The preservation of projective right modules in Sup under duality

JAVIER GUTIÉRREZ GARCÍA, ULRICH HÖHLE, AND TOMASZ KUBIAK

ABSTRACT. Starting from enriched order-theoretic properties of right modules over a unital quantale in the category Sup, this paper presents the following theorem. If the underlying quantale is unital and involutive with a designated element, then the duality of right modules preserves projectivity if and only if the underlying quantale has a dualizing element.

1. Introduction

It follows from the work by I. Stubbe (cf. [7, 8]) that projective right modules over a unital quantale \mathfrak{Q} (projective right \mathfrak{Q} -modules for short) are enriched completely distributive and enriched join-complete \mathfrak{Q} -preordered sets. Hence the question arises under which necessary and sufficient condition the projectivity of right \mathfrak{Q} -modules is preserved under duality. In the topostheoretic context we have a positive answer, and the necessary and sufficient condition can be expressed by the requirement that the order-theoretic structure of the subobject classifier is Boolean (cf. [9]). A continuation of these investigations has been carried out by H. Lai and L. Shen. In the context of integral and commutative quantales they proved that the duality preserves projective right \mathfrak{Q} -modules if and only if the underlying quantale is given by an integral and commutative Girard quantale (cf. [4, Theorem 8.2]).

In this paper we give a rather complete answer to this dualization problem. In the general framework of unital and involutive quantales with a designated element we show that the duality in the category of right Ω -modules preserves projective right Ω -modules if and only if the underlying quantale has a dualizing element (cf. Section 5). We prepare this result by a short survey on enriched order-theoretic properties of right Ω -modules (cf. Section 3).

2. Preliminaries

In order to fix notation we first recall some basic facts of the theory of quantales and quantale-valued preordered sets. For more details the reader is referred to [2].

²⁰¹⁰ Mathematics Subject Classification: Primary: 06F07; Secondary: 18D20, 03G10. Key words and phrases: unital and involutive quantale, (dual) right module over a unital quantale, projectivity, (dual) enriched preorder, enriched join-completeness.

Let Sup be the symmetric and monoidal closed category of complete lattices and join-preserving maps. A unital quantale $\mathfrak{Q} = (\mathfrak{Q}, *, 1)$ is a monoid in Sup. Due to the universal property of the tensor product \otimes in Sup the multiplication in \mathfrak{Q} can be identified with a binary map $\mathfrak{Q} \times \mathfrak{Q} \xrightarrow{*} \mathfrak{Q}$ such that $(\mathfrak{Q}, *, 1)$ is a monoid in Set and * is join-preserving in each variable separately — i.e. the following relations hold for $\alpha, \beta \in \mathfrak{Q}$ and $A, B \subseteq M$:

$$\alpha*(\bigvee B)=\bigvee_{\beta\in B}(\alpha*\beta),\qquad (\bigvee A)*\beta=\bigvee_{\alpha\in A}(\alpha*\beta).$$

A unital quantale \mathfrak{Q} is *integral* if the universal upper bound coincides with the unit of \mathfrak{Q} , and \mathfrak{Q} is *involutive* if there exists an order-preserving involution ' on \mathfrak{Q} , which is also an anti-homomorphisms — i.e.

$$(\alpha * \beta)' = \beta' * \alpha', \qquad \alpha, \beta \in \mathfrak{Q}$$

The right and the left implications of a quantale \mathfrak{Q} are given by:

$$\alpha \searrow \beta = \bigvee \{ \gamma \in \mathfrak{Q} \mid \alpha * \gamma \leqslant \beta \}, \qquad \beta \swarrow \alpha = \bigvee \{ \gamma \in \mathfrak{Q} \mid \gamma * \alpha \leqslant \beta \},$$

where $\alpha, \beta \in \mathfrak{Q}$. An element δ of \mathfrak{Q} is *dualizing*, if δ satisfies the following property:

$$(\delta \swarrow \alpha) \searrow \delta = \alpha = \delta \swarrow (\alpha \searrow \delta), \qquad \alpha \in \mathfrak{Q}.$$

For every dualizing element δ the following relation holds:

$$(\delta \swarrow \alpha) \searrow \beta = \alpha \swarrow (\beta \searrow \delta), \qquad \alpha, \beta \in \mathfrak{Q}.$$

$$(2.1)$$

Let \mathfrak{Q} be a unital quantale and X be a set. A \mathfrak{Q} -preorder on X is map $X \times X \xrightarrow{p} \mathfrak{Q}$ satisfying the following axioms:

(P1)
$$1 \le p(x, x), \quad x \in X,$$
 (Reflexivity)
(P2) $p(x, y) + p(x, y) \le p(x, y), \quad x \in Y.$ (Transitivity)

(P2)
$$p(x,y) * p(y,z) \leq p(x,z), \quad x, y, z \in X.$$
 (Transitivity)

If p is \mathfrak{Q} -preorder on X, then the pair (X, p) is called a \mathfrak{Q} -preordered set.

Since every unital quantale \mathfrak{Q} can be viewed as a biclosed monoidal category, \mathfrak{Q} -enriched category theory based on \mathfrak{Q} is available. In this context \mathfrak{Q} -preordered sets are equivalent to \mathfrak{Q} -enriched categories. The reflexivity axiom (P1) corresponds to the axiom of \mathfrak{Q} -enriched identities and the axiom (P2) is equivalent to the \mathfrak{Q} -enriched composition law. Since every \mathfrak{Q} -enriched category has an underlying ordinary category, the underlying preorder \leq_p of a \mathfrak{Q} -preorder p has the following form:

$$\leq_p = \{(x, z) \in X \times X \mid 1 \leq p(x, z)\}.$$

A \mathfrak{Q} -preorder p on X is antisymmetric (or, the corresponding \mathfrak{Q} -enriched category is skeletal), if the underlying preorder \leq_q is antisymmetric. If $\mathfrak{Q} = (\mathfrak{Q}, *, 1, ')$ is a unital and involutive quantale, then also the *dual* \mathfrak{Q} -preorder p^{op} exists and is given by:

$$p^{op}(x,z) = p(z,x)', \qquad x, z \in X.$$

Morphisms between \mathfrak{Q} -preordered sets (X, p) and (Y, q) are \mathfrak{Q} -homomorphisms — these are maps $X \xrightarrow{\varphi} Y$ satisfying the condition

$$p(x_1, x_2) \leqslant q(\varphi(x_1), \varphi(x_2)), \qquad x_1, x_2 \in X$$

The related category is denoted by $\mathsf{Preord}(\mathfrak{Q})$ and is complete and cocomplete (cf. [2, p. 259]).

Adjointness between $\mathfrak{Q}\text{-}\mathrm{homomorphisms}$ can be expressed as follows.

 $(X,p) \xrightarrow{\varphi} (Y,q)$ is left adjoint to $(Y,q) \xrightarrow{\psi} (X,p)$ (resp. ψ is right adjoint to φ) if $q(\varphi(x), y) = p(x, \psi(y))$ for all $x, y \in X$.

Let (X, p) be a \mathfrak{Q} -preordered set. A map $X \xrightarrow{f} \mathfrak{Q}$ is called:

(a) a contravariant \mathfrak{Q} -presheaf on (X, p) if f is left-extensional w.r.t. p — i.e.

$$p(z,x) * f(x) \leq f(z), \qquad x, z \in X$$

(b) a covariant \mathfrak{Q} -presheaf on (X, p), if f is right-extensional w.r.t. p — i.e.

$$f(x) * p(x, z) \leq f(z), \qquad z, x \in X.$$

The complete lattices $\mathbb{P}(X, p)$ and $\mathbb{P}^{\dagger}(X, p)$ of all contravariant and covariant \mathfrak{Q} -presheaves on (X, p) are pointwisely ordered and provided with the following \mathfrak{Q} -preorders d and d^{\dagger} :

$$d(f_1, f_2) = \bigwedge_{x \in X} (f_1(x) \searrow f_2(x)), \qquad f_1, f_2 \in \mathbb{P}(X, p),$$

$$d^{\dagger}(g_1, g_2) = \bigwedge_{x \in X} (g_1(x) \swarrow g_2(x)), \qquad g_1, g_2 \in \mathbb{P}^{\dagger}(X, p)$$

The underlying preorder \leq_d coincides with the given order on $\mathbb{P}(X, p)$, while the underlying preorder $\leq_{d^{\dagger}}$ coincides with the opposite order on $\mathbb{P}^{\dagger}(X, p)$.

Finally, the \mathfrak{Q} -Yoneda embedding $(X, p) \xrightarrow{\eta_X} \mathbb{P}(X, p)$ is given by:

$$(\eta_X(x))(z) = \widetilde{x}(z) = p(z, x), \qquad x, z \in X.$$

Then (X, p) is \mathfrak{Q} -enriched join-complete if and only if η_X has a left adjoint \mathfrak{Q} -homomorphism, which is also call the formation of \mathfrak{Q} -enriched joins. On the basis of the axiom of choice, **2**-enriched join-completeness is equivalent to join-completeness in the traditional sense.

3. Right Q-modules in Sup and their enriched order structure

From a historical perspective it should be noted that for the first time module theory in Sup appeared in [3]. Here we are primarily interested in noncommutative and unital quantales \mathfrak{Q} . Hence a right \mathfrak{Q} -module $M = (M, \Box)$ is a complete lattice M provided with a right action $M \otimes \mathfrak{Q} \xrightarrow{\Box} M$ in the sense of Sup (for the general concept of of right actions in symmetric monoidal categories the reader is referred to [5]). Due to the universal property of the tensor product a right action \Box in Sup can be identified with a map $M \times \mathfrak{Q} \xrightarrow{\Box} M$, which is join-preserving in each variable separately and satisfies the following axioms for all $t \in M$ and $\alpha, \beta \in \mathfrak{Q}$: J. Gutiérrez García, U. Höhle, and T. Kubiak

$(M1) t \boxdot 1 = t,$	(Unity axiom)
(M2) $(t \boxdot \alpha) \boxdot \beta = t \boxdot (\alpha * \beta),$	(Associativity axiom)

In the following considerations we apply the subsequent notation as far as it is reasonable. Elements of the underlying unital quantale \mathfrak{Q} are denoted by α, β, \ldots , right \mathfrak{Q} -modules by M and N and their elements by t, s, \ldots . If the context is clear and no confusion is possible, we will write $t\alpha$ instead of $t \Box \alpha$.

A right $\mathfrak{Q}\text{-module}$ homomorphism is a join-preserving map $M\xrightarrow{h}N$ such that

$$h(t\alpha) = h(t)\alpha, \qquad t \in M, \, \alpha \in \mathfrak{Q}.$$

The related category is denoted by $\mathsf{Mod}_r(\mathfrak{Q})$.

Let M be a right \mathfrak{Q} -module. Since Sup has a self-duality given by the construction of right adjoint maps, we can compute the right adjoint map

$$M^{op} \xrightarrow{\Box^{\vdash}} (M \otimes \mathfrak{Q})^{op}$$

of the right action \Box (see also [2, Theorem 2.2.10] in the special case $M = \mathfrak{Q}$), and it follows immediately from the unit and associativity axiom of the right action \Box that the map $M \times M \xrightarrow{p} \mathfrak{Q}$ defined by:

$$p(s,t) = \left(\boxdot^{\vdash}(t) \right)(s) = \bigvee \{ \alpha \in \mathfrak{Q} \mid s\alpha \leqslant t \}, \qquad s,t \in M$$
(3.1)

is a \mathfrak{Q} -preorder on M, which we will call the *intrinsic* \mathfrak{Q} -preorder of M. Hence right \mathfrak{Q} -modules in Sup carry always the structure of a \mathfrak{Q} -preordered set, and every right \mathfrak{Q} -module homomorphism is always a \mathfrak{Q} -homomorphism w.r.t. the respective intrinsic \mathfrak{Q} -preorders. Thus there exists a natural forgetful functor from $\mathsf{Mod}_r(\mathfrak{Q})$ to $\mathsf{Preord}(\mathfrak{Q})$, which has a left adjoint functor.

Example 3.1. Let (X, p) be a \mathfrak{Q} -preordered set. On $\mathbb{P}(X, p)$ and on the dual lattice $(\mathbb{P}^{\dagger}(X, p))^{op}$ we introduce right actions determined as follows:

$$(f \boxdot \alpha)(x) = f(x) * \alpha, \qquad f \in \mathbb{P}(X, p), \, x \in X, \, \alpha \in \mathfrak{Q}, \\ (g \boxdot \alpha)(x) = \alpha \searrow g(x), \qquad g \in \mathbb{P}^{\dagger}(X, p), \, x \in X, \, \alpha \in \mathfrak{Q}.$$

In this way, $\mathbb{P}(X, p)$ is the *free right* \mathfrak{Q} -module generated by (X, p), and the intrinsic \mathfrak{Q} -preorder of $\mathbb{P}(X, p)$ coincides with d. Similarly, the intrinsic \mathfrak{Q} -preorder of the right \mathfrak{Q} -module $(\mathbb{P}^{\dagger}(X, p))^{op}$ coincides with d^{\dagger} .

The intrinsic \mathfrak{Q} -preorder p of a right \mathfrak{Q} -module M satisfies the following properties:

(1) The underlying preorder \leq_p coincides with the order on M.

(2) For $s, t \in M$ and $S, T \subseteq M$ the following relations hold:

$$\bigwedge_{s\in S} p(s,t) = p(\bigvee S,t) \quad \text{and} \quad \bigwedge_{t\in T} p(s,t) = p(s,\bigwedge T).$$

(3) $\alpha \searrow p(s,t) = p(s\alpha,t)$ for all $\alpha \in \mathfrak{Q}$ and $s, t \in M$.

4

Moreover, the right \mathfrak{Q} -module homomorphism $\mathbb{P}(M,p) \xrightarrow{\sup_M} M$ defined by

$$\sup_{M} f = \bigvee_{t \in M} t \boxdot f(t), \qquad f \in \mathbb{P}(M, p)$$
(3.2)

is left adjoint to the \mathfrak{Q} -Yoneda embedding $(M, p) \xrightarrow{\eta_M} (\mathbb{P}(M, p), d)$. In fact, the following relation holds for all $t \in M$ and $f \in \mathbb{P}(M, p)$:

$$p(\sup_M f, t) = \bigwedge_{s \in M} p(((s \boxdot f(s)), t)) = \bigwedge_{s \in M} (f(s) \searrow p(s, t)) = d(f, \widetilde{t}).$$

Hence the underlying \mathfrak{Q} -preordered set (M, p) of a given right \mathfrak{Q} -module M is always \mathfrak{Q} -enriched join-complete.

The next theorem characterizes those \mathfrak{Q} -homomorphisms which can be lifted to a right \mathfrak{Q} -module homomorphism.

Theorem 3.2. Let M and N be right \mathfrak{Q} -modules with the respective intrinsic preorders p and q. Further, let $(M, p) \xrightarrow{h} (N, q)$ be a \mathfrak{Q} -homomorphism. Then $M \xrightarrow{h} N$ is a right \mathfrak{Q} -module homomorphism if and only if h has a right adjoint \mathfrak{Q} -homomorphism.

Proof. (a) If $M \xrightarrow{h} N$ is a right \mathfrak{Q} -module homomorphism, then its right adjoint \mathfrak{Q} -homomorphism $N \xrightarrow{h^{\vdash}} M$ is defined by:

$$h^{\vdash}(s) = \sup_{M} q(h(_), s) = \bigvee_{t \in M} t \boxdot q(h(t), s), \qquad s \in N.$$

Since h is a right \mathfrak{Q} -module homomorphism, the relation $h \circ h^{\vdash} \leq \mathrm{id}_N$ holds. Hence the relation

$$q(h(t),s) \leqslant p(t,t \boxdot q(h(t),s)) \leqslant p(t,h^{\vdash}(s)) \leqslant q(h(t),s)$$

follows for all $t \in M$ and $s \in N$. Hence h^{\vdash} is right adjoint to h.

(b) If h is a \mathfrak{Q} -homomorphism, then $h(t)\alpha \leq h(t\alpha)$ holds for all $\alpha \in \mathfrak{Q}$ and $t \in M$ (cf. [2, Proposition 3.3.23]). Now let h^{\vdash} be the right adjoint \mathfrak{Q} -homomorphism of h. Then we obtain for $\alpha \in \mathfrak{Q}$ and $t \in M$:

$$\alpha \leqslant q(h(t), h(t)\alpha) = p(t, h^{\vdash}(h(t)\alpha)).$$

Hence the relation $h(t\alpha) \leq h(h^{\vdash}(h(t)\alpha)) \leq h(t)\alpha$ follows, and so h is a right \mathfrak{Q} -module homomorphism. \Box

Remark 3.3 (Self-duality of $\mathsf{Mod}_r(\mathfrak{Q})$). Let \mathfrak{Q} be a unital and involutive quantale and M be a right \mathfrak{Q} -module with its intrinsic \mathfrak{Q} -preorder p. On M^{op} there exists a right action \Box^{op} determined by:

$$t \boxdot^{op} \alpha = \bigvee \{ s \in M \mid s\alpha' \leqslant t \}, \qquad t \in M, \, \alpha \in \mathfrak{Q}.$$

$$(3.3)$$

The right \mathfrak{Q} -module (M^{op}, \Box^{op}) is also called the *dual right* \mathfrak{Q} -module of M. In particular, the intrinsic \mathfrak{Q} -preorder of (M^{op}, \Box^{op}) coincides with the *dual* \mathfrak{Q} -preorder p^{op} of p. The object function $(M, \boxdot) \mapsto (M^{op}, \boxdot^{op})$ can be completed to a contravariant endofunctor S of $\mathsf{Mod}_r(\mathfrak{Q})$ as follows:

$$M \xrightarrow{h} N, \quad N^{op} \xrightarrow{\mathcal{S}(h)} M^{op}, \quad \mathcal{S}(h) = h^{\vdash},$$

where $N^{op} \xrightarrow{h^{\vdash}} M^{op}$ is the right adjoint map of h. It is not difficult to show that h^{\vdash} is a right \mathfrak{Q} -module homomorphism. Since $\mathcal{S} \circ \mathcal{S} = \mathrm{id}_{\mathsf{Mod}_r(\mathfrak{Q})}$ holds, \mathcal{S} is a *self-duality* of $\mathsf{Mod}_r(\mathfrak{Q})$.

We finish this section with the introduction of the \mathfrak{Q} -valued totally below relation. Therefore we fix a right \mathfrak{Q} -module M with its intrinsic \mathfrak{Q} -preorder p. Then the \mathfrak{Q} -valued totally below relation $M \times M \xrightarrow{\lhd} \mathfrak{Q}$ is defined by:

$$\lhd(s,t) = \bigwedge_{f \in \mathbb{P}(M,p)} (f(s) \swarrow p(t, \sup_M f)), \qquad s,t \in M.$$

It is not difficult to show that \triangleleft satisfies the following properties for all $r, s, t, u \in M$:

(1)
$$p(r,s) * \triangleleft(s,t) \leq \triangleleft(r,t)$$
.

(2) $\triangleleft(s,t) * p(t,u) \leq \triangleleft(s,u).$

Hence $\triangleleft(_, t)$ is a contravariant \mathfrak{Q} -presheaf on (M, p), and the correspondence $t \longmapsto \triangleleft(_, t)$ is a \mathfrak{Q} -homomorphism from (M, p) to $(\mathbb{P}(M, p), d)$.

Since $\bigwedge_{r \in M} (\tilde{r}(s) \swarrow p(t, \sup_M \tilde{r})) = p(s, t)$, the definition of \triangleleft implies: $\triangleleft(s, t) \leq p(s, t)$, and consequently we have:

$$\sup_M \triangleleft(_, t) \leqslant t, \qquad t \in M.$$

Referring again to the definition of \triangleleft we obtain for $t \in M$ and $f \in \mathbb{P}(M, p)$:

$$p(t, \sup_M f) \leqslant \bigwedge_{s \in M} (\lhd(s, t) \searrow f(s)) = d(\lhd(_, t), f).$$

Hence $t \mapsto \triangleleft(_, t)$ is left adjoint to \sup_M if and only if

$$d(\triangleleft(_,t),f) \leqslant p(t, \sup_M f), \qquad t \in M, \ f \in \mathbb{P}(M,p),$$

if and only if $t \leq \sup_M \triangleleft(_, t)$ for all $t \in M$.

This observation is a motivation to introduce the following terminology. The \mathfrak{Q} -valued totally below relation \triangleleft is *approximating*, if

$$t = \sup_{M} \triangleleft(_, t), \qquad t \in M$$

Hence we can summarize the previous results as follows. The correspondence $t \mapsto \triangleleft(_, t)$ is left adjoint to \sup_M if and only if \triangleleft is approximating.

Finally, if we replace \mathfrak{Q} by the unique unital quantale **2** on $\{0, 1\}$, then \lhd is the characteristic function of the traditional totally below relation of complete lattices. Further, it is well know that a complete lattice is completely distributive if and only if $t \mapsto \{s \in M \mid s \triangleleft t\}$ is left adjoint to sup (cf. [6]). Hence the previous results suggest to call a right \mathfrak{Q} -module \mathfrak{Q} -enriched completely distributive, if its \mathfrak{Q} -valued totally below relation is approximating.

4. A survey on the characterization of projective right Q-modules

First we recall that surjective right \mathfrak{Q} -module homomorphisms, epimorphisms and regular epimorphisms are equivalent concepts in $\mathsf{Mod}_r(\mathfrak{Q})$ (see also [2, Fact II on p. 218]). Moreover, a retract of a projective object in $\mathsf{Mod}_r(\mathfrak{Q})$ is again projective (cf. [1, Proposition 4.6.4]).

The following results has been obtain by I. Stubbe in a more general context given by quantaloid enriched categories. Here we recall these results (cf. [8, Lemma 3.2, Proposition 4.1 and Proposition 5.4]) in a quantale-setting.

Lemma 4.1. The free right \mathfrak{Q} -module $\mathbb{P}(X,p)$ of all contravariant \mathfrak{Q} -presheaves on (X,p) is projective.

Theorem 4.2. Let M be a right \mathfrak{Q} -module. Then the following assertions are equivalent:

(i) M is a projective object in $\mathsf{Mod}_r(\mathfrak{Q})$.

- (ii) \sup_M has a left adjoint \mathfrak{Q} -homomorphism.
- (iii) The \mathfrak{Q} -valued totally below relation \triangleleft is approximating.

Hence projective right \mathfrak{Q} -modules and \mathfrak{Q} -enriched completely distributive right \mathfrak{Q} -modules are equivalent concepts.

5. Projective right \mathfrak{Q} -modules and the self-duality in $\mathsf{Mod}(\mathfrak{Q})_r$

The next theorem presents a sufficient condition that projective right \mathfrak{Q} -modules are preserved under duality in $\mathsf{Mod}_r(\mathfrak{Q})$.

Theorem 5.1. Let \mathfrak{Q} be a unital and involutive quantale and M be a projective right \mathfrak{Q} -module. If \mathfrak{Q} has a dualizing element, then the dual right \mathfrak{Q} -module M^{op} is again projective.

The proof of Theorem 5.1 is based on a sequence of further results. First we fix a \mathfrak{Q} -preordered set (X, p) and examine the structure of the right \mathfrak{Q} -module $(\mathbb{P}^{\dagger}(X, p))^{op}$ (cf. Example 3.1).

Theorem 5.2. Let \mathfrak{Q} be a unital quantale with a dualizing element and (X, p) be a \mathfrak{Q} -preordered set. Then the right \mathfrak{Q} -module $(\mathbb{P}^{\dagger}(X, p))^{op}$ is projective.

Proof. Let δ be a dualizing element in \mathfrak{Q} , and d^{\dagger} be the intrinsic \mathfrak{Q} -preorder of the right \mathfrak{Q} -module $(\mathbb{P}^{\dagger}(X, p))^{op}$. For $x \in X$ and $f \in \mathbb{P}^{\dagger}(X, p)$ we observe:

$$\begin{split} d^{\dagger}(\delta \swarrow p(\underline{\ }, x), f) &= \bigwedge_{y \in X} \left(\left(\delta \swarrow p(y, x) \right) \swarrow f(y) \right) \\ &= \bigwedge_{y \in X} \left(\delta \swarrow \left(f(y) * p(y, x) \right) \right) \\ &= \delta \swarrow \left(\bigvee_{y \in X} \left(f(y) * p(y, x) \right) \right) \\ &= \delta \swarrow f(x). \end{split}$$

The previous property motivates the following notation:

$$\overline{x} = \delta \swarrow p(\underline{\ }, x), \qquad x \in X$$

Since δ is a dualizing element in \mathfrak{Q} , we can express the \mathfrak{Q} -enriched join of any contravariant \mathfrak{Q} -presheaf F on $(\mathbb{P}^{\dagger}(X, p), d^{\dagger})$ as follows:

$$(\sup_{(\mathbb{P}^{\dagger}(X,p))^{op}} F)(x) = \bigvee_{f \in \mathbb{P}^{\dagger}(X,p)}^{op} (F(f) \searrow f(x))$$
$$= \bigwedge_{f \in \mathbb{P}^{\dagger}(X,p)} (((\delta \swarrow f(x)) * F(f)) \searrow \delta)$$
$$= (\bigvee_{f \in \mathbb{P}^{\dagger}(X,p)} (d^{\dagger}(\overline{x},f) * F(f))) \searrow \delta$$
$$= F(\overline{x}) \searrow \delta.$$

This motivates the following construction. Referring to (2.1) we first observe for each $f \in \mathbb{P}^{\dagger}(X, p)$ and $F \in \mathbb{P}(\mathbb{P}^{\dagger}(X, p), d^{\dagger})$:

$$\begin{split} d^{\dagger}\big(f, \sup_{(\mathbb{P}^{\dagger}(X, p))^{op}} F\big) &= \bigwedge_{x \in X} \left(f(x) \swarrow (F(\overline{x}) \searrow \delta)\right) \\ &= \bigwedge_{x \in X} \left((\delta \swarrow f(x)) \searrow F(\overline{x})\right) \\ &= \bigwedge_{x \in X} \left(d^{\dagger}(\overline{x}, f) \searrow F(\overline{x})\right) \\ &= \bigwedge_{x \in X} \left(d^{\dagger}(\overline{x}, f) \searrow \left(\bigwedge_{g \in \mathbb{P}^{\dagger}(X, p)} \left(d^{\dagger}(g, \overline{x}) \searrow F(g)\right)\right)\right) \\ &= \bigwedge_{g \in \mathbb{P}^{\dagger}(X, p)} \left(\left(\bigvee_{x \in X} d^{\dagger}(g, \overline{x}) * d^{\dagger}(\overline{x}, f)\right) \searrow F(g)\right). \end{split}$$

Hence the \mathfrak{Q} -homomorphism $(\mathbb{P}^{\dagger}(X,p), d^{\dagger}) \xrightarrow{\psi} (\mathbb{P}(\mathbb{P}^{\dagger}(X,p), d^{\dagger}), d)$ given by

$$\big(\psi(f)\big)(g) = \bigvee_{x \in X} (d^{\dagger}(g, \overline{x}) \ast d^{\dagger}(\overline{x}, f)), \qquad f, g \in \mathbb{P}^{\dagger}(X, p)$$

is left adjoint to $\sup_{(\mathbb{P}^{\dagger}(X,p))^{op}}$. Consequently we conclude from Theorem 4.2 that $(\mathbb{P}^{\dagger}(X,p))^{op}$ is projective.

Remark 5.3. Let \mathfrak{Q} be a unital quantale and $\{\cdot\}$ be a singleton provided with the discrete \mathfrak{Q} -preorder $p_0(\cdot, \cdot) = 1$. It is easily seen that the right \mathfrak{Q} -module $(\mathbb{P}^{\dagger}(\{\cdot\}, p_0))^{op}$ is isomorphic to the right \mathfrak{Q} -module $(\mathfrak{Q}^{op}, \Box)$ where the right action is determined by $\alpha \Box \beta = \beta \searrow \alpha$. Referring to Example 3.1 the intrinsic \mathfrak{Q} -preorder p of $(\mathfrak{Q}^{op}, \Box)$ has the form

$$p(\alpha,\beta) = \bigvee \{ \gamma \in \mathfrak{Q} \mid \alpha \boxdot \gamma \leqslant^{op} \beta \} = \bigvee \{ \gamma \in \mathfrak{Q} \mid \gamma \searrow \alpha \ge \beta \} = \alpha \swarrow \beta$$

and the formation of \mathfrak{Q} -enriched joins in $(\mathfrak{Q}^{op}, \Box)$ is given by

$$\sup_{\mathfrak{Q}^{op}} f = \bigwedge_{\beta \in \mathfrak{Q}} \left(f(\beta) \searrow \beta \right), \qquad f \in \mathbb{P}(\mathfrak{Q}^{op}, p).$$

If \mathfrak{Q} has additionally a dualizing element δ , then we conclude from the proof of Theorem 5.2 that the \mathfrak{Q} -valued totally below relation of $(\mathfrak{Q}^{op}, \boxdot)$ has the following form

$$\triangleleft(\beta,\alpha) = (\beta \swarrow \delta) * (\delta \swarrow \alpha), \qquad \alpha, \beta \in \mathfrak{Q}.$$

Theorem 5.4. Let \mathfrak{Q} be a unital and involutive quantale. Then the involution ' is a right \mathfrak{Q} -module isomorphism from $(\mathbb{P}(X,p))^{op}$ to $(\mathbb{P}^{\dagger}(X,p^{op}))^{op}$.

Proof. First we notice that $f \in \mathbb{P}(X, p)$ if and only if $f' \in \mathbb{P}^{\dagger}(X, p^{op})$. Then for $f \in \mathbb{P}(X, p)$ and $\alpha \in \mathfrak{Q}$ the following relation holds:

$$(f \boxdot^{op} \alpha)' = (f \swarrow \alpha')' = \alpha \searrow f' = f'\alpha.$$

Proof of Theorem 5.1. Let M be a projective right \mathfrak{Q} -module with its intrinsic \mathfrak{Q} -preorder p. Then we conclude from Theorem 4.2 that the \mathfrak{Q} -valued totally below relation is approximating. Hence the \mathfrak{Q} -homomorphism $(M, p) \xrightarrow{h} (\mathbb{P}(M, p), d)$ determined by

$$h(t) = \triangleleft(_, t), \qquad t \in M$$

is left adjoint to \sup_M and is consequently a right \mathfrak{Q} -module homomorphism (cf. Theorem 3.2).

Now we apply the self-duality in $\mathsf{Mod}_r(\mathfrak{Q})$ (cf. Remark 3.3), and obtain the following situation. Since h is a section of \sup_M , then $(\sup_M)^{\vdash}$ is a section of h^{\vdash} and consequently

$$\mathbb{P}(M,p)^{op} \xrightarrow{h'} M^{op}$$

is a retraction. Since $\mathbb{P}(M, p)^{op}$ is projective (cf. Theorems 5.2 and 5.4), M^{op} is a retraction of a projective right \mathfrak{Q} -module, and is therefore also projective. \Box

In what follows we investigate the question whether the existence of a dualizing element in the underlying unital and involutive quantale is also necessary for the property that the self-duality preserves projective right \mathfrak{Q} -modules. First we need some more terminology. Motivated by the previous results we make the following

Standing Assumption: For the remaining part of this section every quantale is *unital and involutive*.

Definition 5.5. Let \triangleleft be the \mathfrak{Q} -valued totally below relation of the right \mathfrak{Q} -module (\mathfrak{Q}^{op}, \Box) (cf. Remark 5.3). An element $\delta \in \mathfrak{Q}$ is called *designated* if the relation

$$\lhd (\beta, \alpha) \leqslant \left((\beta \swarrow \delta) * (\delta \swarrow \alpha) \right) \land \left((\beta \swarrow \delta') * (\delta' \swarrow \alpha) \right)$$

holds for all $\alpha, \beta \in \mathfrak{Q}$.

If δ is dualizing, then also δ' is dualizing. Hence we infer from Remark 5.3 that *every* dualizing element of a unital and involutive quantale is designated. However, the converse is not always true, as the next lemma demonstrates.

Lemma 5.6. The universal lower bound of every integral and involutive quantale is designated. *Proof.* By Remark 5.3 we have that $\sup_{\mathfrak{Q}^{op}} \perp = \perp \searrow \perp = \top$, and since \top is the unit in \mathfrak{Q} , $p(\alpha, \top) = \alpha \swarrow \top = \alpha$. Hence

$$\lhd(\beta,\alpha) \leqslant \underline{\bot}(\beta) \swarrow p(\alpha, \mathsf{sup}_M \underline{\bot}) = \bot \swarrow \alpha = (\beta \swarrow \bot) * (\bot \swarrow \alpha)$$

for all $\alpha, \beta \in \mathfrak{Q}$. Since \perp is hermitian — i.e. $\perp = \perp', \perp$ is designated. \Box

We recall that the product of two unital (involutive) quantales is again unital (involutive) relative to the componentwise ordering and multiplication.

Proposition 5.7. Let \mathfrak{Q}_1 and \mathfrak{Q}_2 be quantales such that \mathfrak{Q}_1 is integral, \perp is the universal lower bound in \mathfrak{Q}_1 and δ is a dualizing element in \mathfrak{Q}_2 . Then (\perp, δ) is a designated element of $\mathfrak{Q}_1 \times \mathfrak{Q}_2$.

Proof. Let $*_1$ and $*_2$ be the respective multiplications in \mathfrak{Q}_1 and \mathfrak{Q}_2 . The left implication in $\mathfrak{Q}_1 \times \mathfrak{Q}_2$ will be also denoted by \checkmark . If p is the intrinsic $\mathfrak{Q}_1 \times \mathfrak{Q}_2$ -preorder of $((\mathfrak{Q}_1 \times \mathfrak{Q}_2)^{op}, \boxdot)$, then for $\alpha_i, \beta_i \in \mathfrak{Q}_i$ (i=1,2) we have the following simple relation:

$$p((\alpha_1, \alpha_2), (\beta_1, \beta_2)) = (\alpha_1, \alpha_2) \swarrow (\beta_1, \beta_2) = (\alpha_1 \swarrow \beta_1, \alpha_2 \swarrow \beta_2).$$

We fix $(\alpha_1, \alpha_2) \in \mathfrak{Q}_1 \times \mathfrak{Q}_2$ and define a contravariant $\mathfrak{Q}_1 \times \mathfrak{Q}_2$ -presheaf f on $((\mathfrak{Q}_1 \times \mathfrak{Q}_2)^{op}, p)$ as follows:

$$f(\beta_1,\beta_2) = \left(\bot, (\beta_2 \swarrow \delta) *_2 (\delta \swarrow \alpha_2)\right) \qquad (\beta_1,\beta_2) \in \mathfrak{Q}_1 \times \mathfrak{Q}_2$$

Since δ is dualizing in \mathfrak{Q}_2 , it is easily seen that the relation

$$\alpha_{2} = (\delta \swarrow \alpha_{2}) \searrow \delta = \sup_{(\mathfrak{Q}_{2})^{op}} \left((_\checkmark \delta) *_{2} (\delta \swarrow \alpha_{2}) \right)$$
$$= \bigwedge_{\beta_{2} \in \mathfrak{Q}_{2}} \left(((\beta_{2} \swarrow \delta) *_{2} (\delta \swarrow \alpha_{2})) \searrow \beta_{2} \right).$$
(5.1)

holds. Hence $\sup_{(\mathfrak{Q}_1 \times \mathfrak{Q}_2)^{op}} f = (\top, \alpha_2)$ follows, where \top is the universal upper bound in \mathfrak{Q}_1 . Now observe:

Since δ' is also dualizing and $(\bot, \delta)' = (\bot, \delta')$, we also have

$$\triangleleft ((\beta_1, \beta_2), (\alpha_1, \alpha_2)) \leqslant ((\beta_1, \beta_2) \swarrow (\bot, \delta)') \ast ((\bot, \delta)' \swarrow (\alpha_1, \alpha_2)).$$

Thus (\perp, δ) is a designated value of $\mathfrak{Q}_1 \times \mathfrak{Q}_2$.

The next example is an illustration of Proposition 5.7.

Example 5.8. Let $C_3 = \{\perp, a, \top\}$ be the chain consisting of three elements. It is well know that on C_3 there exist three unital quantales $\mathfrak{Q}_i = (C_3, *_i)$ (i=1,2,3), (see [2, (9), (16) and (19) in Exercise 2.2.1 and Exercise 2.3.1]), which are all commutative. Thus as involution we choose the identity map on all three of them. The first two of them are integral, and in this context $*_1$ denotes the multiplication of the MV-algebra with three elements, while $*_2$ represents the binary minimum. The third unital quantale is non-integral and consequently the unit coincides with a. It is easy to see that a is the dualizing element in \mathfrak{Q}_3 . Then we have the following situation:

- (i) The unital quantale $\mathfrak{Q}_1 \times \mathfrak{Q}_3$ is non-integral and commutative, and has (\perp, a) as designated element, which *is* dualizing in $\mathfrak{Q}_1 \times \mathfrak{Q}_3$. Hence $\mathfrak{Q}_1 \times \mathfrak{Q}_3$ is a non-integral and commutative Girard quantale (cf. [2]).
- (ii) The unital quantale $\mathfrak{Q}_2 \times \mathfrak{Q}_3$ is non-integral and commutative and has (\perp, a) as designated element, which is *not* dualizing in $\mathfrak{Q}_2 \times \mathfrak{Q}_3$.

After this digression on designated elements, we give now an answer to the question to which existent the existence of a dualizing element is necessary for the property that the self-duality in $\mathsf{Mod}_r(\mathfrak{Q})$ preserves projectivity.

Theorem 5.9. Let \mathfrak{Q} be a unital and involutive quantale. If the self-duality in $\mathsf{Mod}_r(\mathfrak{Q})$ preserves projectivity — i.e. if M is projective, then also M^{op} is projective, then any designated element of \mathfrak{Q} is dualizing.

Proof. Since $\mathbb{P}(\{\cdot\}, p_0)$ is projective (cf. Lemma 4.1), the dual right \mathfrak{Q} -module $(\mathbb{P}(X, p_0))^{op}$ is projective. Consequently $(\mathfrak{Q}^{op}, \boxdot)$ is also projective (cf. Theorem 5.4 and Remark 5.3).

Let $\delta \in \mathfrak{Q}$ be a designated element of \mathfrak{Q} . For each $\alpha \in \mathfrak{Q}$ we consider the contravariant \mathfrak{Q} -presheaves f_{α} and g_{α} on (\mathfrak{Q}^{op}, p) defined by

$$f_{\alpha}(\beta) = (\beta \swarrow \delta) * (\delta \swarrow \alpha) \quad \text{and} \quad g_{\alpha}(\beta) = (\beta \swarrow \delta') * (\delta' \swarrow \alpha), \qquad \beta \in \mathfrak{Q}.$$

Obviously, the following relation holds (cf. (5.1)):

$$\sup_{\mathfrak{Q}^{op}} f_{\alpha} = \bigwedge_{\beta \in \mathfrak{Q}} (f_{\alpha}(\beta) \searrow \beta) = (\delta \swarrow \alpha) \searrow \delta.$$

Since δ is designated we have that $\triangleleft(\underline{\ }, \alpha) \leq f_{\alpha}$ and since the \mathfrak{Q} -valued totally below relation \triangleleft in $(\mathfrak{Q}^{op}, \Box)$ is approximating, we obtain:

$$\alpha = \sup_{\mathfrak{Q}^{op}} \triangleleft(\underline{\ }, \alpha) \leqslant^{op} \sup_{\mathfrak{Q}^{op}} f_{\alpha} = (\delta \swarrow \alpha) \searrow \delta.$$

Hence $(\delta \swarrow \alpha) \searrow \delta \leqslant \alpha$ follows.

If in the previous argumentation we replace f_{α} by g_{α} , then we also obtain $(\delta' \swarrow \alpha') \searrow \delta' \leqslant \alpha'$ — i.e. $\delta \swarrow (\alpha \searrow \delta) \leqslant \alpha$. Thus δ is dualizing in \mathfrak{Q} . \Box

The results of this section can be summarized in the following

Theorem 5.10. Let \mathfrak{Q} be a unital and involutive quantale with a designated element. The self-duality in $Mod_r(\mathfrak{Q})$ preserves projectivity if and only if \mathfrak{Q} has a dualizing element.

In particular by Lemma 5.6 we have:

Corollary 5.11. Let \mathfrak{Q} be an integral and involutive quantale. The self-duality in $Mod_r(\mathfrak{Q})$ preserves projectivity if and only if \perp is the dualizing element of \mathfrak{Q} .

The previous Theorem and Corollary are a far reaching extension of the equivalence (i) \iff (ii) in [4, Theorem 8.2] from the class of integral and commutative quantales to the class of unital and involutive (and in general non-integral and non-commutative) quantales with a designated element.

As a confirmation of this statement we first recall that the quantale \mathfrak{Q}_3 from Example 5.8 is involutive and unital (but non-integral) and has a dualizing element. Consequently, it follows from Theorem 5.10 that the self-duality in $\mathsf{Mod}_r(\mathfrak{Q}_3)$ preserves projectivity.

Finally, we include two examples of unital, involutive and non-commutative quantales \mathfrak{Q} such that the self-duality in $\mathsf{Mod}_r(\mathfrak{Q})$ preserves projectivity.

Examples 5.12. (1) (Cf. [2, Exercise 2.6.5]) Let us consider a complete lattice $\mathfrak{Q} = \{\perp, \beta, a, b, c, \alpha, \top\}$ endowed with a multiplication *, where the Hasse diagram and the multiplication table of * are given by:

Т	*	\perp	β	a	b	c	α	Т
$a \xrightarrow{h} c$	\perp	\perp	\perp	\perp	\perp		\perp	T
	β	\perp	\perp	\perp	\perp		\perp	β
	a	\perp	\perp	β	\perp	β	β	a
a b c	b	\perp	\perp	β	β		β	b
β	с	\perp	\perp	\perp	β	β	β	c
	α	\perp	\perp	β	β	β	β	α
\perp	Т	\perp	β	a	b	c	α	Т

Obviously \mathfrak{Q} is an integral, involutive and non-commutative quantale, where the involution ' is defined by $\top' = \top$, $\alpha' = \alpha$, a' = a, b' = c, c' = b, $\beta' = \beta$ and $\perp' = \perp$. Finally, since \perp is dualizing, it follows from Corollary 5.11 that the self-duality in $\mathsf{Mod}_r(\mathfrak{Q})$ preserves projectivity.

(2) (Cf. [2, Exercise 2.6.2]) Let $C_3 = \{\perp, a, \top\}$ be the chain consisting of three elements. Then C_3 has a unique order-reversing involution, and consequently the unital quantale of all join-preserving self-maps of C_3 is an involutive Girard quantale. The Hasse diagram and the multiplication table have following form:

Т	*	\perp	b	a_ℓ	$ a_r $	1	Т
$a_\ell $ a_r b	\perp	\perp	\perp	\perp	\perp	\perp	\perp
	b	\perp	\perp	b	\perp	b	a_r
	a_ℓ	\perp	\perp	a_ℓ	\perp	a_ℓ	Т
	a_r	\perp	b	b	a_r	a_r	a_r
	1	\perp	b	a_ℓ	a_r	1	Т
\perp	Т	\perp	a_ℓ	a_ℓ	Т	Т	Т

12

Obviously \mathfrak{Q} is an unital, involutive and non-integral and non-commutative quantale, where the involution ' is defined by $\top' = \top$, 1' = 1, $a'_{\ell} = a_r$, $a'_r = a_{\ell}$, b' = b and $\perp' = \perp$. Finally, since b is dualizing, it follows from Theorem 5.10 that the self-duality in $\mathsf{Mod}_r(\mathfrak{Q})$ preserves projectivity.

The previous construction can be generalized, if we replace C_3 be any completely distributive lattice with an order-reversing involution (cf. Example 2.3.31 on p. 107–108 and Example 2.6.16 on p. 173–175 in [2]).

References

- Borceux, F.: Handbook of Categorical Algebra 1. Basic Category Theory. Encyclopedia of Mathematics and Its Applications, vol. 50. Cambridge University Press, Cambridge (1994)
- [2] Eklund, E., Gutiérrez García, J., Höhle, U., Kortelainen, J.: Semigroups in Complete Lattices. Quantales, Modules and Related Topics. Developments in Mathematics, vol. 54. Springer International Publishing, Cham 2018.
- [3] Joyal, A., Tierney, M.: An Extension of the Galois Theory of Grothendieck. Memoirs of the American Mathematical Society, 51 No. 309. American Mathematical Society, Providence, Rhode Island (1984)
- [4] Lai, H., Shen, L.: Regularity vs. constructive complete (co)distributivity. Theory Appl. Categ. 33, 492–522 (2018)
- [5] Mac Lane, S.: Categories for The Working Mathematician. Graduate Texts in Mathematics, vol. 5, 2nd edn. Springer-Verlag, Berlin, Heidelberg, New York (1998)
- [6] Raney, G.N.: A subdirected-union representation of completely distributive lattices. Proc. Amer. Math. Soc. 4, 518–522 (1953)
- [7] Stubbe I.: Categorical structures enriched in a quantaloid. Tensored and cotensored categories. Theory Appl. Categ. 16, 283–306 (2006)
- [8] Stubbe, I.: Towards "dynamic domains". Totally continuous cocomplete Q-categories. Theoret. Comput. Sci. 373, 142–160 (2007)
- [9] Wood, R.J.: Ordered sets via adjunction. In: Pedicchio, M.C., Tholen, W. (eds.) Categorical Foundations. Special Topics in Order, Topology, Algebra, and Sheaf Theory. Encyclopedia of Mathematics and its Applications, vol. 97, pp. 5–48. Cambridge University Press, Cambridge (2004)

JAVIER GUTIÉRREZ GARCÍA

Departamento de Matemáticas, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain

e-mail: javier.gutierrezgarcia@ehu.eus

Ulrich Höhle

Fakultät für Mathematik und Naturwissenschaften, Bergische Universität, D-42097 Wuppertal, Germany *e-mail*: uhoehle@uni-wuppertal.de

Tomasz Kubiak

Wydział Matematyki i Informatyki, Uniwersytet im. Adama Mickiewicza, 61-614 Poznań, Poland

e-mail: tkubiak@amu.edu.pl