as follows.

(X, p)
ϕ−→ (Y, q) is left adjoint to (Y, q)

ψ−→ (X, p) (resp. ψ is right adjoint to

ϕ) if q(ϕ(x), y) = p(x, ψ(y)) for all x, y ∈ X.

Let (X, p) be a Q-preordered set. A map X
f−→ Q is called:

(a) a contravariant Q-presheaf on (X, p) if f is left-extensional w.r.t. p — i.e.

p(z, x) ∗ f(x) 6 f(z), x, z ∈ X.

(b) a covariant Q-presheaf on (X, p), if f is right-extensional w.r.t. p — i.e.

f(x) ∗ p(x, z) 6 f(z), z, x ∈ X.

The complete lattices P(X, p) and P†(X, p) of all contravariant and covariant

Q-presheaves on (X, p) are pointwisely ordered and provided with the following

Q-preorders d and d†:

d(f1, f2) =
∧
x∈X

(f1(x)↘ f2(x)), f1, f2 ∈ P(X, p),

d†(g1, g2) =
∧
x∈X

(g1(x)↙ g2(x)), g1, g2 ∈ P†(X, p)

The underlying preorder 6d coincides with the given order on P(X, p), while

the underlying preorder 6d† coincides with the opposite order on P†(X, p).

Finally, the Q-Yoneda embedding (X, p)
ηX−−→ P(X, p) is given by:

(ηX(x))(z) = x̃(z) = p(z, x), x, z ∈ X.

Then (X, p) is Q-enriched join-complete if and only if ηX has a left adjoint

Q-homomorphism, which is also call the formation of Q-enriched joins. On

the basis of the axiom of choice, 2-enriched join-completeness is equivalent to

join-completeness in the traditional sense.

3. Right Q-modules in Sup and their enriched order structure

From a historical perspective it should be noted that for the first time

module theory in Sup appeared in [3]. Here we are primarily interested in non-

commutative and unital quantales Q. Hence a right Q-module M = (M,�)

is a complete lattice M provided with a right action M ⊗Q
�−→ M in the

sense of Sup (for the general concept of of right actions in symmetric monoidal

categories the reader is referred to [5]). Due to the universal property of

the tensor product a right action � in Sup can be identified with a map

M ×Q
�−→M , which is join-preserving in each variable separately and satisfies

the following axioms for all t ∈M and α, β ∈ Q:
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(M1) t� 1 = t, (Unity axiom)

(M2) (t� α)� β = t� (α ∗ β), (Associativity axiom)

In the following considerations we apply the subsequent notation as far as it

is reasonable. Elements of the underlying unital quantale Q are denoted by

α, β, . . . , right Q-modules by M and N and their elements by t, s, . . . . If the

context is clear and no confusion is possible, we will write tα instead of t� α.

A right Q-module homomorphism is a join-preserving map M
h−→ N such

that

h(tα) = h(t)α, t ∈M, α ∈ Q.

The related category is denoted by Modr(Q).

Let M be a right Q-module. Since Sup has a self-duality given by the

construction of right adjoint maps, we can compute the right adjoint map

Mop �
`

−−→ (M ⊗Q)op

of the right action � (see also [2, Theorem 2.2.10] in the special case M = Q),

and it follows immediately from the unit and associativity axiom of the right

action � that the map M ×M p−→ Q defined by:

p(s, t) =
(
�`(t)

)
(s) =

∨
{α ∈ Q | sα 6 t}, s, t ∈M (3.1)

is a Q-preorder on M , which we will call the intrinsic Q-preorder of M . Hence

right Q-modules in Sup carry always the structure of a Q-preordered set, and

every right Q-module homomorphism is always a Q-homomorphism w.r.t. the

respective intrinsic Q-preorders. Thus there exists a natural forgetful functor

from Modr(Q) to Preord(Q), which has a left adjoint functor.

Example 3.1. Let (X, p) be a Q-preordered set. On P(X, p) and on the dual

lattice
(
P†(X, p)

)op
we introduce right actions determined as follows:

(f � α)(x) = f(x) ∗ α, f ∈ P(X, p), x ∈ X, α ∈ Q,

(g � α)(x) = α↘ g(x), g ∈ P†(X, p), x ∈ X, α ∈ Q.

In this way, P(X, p) is the free right Q-module generated by (X, p), and the

intrinsic Q-preorder of P(X, p) coincides with d. Similarly, the intrinsic Q-pre-

order of the right Q-module
(
P†(X, p)

)op
coincides with d†.

The intrinsic Q-preorder p of a right Q-module M satisfies the following

properties:

(1) The underlying preorder 6p coincides with the order on M .

(2) For s, t ∈M and S, T ⊆M the following relations hold:∧
s∈S

p(s, t) = p(
∨
S, t) and

∧
t∈T

p(s, t) = p(s,
∧
T ).

(3) α↘ p(s, t) = p(sα, t) for all α ∈ Q and s, t ∈M .
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Moreover, the right Q-module homomorphism P(M,p)
supM−−−−→ M defined

by

supMf =
∨
t∈M

t� f(t), f ∈ P(M,p) (3.2)

is left adjoint to the Q-Yoneda embedding (M,p)
ηM−−→

(
P(M,p), d

)
. In fact,

the following relation holds for all t ∈M and f ∈ P(M,p):

p
(
supMf, t

)
=
∧
s∈M

p(
(
(s� f(s)), t

)
=
∧
s∈M

(
f(s)↘ p(s, t)

)
= d(f, t̃).

Hence the underlying Q-preordered set (M,p) of a given right Q-module M is

always Q-enriched join-complete.

The next theorem characterizes those Q-homomorphisms which can be

lifted to a right Q-module homomorphism.

Theorem 3.2. Let M and N be right Q-modules with the respective intrinsic

preorders p and q. Further, let (M,p)
h−→ (N, q) be a Q-homomorphism. Then

M
h−→ N is a right Q-module homomorphism if and only if h has a right

adjoint Q-homomorphism.

Proof. (a) If M
h−→ N is a right Q-module homomorphism, then its right

adjoint Q-homomorphism N
h`

−−→M is defined by:

h`(s) = supMq(h( ), s) =
∨
t∈M

t� q(h(t), s), s ∈ N.

Since h is a right Q-module homomorphism, the relation h ◦ h` 6 idN holds.

Hence the relation

q(h(t), s) 6 p(t, t� q(h(t), s)) 6 p(t, h`(s)) 6 q(h(t), s)

follows for all t ∈M and s ∈ N . Hence h` is right adjoint to h.

(b) If h is a Q-homomorphism, then h(t)α 6 h(tα) holds for all α ∈ Q and

t ∈ M (cf. [2, Proposition 3.3.23]). Now let h` be the right adjoint Q-homo-

morphism of h. Then we obtain for α ∈ Q and t ∈M :

α 6 q(h(t), h(t)α) = p
(
t, h`(h(t)α)

)
.

Hence the relation h(tα) 6 h(h`(h(t)α)) 6 h(t)α follows, and so h is a right

Q-module homomorphism. �

Remark 3.3 (Self-duality of Modr(Q)). Let Q be a unital and involutive

quantale and M be a right Q-module with its intrinsic Q-preorder p. On Mop

there exists a right action �op determined by:

t�op α =
∨
{s ∈M | sα′ 6 t}, t ∈M, α ∈ Q. (3.3)

The right Q-module (Mop,�op) is also called the dual right Q-module of M .

In particular, the intrinsic Q-preorder of (Mop,�op) coincides with the dual

Q-preorder pop of p.
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The object function (M,�) 7−→ (Mop,�op) can be completed to a contrava-

riant endofunctor S of Modr(Q) as follows:

M
h−→ N, Nop S(h)−−−→Mop, S(h) = h`,

where Nop h`

−−→ Mop is the right adjoint map of h. It is not difficult to show

that h` is a right Q-module homomorphism. Since S ◦S = idModr(Q) holds, S
is a self-duality of Modr(Q).

We finish this section with the introduction of the Q-valued totally below

relation. Therefore we fix a right Q-module M with its intrinsic Q-preorder

p. Then the Q-valued totally below relation M ×M C−→ Q is defined by:

C(s, t) =
∧

f∈P(M,p)

(f(s)↙ p(t, supMf)), s, t ∈M.

It is not difficult to show that C satisfies the following properties for all

r, s, t, u ∈M :

(1) p(r, s) ∗C(s, t) 6 C(r, t).

(2) C(s, t) ∗ p(t, u) 6 C(s, u).

Hence C( , t) is a contravariant Q-presheaf on (M,p), and the correspondence

t 7−→ C( , t) is a Q-homomorphism from (M,p) to (P(M,p), d).

Since
∧
r∈M (r̃(s) ↙ p(t, supM r̃)) = p(s, t), the definition of C implies:

C(s, t) 6 p(s, t), and consequently we have:

supM C( , t) 6 t, t ∈M.

Referring again to the definition of C we obtain for t ∈M and f ∈ P(M,p):

p(t, supMf) 6
∧
s∈M

(C(s, t)↘ f(s)) = d(C( , t), f).

Hence t 7−→ C( , t) is left adjoint to supM if and only if

d(C( , t), f) 6 p(t, supMf), t ∈M, f ∈ P(M,p),

if and only if t 6 supM C( , t) for all t ∈M .

This observation is a motivation to introduce the following terminology.

The Q-valued totally below relation C is approximating, if

t = supM C( , t), t ∈M.

Hence we can summarize the previous results as follows. The correspondence

t 7−→ C( , t) is left adjoint to supM if and only if C is approximating.

Finally, if we replace Q by the unique unital quantale 2 on {0, 1}, then

C is the characteristic function of the traditional totally below relation of

complete lattices. Further, it is well know that a complete lattice is completely

distributive if and only if t 7−→ {s ∈ M | s C t} is left adjoint to sup (cf.

[6]). Hence the previous results suggest to call a right Q-module Q-enriched

completely distributive, if its Q-valued totally below relation is approximating.
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4. A survey on the characterization of projective right Q-modules

First we recall that surjective right Q-module homomorphisms, epimor-

phisms and regular epimorphisms are equivalent concepts in Modr(Q) (see

also [2, Fact II on p. 218]). Moreover, a retract of a projective object in

Modr(Q) is again projective (cf. [1, Proposition 4.6.4]).

The following results has been obtain by I. Stubbe in a more general context

given by quantaloid enriched categories. Here we recall these results (cf. [8,

Lemma 3.2, Proposition 4.1 and Proposition 5.4]) in a quantale-setting.

Lemma 4.1. The free right Q-module P(X, p) of all contravariant Q-pre-

sheaves on (X, p) is projective.

Theorem 4.2. Let M be a right Q-module. Then the following assertions are

equivalent :

(i) M is a projective object in Modr(Q).

(ii) supM has a left adjoint Q-homomorphism.

(iii) The Q-valued totally below relation C is approximating.

Hence projective right Q-modules and Q-enriched completely distributive

right Q-modules are equivalent concepts.

5. Projective right Q-modules and the self-duality in Mod(Q)r

The next theorem presents a sufficient condition that projective right Q-mo-

dules are preserved under duality in Modr(Q).

Theorem 5.1. Let Q be a unital and involutive quantale andM be a projective

right Q-module. If Q has a dualizing element, then the dual right Q-module

Mop is again projective.

The proof of Theorem 5.1 is based on a sequence of further results. First we

fix a Q-preordered set (X, p) and examine the structure of the right Q-module(
P†(X, p)

)op
(cf. Example 3.1).

Theorem 5.2. Let Q be a unital quantale with a dualizing element and (X, p)

be a Q-preordered set. Then the right Q-module
(
P†(X, p)

)op
is projective.

Proof. Let δ be a dualizing element in Q, and d† be the intrinsic Q-preorder

of the right Q-module
(
P†(X, p)

)op
. For x ∈ X and f ∈ P†(X, p) we observe:

d†(δ ↙ p( , x), f) =
∧
y∈X

((δ ↙ p(y, x))↙ f(y))

=
∧
y∈X

(δ ↙ (f(y) ∗ p(y, x)))

= δ ↙
( ∨
y∈X

(f(y) ∗ p(y, x))
)

= δ ↙ f(x).
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The previous property motivates the following notation:

x = δ ↙ p( , x), x ∈ X.

Since δ is a dualizing element in Q, we can express the Q-enriched join of any

contravariant Q-presheaf F on (P†(X, p), d†) as follows:(
sup(P†(X,p))opF

)
(x) =

op∨
f∈P†(X,p)

(F (f)↘ f(x))

=
∧

f∈P†(X,p)

((
(δ ↙ f(x)) ∗ F (f)

)
↘ δ

)
=
( ∨
f∈P†(X,p)

(d†(x, f) ∗ F (f))
)
↘ δ

= F (x)↘ δ.

This motivates the following construction. Referring to (2.1) we first observe

for each f ∈ P†(X, p) and F ∈ P
(
P†(X, p), d†

)
:

d†
(
f, sup(P†(X,p))opF

)
=
∧
x∈X

(f(x)↙ (F (x)↘ δ))

=
∧
x∈X

((δ ↙ f(x))↘ F (x))

=
∧
x∈X

(d†(x, f)↘ F (x))

=
∧
x∈X

(
d†(x, f)↘

( ∧
g∈P†(X,p)

(d†(g, x)↘ F (g))
))

=
∧

g∈P†(X,p)

(( ∨
x∈X

d†(g, x) ∗ d†(x, f)
)
↘ F (g)

)
.

Hence the Q-homomorphism (P†(X, p), d†)
ψ−→
(
P(P†(X, p), d†), d

)
given by(

ψ(f)
)
(g) =

∨
x∈X

(d†(g, x) ∗ d†(x, f)), f, g ∈ P†(X, p)

is left adjoint to sup(P†(X,p))op . Consequently we conclude from Theorem 4.2

that (P†(X, p))op is projective. �

Remark 5.3. Let Q be a unital quantale and {·} be a singleton provided with

the discrete Q-preorder p0(·, ·) = 1. It is easily seen that the right Q-module(
P†({·}, p0)

)op
is isomorphic to the right Q-module (Qop,�) where the right

action is determined by α�β = β ↘ α. Referring to Example 3.1 the intrinsic

Q-preorder p of (Qop,�) has the form

p(α, β) =
∨
{γ ∈ Q | α� γ 6op β} =

∨
{γ ∈ Q | γ ↘ α ≥ β} = α↙ β

and the formation of Q-enriched joins in (Qop,�) is given by

supQopf =
∧
β∈Q

(
f(β)↘ β

)
, f ∈ P(Qop, p).

If Q has additionally a dualizing element δ, then we conclude from the proof

of Theorem 5.2 that the Q-valued totally below relation of (Qop,�) has the
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following form

C(β, α) = (β ↙ δ) ∗ (δ ↙ α), α, β ∈ Q.

Theorem 5.4. Let Q be a unital and involutive quantale. Then the involution
′ is a right Q-module isomorphism from

(
P(X, p)

)op
to
(
P†(X, pop)

)op
.

Proof. First we notice that f ∈ P(X, p) if and only if f ′ ∈ P†(X, pop). Then

for f ∈ P(X, p) and α ∈ Q the following relation holds:(
f �op α

)′
=
(
f ↙ α′

)′
= α↘ f ′ = f ′α. �

Proof of Theorem 5.1. Let M be a projective right Q-module with its intrinsic

Q-preorder p. Then we conclude from Theorem 4.2 that the Q-valued totally

below relation is approximating. Hence the Q-homomorphism

(M,p)
h−→ (P(M,p), d) determined by

h(t) = C( , t), t ∈M

is left adjoint to supM and is consequently a right Q-module homomorphism

(cf. Theorem 3.2).

Now we apply the self-duality in Modr(Q) (cf. Remark 3.3), and obtain the

following situation. Since h is a section of supM , then (supM )` is a section of

h` and consequently

P(M,p)op
h`

−−→Mop

is a retraction. Since P(M,p)op is projective (cf. Theorems 5.2 and 5.4), Mop is

a retraction of a projective right Q-module, and is therefore also projective. �

In what follows we investigate the question whether the existence of a dual-

izing element in the underlying unital and involutive quantale is also necessary

for the property that the self-duality preserves projective right Q-modules.

First we need some more terminology. Motivated by the previous results we

make the following

Standing Assumption: For the remaining part of this section every quantale

is unital and involutive.

Definition 5.5. Let C be the Q-valued totally below relation of the right

Q-module (Qop,�) (cf. Remark 5.3). An element δ ∈ Q is called designated if

the relation

C(β, α) 6
(
(β ↙ δ) ∗ (δ ↙ α)

)
∧
(
(β ↙ δ′) ∗ (δ′ ↙ α)

)
holds for all α, β ∈ Q.

If δ is dualizing, then also δ′ is dualizing. Hence we infer from Remark 5.3

that every dualizing element of a unital and involutive quantale is designated.

However, the converse is not always true, as the next lemma demonstrates.

Lemma 5.6. The universal lower bound of every integral and involutive quan-

tale is designated.
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Proof. By Remark 5.3 we have that supQop⊥ = ⊥ ↘ ⊥ = >, and since > is

the unit in Q, p(α,>) = α↙ > = α. Hence

C(β, α) 6 ⊥(β)↙ p(α, supM⊥) = ⊥ ↙ α = (β ↙ ⊥) ∗ (⊥ ↙ α)

for all α, β ∈ Q. Since ⊥ is hermitian — i.e. ⊥ = ⊥′, ⊥ is designated. �

We recall that the product of two unital (involutive) quantales is again

unital (involutive) relative to the componentwise ordering and multiplication.

Proposition 5.7. Let Q1 and Q2 be quantales such that Q1 is integral, ⊥ is

the universal lower bound in Q1 and δ is a dualizing element in Q2. Then

(⊥, δ) is a designated element of Q1 ×Q2.

Proof. Let ∗1 and ∗2 be the respective multiplications in Q1 and Q2. The

left implication in Q1 × Q2 will be also denoted by ↙. If p is the intrinsic

Q1 × Q2-preorder of
(
(Q1 × Q2)op,�

)
, then for αi, βi ∈ Qi (i=1,2) we have

the following simple relation:

p
(
(α1, α2), (β1, β2)

)
= (α1, α2)↙ (β1, β2) = (α1 ↙ β1, α2 ↙ β2).

We fix (α1, α2) ∈ Q1 ×Q2 and define a contravariant Q1 ×Q2-presheaf f on(
(Q1 ×Q2)op, p

)
as follows:

f(β1, β2) =
(
⊥, (β2 ↙ δ) ∗2 (δ ↙ α2)

)
(β1, β2) ∈ Q1 ×Q2

Since δ is dualizing in Q2, it is easily seen that the relation

α2 = (δ ↙ α2)↘ δ = sup(Q2)op
(
( ↙ δ) ∗2 (δ ↙ α2)

)
=

∧
β2∈Q2

(
((β2 ↙ δ) ∗2 (δ ↙ α2))↘ β2

)
.

(5.1)

holds. Hence sup(Q1×Q2)opf = (>, α2) follows, where > is the universal upper

bound in Q1. Now observe:

C
(
(β1, β2), (α1, α2)

)
6 f(β1, β2)↙ p

(
(α1, α2), (>, α2)

)
= f(β1, β2)↙

(
(α1, α2)↙ (>, α2)

)
6 f(β1, β2)↙ (α1, 1)

=
(
(⊥ ↙ α1), ((β2 ↙ δ) ∗2 (δ ↙ α2))

)
=
(
(β1 ↙ ⊥) ∗1 (⊥ ↙1 α1)), ((β2 ↙ δ) ∗2 (δ ↙ α2))

)
=
(
(β1, β2)↙ (⊥, δ)

)
∗
(
(⊥, δ)↙ (α1, α2)

)
.

Since δ′ is also dualizing and (⊥, δ)′ = (⊥, δ′), we also have

C
(
(β1, β2), (α1, α2)

)
6
(
(β1, β2)↙ (⊥, δ)′

)
∗
(
(⊥, δ)′ ↙ (α1, α2)

)
.

Thus (⊥, δ) is a designated value of Q1 ×Q2. �

The next example is an illustration of Proposition 5.7.
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Example 5.8. Let C3 = {⊥, a,>} be the chain consisting of three elements.

It is well know that on C3 there exist three unital quantales Qi = (C3, ∗i)
(i=1,2,3), (see [2, (9), (16) and (19) in Exercise 2.2.1 and Exercise 2.3.1]),

which are all commutative. Thus as involution we choose the identity map on

all three of them. The first two of them are integral, and in this context ∗1
denotes the multiplication of the MV -algebra with three elements, while ∗2
represents the binary minimum. The third unital quantale is non-integral and

consequently the unit coincides with a. It is easy to see that a is the dualizing

element in Q3. Then we have the following situation:

(i) The unital quantale Q1 ×Q3 is non-integral and commutative, and has

(⊥, a) as designated element, which is dualizing in Q1 × Q3. Hence

Q1 ×Q3 is a non-integral and commutative Girard quantale (cf. [2]).

(ii) The unital quantale Q2 × Q3 is non-integral and commutative and has

(⊥, a) as designated element, which is not dualizing in Q2 ×Q3.

After this digression on designated elements, we give now an answer to the

question to which existent the existence of a dualizing element is necessary for

the property that the self-duality in Modr(Q) preserves projectivity.

Theorem 5.9. Let Q be a unital and involutive quantale. If the self-duality

in Modr(Q) preserves projectivity — i.e. if M is projective, then also Mop is

projective, then any designated element of Q is dualizing.

Proof. Since P({·}, p0) is projective (cf. Lemma 4.1), the dual right Q-module(
P(X, p0)

)op
is projective. Consequently (Qop,�) is also projective (cf. Theo-

rem 5.4 and Remark 5.3).

Let δ ∈ Q be a designated element of Q. For each α ∈ Q we consider the

contravariant Q-presheaves fα and gα on (Qop, p) defined by

fα(β) = (β ↙ δ) ∗ (δ ↙ α) and gα(β) = (β ↙ δ′) ∗ (δ′ ↙ α), β ∈ Q.

Obviously, the following relation holds (cf. (5.1)):

supQopfα =
∧
β∈Q

(fα(β)↘ β) = (δ ↙ α)↘ δ.

Since δ is designated we have that C( , α) 6 fα and since the Q-valued totally

below relation C in (Qop,�) is approximating, we obtain:

α = supQop C( , α) 6op supQopfα = (δ ↙ α)↘ δ.

Hence (δ ↙ α)↘ δ 6 α follows.

If in the previous argumentation we replace fα by gα, then we also obtain

(δ′ ↙ α′)↘ δ′ 6 α′ — i.e. δ ↙ (α↘ δ) 6 α. Thus δ is dualizing in Q. �

The results of this section can be summarized in the following

Theorem 5.10. Let Q be a unital and involutive quantale with a designated

element. The self-duality in Modr(Q) preserves projectivity if and only if Q

has a dualizing element.
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In particular by Lemma 5.6 we have:

Corollary 5.11. Let Q be an integral and involutive quantale. The self-duality

in Modr(Q) preserves projectivity if and only if ⊥ is the dualizing element of

Q.

The previous Theorem and Corollary are a far reaching extension of the

equivalence (i) ⇐⇒ (ii) in [4, Theorem 8.2] from the class of integral and

commutative quantales to the class of unital and involutive (and in general

non-integral and non-commutative) quantales with a designated element.

As a confirmation of this statement we first recall that the quantale Q3 from

Example 5.8 is involutive and unital (but non-integral) and has a dualizing

element. Consequently, it follows from Theorem 5.10 that the self-duality in

Modr(Q3) preserves projectivity.

Finally, we include two examples of unital, involutive and non-commutative

quantales Q such that the self-duality in Modr(Q) preserves projectivity.

Examples 5.12. (1) (Cf. [2, Exercise 2.6.5]) Let us consider a complete lattice

Q = {⊥, β, a, b, c, α,>} endowed with a multiplication ∗, where the Hasse

diagram and the multiplication table of ∗ are given by:

>

α

a b c

β

⊥

∗ ⊥ β a b c α >
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
β ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ β

a ⊥ ⊥ β ⊥ β β a

b ⊥ ⊥ β β ⊥ β b

c ⊥ ⊥ ⊥ β β β c

α ⊥ ⊥ β β β β α

> ⊥ β a b c α >
Obviously Q is an integral, involutive and non-commutative quantale, where

the involution ′ is defined by >′ = >, α′ = α, a′ = a, b′ = c, c′ = b, β′ = β

and ⊥′ = ⊥. Finally, since ⊥ is dualizing, it follows from Corollary 5.11 that

the self-duality in Modr(Q) preserves projectivity.

(2) (Cf. [2, Exercise 2.6.2]) Let C3 = {⊥, a,>} be the chain consisting of three

elements. Then C3 has a unique order-reversing involution, and consequently

the unital quantale of all join-preserving self-maps of C3 is an involutive Girard

quantale. The Hasse diagram and the multiplication table have following

form:

>

1

a` ar

b

⊥

∗ ⊥ b a` ar 1 >
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
b ⊥ ⊥ b ⊥ b ar
a` ⊥ ⊥ a` ⊥ a` >
ar ⊥ b b ar ar ar
1 ⊥ b a` ar 1 >
> ⊥ a` a` > > >
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Obviously Q is an unital, involutive and non-integral and non-commutative

quantale, where the involution ′ is defined by >′ = >, 1′ = 1, a′` = ar, a
′
r = a`,

b′ = b and ⊥′ = ⊥. Finally, since b is dualizing, it follows from Theorem 5.10

that the self-duality in Modr(Q) preserves projectivity.

The previous construction can be generalized, if we replace C3 be any

completely distributive lattice with an order-reversing involution (cf. Exam-

ple 2.3.31 on p. 107–108 and Example 2.6.16 on p. 173–175 in [2]).
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