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Abstract

The phenomenal increase in agricultural yields that we have witnessed in the last century has slowed down as we 
approach the limits of selective breeding and optimization of cultivation techniques. To support the yield increase 
required to feed an ever-growing population, we will have to identify new ways to boost the efficiency with which 
plants convert light into biomass. This challenge could potentially be tackled using state-of-the-art synthetic biology 
techniques to rewrite plant carbon fixation. In this review, we use recent studies to discuss and demonstrate dif-
ferent approaches for enhancing carbon fixation, including engineering Rubisco for higher activity, specificity, and 
activation; changing the expression level of enzymes within the Calvin cycle to avoid kinetic bottlenecks; introducing 
carbon-concentrating mechanisms such as inorganic carbon transporters, carboxysomes, and C4 metabolism; and 
rewiring photorespiration towards more energetically efficient routes or pathways that do not release CO2. We con-
clude by noting the importance of prioritizing and combining different approaches towards continuous and sustain-
able increase of plant productivities.
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Introduction

Selective breeding and optimization of cultivation techniques 
have historically driven increases in agricultural output. In the 
last century, these efforts have adopted a more scientific approach 
with the development of the Haber–Bosch process (Haber and 
Le Rossignol, 1909; Sutton et al., 2008, and, later, the ‘green revo-
lution’ (Khush, 2001). Since 1961, global rice and wheat yields 
increased by 150% and 210%, respectively (FAO, 2018). However, 
we have recently started to witness stagnation in growth improve-
ment of major crops such as rice in China (Peng et  al., 2009) 
or wheat in the USA (Ray et al., 2012). This presents a major 
problem, as further yield increases are sorely needed to feed the 
human population, especially considering the global shift towards 
meat-dependent diets, use of arable lands to feed bio-refineries, 
deleterious effects of climate change, and continuous erosion of 
agricultural land (Godfray et al., 2010; Tilman et al., 2011).

Agricultural yield can be modeled as a product of three 
factors (Monteith and Moss, 1977; Fletcher et  al., 2011): (i) 
efficiency of intercepting light; (ii) efficiency of converting 
intercepted light into biomass; and (iii) the harvest index (i.e. 
the fraction of biomass that is captured in the harvested part). In 
the past, improved yields have largely been achieved by increas-
ing the light capture efficiency and the harvest index; however, 
these two factors now appear to be approaching their practical 
limits (Long et al., 2006). Therefore, the efficiency with which 
plants convert light to biomass has become the prime focus 
for further improvement (Long et  al., 2006). This efficiency 
is determined by two main processes, the light-dependent 
reactions, in which photoenergy is used for the generation of 
the cellular redox and energy carriers NADPH and ATP, and 
the light-independent reactions, which use these carriers to 
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fix CO2 and reduce it to organic carbon. The efficiency of 
both processes is unlikely to be improved by a classic selective 
breeding approach—as demonstrated by a recent study explor-
ing 80 years of soybean breeding (Koester et  al., 2016)—but 
could be potentially increased by dedicated engineering (Zhu 
et  al., 2010). The focus of this review is the use of synthetic 

biology tools for boosting the efficiency and rate of carbon 
fixation (Box 1). Rather than discuss the technical aspects of 
synthetic biology in plants—for which we refer the readers 
to other reviews (DePaoli et al., 2014; Liu and Stewart, 2015; 
Boehm and Bock, 2018; Piatek et al., 2018; Vazquez-Vilar et al., 
2018)—we emphasize conceptual strategies to boost carbon 

Box 1.  Key developments in synthetic biology approaches for improving photosynthesis

• Assembly of Rubisco-containing carboxysomes in tobacco chloroplasts

Assembly of a simplified α-carboxysome in tobacco chloroplasts by replacing native Rubisco 
with large and small subunits of Rubisco from cyanobacteria and two key structural subunits. 
The introduction of carboxysomes to plant chloroplasts is a key step towards establishing a 
full biophysical carbon-concentrating mechanism in higher plants (Long et al., 2018).

• Design and in vitro realization of carbon-conserving photorespiration

A systematic search and analysis of synthetic photorespiration bypass routes that do not 
release CO2 reveals that these can enhance the carbon fixation rate under all relevant 
physiological conditions. Two enzymes were engineered jointly to enable the reduction 
of glycolate to glycolaldehyde. The combination of these evolved enzymes with existing 
enzymes supported the in vitro recycling of glycolate to RuBP without the loss of CO2, 
indicating the feasibility of carbon-conserving photorespiration (Trudeau et al., 2018).

• The synthetic malyl-CoA–glycerate pathway supports photosynthesis

An in vivo demonstration of a synthetic pathway that can support photosynthesis in two 
ways. First, it can produce acetyl-CoA from C3 sugars without releasing CO2. It can also 
assimilate photorespiratory glycolate without loss of carbon (Yu et al., 2018).

• Carbon fixation via a novel pathway in vitro

An in vitro reconstruction of a synthetic carbon-fixing pathway, the CETCH cycle, based 
on highly efficient reductive carboxylation. The pathway, utilizing 17 enzymes that originate 
from nine organisms, was optimized by a combination of enzyme engineering and metabolic 
proofreading (Schwander et al., 2016).

• Overexpressing the H-protein of the glycine cleavage system increases biomass yield in 
glasshouse- and field-grown transgenic tobacco plants

Increased biomass upon overexpression of a limiting photorespiratory protein in tobacco grown 
in field conditions. This indicates that optimization of expression levels within native carbon 
fixation-related pathways could be harnessed to increase productivity, and that photorespiration 
could be improved even without the need for synthetic pathways (López-Calcagno et al., 2019).

• The road to C4 photosynthesis: evolution of a complex trait via intermediary states

A case for engineering C3–C4 intermediate metabolism as a way to increase photosynthetic 
efficiency and set the stage towards future realization of complete C4 metabolism. This study 
suggests that a detailed and mechanistic understanding of C3–C4 intermediates could provide 
valuable guidance for experimental designs aiming to boost carbon fixation (Schlüter and 
Weber, 2016).

• Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and 
plant growth

A demonstration of the use of directed laboratory evolution to improve the kinetic properties 
of Rubisco from an archaeal origin. The improved Rubisco variant was introduced to tobacco 
chloroplasts and demonstrated to increase photosynthesis. Such protein engineering 
strategies could be used to address the kinetic limitations of key enzymes, thus supporting 
higher metabolic fluxes and boosting productivities (Wilson et al., 2016).
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fixation. In particular, we discuss efforts aiming to improve car-
boxylation by Rubisco, optimize expression levels of enzymes 
within the Calvin cycle, introduce carbon-concentrating 
mechanisms (CCMs), and rewire photorespiration. We claim 
that multiple complementary strategies are paving the way 
towards substantial yield increases that are not feasible using 
conservative selective breeding techniques.

Engineering Rubisco

Rubisco, the key enzyme of the Calvin cycle, is probably the 
most abundant protein in the biosphere (Ellis, 1979; Raven, 
2013), and is responsible for assimilating the vast majority of 
inorganic carbon (Raven, 2009). The enzyme catalyzes the 
condensation of ribulose 1,5-bisphosphate (RuBP) with CO2 
to give two molecules of glycerate 3-phosphate (G3P). Despite 
its key biochemical role, Rubisco is considerably slower than 
most enzymes in central metabolism (Bar-Even et  al., 2011). 
Moreover, Rubisco is not completely specific to CO2 and also 
accepts O2, leading to the formation of 2-phosphoglycolate 
(2PG) that needs to be reassimilated. In the C3 model plant 
Arabidopsis thaliana, the carboxylation to oxygenation ratio was 
measured to be as low as 2.3:1 under high light conditions (Ma 
et al., 2014). Suppressing oxygenation reactions by cultivating 
plants at elevated CO2 concentrations has repeatedly been 
shown to increase productivity. For example, a meta-analysis of 
70 studies showed that rice yields increased by 23% when CO2 
concentrations were raised to 627  ppm (Ainsworth, 2008). 
These results indicate that engineering Rubisco for higher 
CO2 specificity could substantially boost yield.

Approaches to improve Rubisco catalysis by random or 
site-directed mutagenesis have generally failed to yield sub-
stantial kinetic enhancements (Somerville and Ogren, 1982; 
Spreitzer et al., 2005; Whitney et al., 2011; Wilson et al., 2016). 
Comparisons between Rubisco variants from a range of dif-
ferent organisms have revealed a trade-off between CO2 spe-
cificity and carboxylation velocity (Tcherkez et al., 2006; Savir 
et al., 2010; Galmés et al., 2014), although several recent stud-
ies challenge this finding (Young et al., 2016; Cummins et al., 
2018). Considering this trade-off, it actually seems that most 
Rubisco variants are well adapted to their intracellular envir-
onment. Still, as ambient CO2 concentrations are changing at 
a rate faster than plants can adapt to them, it was suggested 
that replacing plant Rubisco with another variant could boost 
carbon fixation by up to 25% (Zhu et al., 2004; Orr et al., 2016). 
Substituting one Rubisco variant with another is undoubt-
edly a challenging task, but has already been demonstrated 
using homodimeric Rubisco from the α-proteobacterium 
Rhodospirillum rubrum (Whitney and Andrews, 2001) and, 
more recently, using a fast hexadecameric Rubisco from 
Synechococcus elongatus (Lin et al., 2014; Occhialini et al., 2016). 
Co-expression of supporting chaperones, including the appro-
priate accumulation factors, can assist in producing an active 
Rubisco recombinantly, and can further facilitate efforts to en-
hance the kinetics of this key enzyme via mutagenesis (Aigner 
et al., 2017).

Carbon fixation via Rubisco can potentially be improved 
by means other than direct engineering of its catalytic param-
eters. The addition of a CO2 molecule to an active site lysine, 
namely carbamylation, is a prerequisite for Rubisco activity 
(Lorimer and Miziorko, 1980), but can be hindered by the 
premature binding of RuBP or other sugar phosphates (Portis, 
2003; Parry et al., 2008). The catalytic chaperone Rubisco acti-
vase (Rca) removes the sugar phosphate inhibitors from an in-
active uncarbamylated enzyme or an inhibited carbamylated 
Rubisco (Portis, 2003). As the thermal instability of Rca was 
shown to constrain carbon fixation under moderate heat stress 
(Salvucci et al., 2004), it has become an attractive target for en-
gineering towards enhanced photosynthesis. For example, by 
increasing the thermostability of Rca in A. thaliana, improved 
photosynthesis and growth rate were demonstrated under a 
moderate heat stress (Kurek et al., 2007; Kumar et al., 2009). 
Similarly, overexpression of maize Rca in rice led to a higher 
activation state of Rubisco in low light and a faster response of 
photosynthesis when light intensities increased (Yamori et al., 
2012).

Optimizing expression of Calvin cycle 
enzymes

G3P produced by Rubisco needs to be metabolized by nine 
enzymes of the Calvin cycle to regenerate RuBP. This regen-
eration process, whose rate has to match that of Rubisco, is 
known to limit the carbon fixation rate under certain condi-
tions. Computational models have suggested that the natural 
distribution of enzymes within the Calvin cycle is not optimal 
and could limit photosynthesis (Zhu et al., 2007). Specifically, 
it was predicted that higher levels of sedoheptulose-1,7- 
bisphosphatase and fructose-1,6-bisphosphate aldolase, as 
well as enzymes linked to sink capacity, could support higher 
productivity.

Unsurprising, under elevated CO2 concentrations, the 
rate of Rubisco becomes less limiting and carbon fixation 
is mostly constrained by RuBP regeneration. For example, 
studies of Nicotiana tabacum at 930  ppm CO2 showed that 
reducing Rubisco levels by 30–50% did not inhibit growth 
(Masle et al., 1993). Similar results were obtained in rice plants 
in which Rubisco levels were reduced by 65% at 1000 ppm 
CO2. On the other hand, overexpression of sedoheptulose-
1,7-bisphosphatase in N.  tabacum at 585 ppm CO2 resulted 
in a higher carbon fixation rate (Rosenthal et  al., 2011). 
Similarly, at 700  ppm, increased levels of fructose-1,6-bis-
phosphate aldolase in N.  tabacum led to increased biomass 
(Uematsu et al., 2012).

Even at ambient CO2 concentration, overexpression of lim-
iting enzymes of the Calvin cycle was shown to boost carbon 
fixation. In N.  tabacum, overexpression of sedoheptulose-
1,7-bisphosphatase (Lefebvre et al., 2005) and fructose-1,6-bi-
sphosphatase (Miyagawa et al., 2001) increased photosynthetic 
rates and biomass. Similarly, the co-overexpression of sedohep-
tulose-1,7-bisphosphatase and fructose-1,6-phosphate aldolase 
enhanced photosynthesis and yield (Simkin et al., 2015).

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article-abstract/70/5/1425/5304601 by guest on 08 D

ecem
ber 2019



1428 | Kubis and Bar-Even

Establishing carbon-concentrating 
mechanisms

To mitigate the problem of oxygenation, and further enable 
the use of faster (and less specific) Rubsico, multiple organ-
isms have developed CCMs to concentrate CO2 at the site of 
Rubisco. As C3 plants lack CCMs, it was proposed to intro-
duce them to increase photosynthetic efficiency. Two main ap-
proaches are actively pursued: (i) introduction of biophysical 
CCMs from cyanobacteria and green algae (Long et al., 2016; 
Rae et al., 2017); and (ii) introduction of C4 anatomy and me-
tabolism (Hibberd et al., 2008; Schuler et al., 2016).

Biophysical CCMs are found in cyanobacteria (Kupriyanova 
et  al., 2013) and in green algae such as Chlamydomonas rein-
hardtii (Mackinder, 2018). In such CCMs, bicarbonate is ac-
tively transported into the cytosol in which carbonic anhydrase 
is lacking. From there, bicarbonate is further transported into 
specialized compartments packed with Rubisco—carbox-
ysomes in cyanobacteria and pyrenoids in green algae—where 
it is dehydrated to CO2 by carbonic anhydrase. It is thought 
that both carboxysomes and pyrenoids present a diffusion bar-
rier for CO2 and O2, keeping the former molecule in and the 
latter molecule out, and thus enhancing carboxylation and sup-
pressing oxygenation (Mangan et al., 2016).

Establishing biophysical CCM in plants is a challenging task 
that first requires the expression and correct localization of in-
organic carbon transporters. It was suggested that the trans-
porters themselves could increase the carbon fixation rate 
albeit to a limited extent (McGrath and Long, 2014; Yin and 
Struik, 2017). Indeed, overexpression of the putative inorganic 
carbon transporter from cyanobacteria, ictB, in A. thaliana, to-
bacco, rice, and soybean was reported to increase the photo-
synthetic rate and biomass (Lieman-Hurwitz et al., 2003, 2005; 
Yang et al., 2008; Simkin et al., 2015; Hay et al., 2017). In con-
trast, expression of other transporters from cyanobacteria or 
C. reinhardtii did not increase yield or improve growth, despite 
correct localization within the plant cells (Atkinson et al., 2016; 
Rolland et  al., 2016; Uehara et  al., 2016). Optimizing trans-
porter activity is therefore still an open challenge that needs to 
be resolved before commencing with the next step: assembly 
of Rubisco-containing compartments. The establishment of 
these sophisticated structures would enable a further increase 
in CO2 concentration at the site of Rubisco and could there-
fore substantially enhance carbon fixation. Recently, simplified 
carboxysome structures were introduced into the chloroplasts 
of N. tabacum (Long et al., 2018). Yet, these are expected to en-
hance photosynthesis only after combination with functional 
inorganic carbon transporters (McGrath and Long, 2014).

Engineering C4 metabolism

As an alternative to biophysical CCMs, ongoing research 
is dedicated to introducing C4 metabolism into C3 plants 
(Schuler et al., 2016). C4 metabolism utilizes the most efficient 
carbon fixation enzyme, phosphoenolpyruvate (PEP) carb-
oxylase, to capture inorganic carbon temporarily, which is then 
transported to the vicinity of Rubisco (Jenkins et  al., 1989). 

Specifically, PEP carboxylase in the mesophyll cells ‘borrows’ 
PEP and converts it to oxaloacetate, which is further metab-
olized to malate or aspartate. These C4 acids are transported to 
the bundle sheath cells and decarboxylated to release CO2 next 
to Rubsico, which is mainly localized in these cells. Pyruvate, 
the product of this decarboxylation, is then transported back 
to the mesophyll cells to regenerate PEP. Hence, the entire 
C4 cycle, which depends on a special anatomy termed ‘Kranz 
anatomy’ (mesophyll cells surrounding bundle sheath cells), can 
be regarded as a sophisticated CO2 pump that results in an ~10 
times higher concentration of inorganic carbon in the vicinity 
of Rubsico (Jenkins et al., 1989).

Engineering C4 photosynthesis in C3 plants has been out-
lined as a stepwise process (Schuler et al., 2016) that includes 
alteration of plant tissue anatomy, establishment of bundle 
sheath morphology, as well as ensuring a cell type-specific 
enzyme expression. Although challenging, engineering a C3 
plant to have C4 metabolism seems to be a feasible goal as it is 
known to have emerged independently at least 66 times in dif-
ferent phylogentic backgrounds (Sage et al., 2012). Importantly, 
C3 plants already harbor the main enzymes of C4 metabolism, 
such as PEP carboxylase (Aubry et al., 2011), and are known to 
shuttle carbon from the vasculature into the surrounding cells 
in a way similar to C4 plants (Hibberd and Quick, 2002; Brown 
et al., 2010). This provides a solid basis to replicate the emer-
gence of C4 metabolism by direct engineering.

Nevertheless, despite international efforts, a synthetic C4 
plant has yet to be reported. Following Richard Feynman’s 
famous quote ‘What I cannot create, I do not understand’, it 
seems that incomplete understanding of C4 metabolism ham-
pers its engineering. Specifically, the metabolic shuttling of 
intermediates between mesophyll and bundle sheath cells and 
the factors necessary to create Kranz anatomy are still not fully 
clear and need to be elucidated (Schuler et al., 2016).

It might not be necessary to establish a complete C4 me-
tabolism in order to improve carbon fixation. It was recently 
suggested that engineering a C3–C4 intermediate metabolism 
could enhance productivity (Schlüter and Weber, 2016). For 
example, in C3–C4 intermediate type I  plants, photorespira-
tory glycine is transported from the mesophyll cells to the 
bundle sheath cells for decarboxylation. In the bundle sheath 
cells, the mitochondria are closely associated with the chloro-
plast, thereby enhancing re-assimilation of released CO2 by 
nearby Rubsico (Monson and Edwards, 1984; Rawsthorne 
et al., 1988). Establishing this intermediary metabolism within 
C3 plants, besides being useful on its own to boost carbon fix-
ation, would provide a milestone towards further engineering 
of complete C4 metabolism.

An interesting alternative engineering target is crassulacean 
acid metabolism (CAM). While C4 metabolism increases CO2 
concentration in the vicinity of Rubisco via spatial organiza-
tion, CAM accomplishes the same goal via temporal decou-
pling. Specifically, inorganic carbon is temporarily fixed by the 
highly efficient PEP carboxylase during the night, when the 
stomata are open and CO2 can freely enter the cell. Malate, 
the indirect product of the carboxylation, is stored within 
the vacuole. During the day, when the stomata are closed, 
malate is decarboxylated, releasing CO2 and maintaining its 
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high concentration for subsequent fixation by Rubisco and 
the Calvin cycle. Besides increasing CO2 concentration in 
the vicinity of Rubisco, CAM reduces water evaporation and 
increase water use efficiency by 20–80% (Borland et al., 2009), 
making CAM plants highly suitable for arid climates. Similarly 
to C4 metabolism, CAM has arisen multiple times in a taxo-
nomically diverse range of plants, indicating that its neces-
sary components exist in C3 plants which could potentially be 
engineered towards this unique carbon metabolism (DePaoli 
et  al., 2014). Furthermore, the existence of C3–CAM inter-
mediate species and plants that switch between both meta-
bolic modes further supports the potential of engineering C3 
metabolism towards CAM (Borland et al., 2011). Such engi-
neering would require precise control of the activity of key 
enzymes (e.g. PEP carboxylase, malic enzyme, and Rubisco), 
stomatal conductance, and intracellular transport (e.g. to and 
from the vacuole) (Borland et al., 2014; DePaoli et al., 2014; 
Yang et al., 2015).

Rewiring photorespiration

2PG, the product of Rubisco’s oxygenation activity, is recycled 
to the Calvin cycle in a process termed photorespiration. This 
rather long pathway requires the shuttling of metabolites across 
multiple organelles and is considered inefficient as it dissipates 
energy by releasing ammonia and using oxygen as an elec-
tron acceptor. Moreover, photorespiration releases one CO2 
molecule in the recycling of two 2PG molecules and hence 
directly counteracts carbon fixation by the Calvin cycle. The 
inefficiencies associated with the recycling of 2PG cannot be 
prevented by simply blocking photorespiration, as this pathway 
plays an essential role in plant metabolism (Somerville and 
Ogren, 1979) and reduction of its flux was shown to affect 
photosynthesis negatively (Servaites and Ogren, 1977; Wingler 
et  al., 1997; Heineke et  al., 2001). One explanation for this 
lies in the inhibitory effects exerted by several photorespira-
tory intermediates. For example, 2PG was shown to inhibit 
triosephosphate isomerase and sedoheptulose-1,7-bisphos-
phate phosphatase (Anderson, 1971; Flügel et  al., 2017), gly-
oxylate impairs Rubisco activation (Chastain and Ogren, 1989; 
Campbell and Ogren, 1990; Hausler et  al., 1996; Savir et  al., 
2010), and glycine interferes with Mg2+ availability (Eisenhut 
et al., 2007). Based on these observations, it was suggested that 
increased photorespiratory flux could prevent the accumula-
tion of inhibitory intermediates and enhance photosynthesis; 
indeed, this was demonstrated upon overexpression of compo-
nents of the glycine cleavage system in A. thaliana (Timm et al., 
2012, 2015) and in N. tabacum (López-Calcagno et al., 2019).

While photorespiration cannot be avoided, it might be pos-
sible to replace the natural pathway with more efficient alter-
natives. The first bypass suggested in this regard was inspired by 
cyanobacterial photorespiration (Eisenhut et al., 2006), where 
glyoxylate is condensed and reduced to directly generate the 
key photorespiratory intermediate glycerate. This pathway was 
implemented in A. thaliana (Kebeish et al., 2007) and later in 
Camelina sativa (Dalal et  al., 2015) using glycolate dehydro-
genase, glyoxylate carboxyligase, and tartronic semialdehyde 

reductase from Escherichia coli. In both cases, this metabolic by-
pass, dissipating less energy and shifting CO2 release from the 
mitochondria to the chloroplast, was shown to increase photo-
synthesis and biomass.

However, it was shown that expression of only the first en-
zyme of the pathway, glycolate dehydrogenase, suffices to en-
hance photosynthesis. Supporting this, chloroplastic expression 
of glycolate dehydrogenase in Solanum tuberosum induced a 
2.3-fold increase in tuber yield (Nölke et al., 2014). This sug-
gests that the benefits of the glycerate pathway might not stem 
from more efficient recycling of 2PG but rather from oxida-
tion of glycolate to glyoxylate. Indeed, incubation with glyoxy-
late was shown to increase carbon fixation—potentially due 
to suppression of Rubisco oxygenation—in both tobacco leaf 
disks (Oliver and Zelitch, 1977) and soybean mesophyll cells 
(Oliver, 1980).

Another photorespiratory bypass, which was reported to in-
crease biomass and photosynthesis, involves the complete oxi-
dation of 2PG to CO2 via a catabolic pathway that consists of 
glycolate dehydrogenase, malate synthase, malic enzyme, and 
pyruvate dehydrogenase (Maier et  al., 2012). A  recent study 
showed that a variant of this bypass can increase the product-
ivity of tobacco plants in the field by >40% (South et al., 2019). 
However, the mechanism that underlies the beneficial effects 
of the pathway remains vague as a theoretical model predicts 
a negative effect when 2PG is completely oxidized (Xin et al., 
2015).

Carbon-conserving photorespiration

As the main problem associated with photorespiration is (ar-
guably) the release of CO2, bypasses that do not lead to the 
loss of carbon could dramatically boost carbon fixation. Several 
synthetic carbon-conserving bypasses have been suggested. In 
the de novo 2PG salvage pathway (Ort et al., 2015), 2PG was 
suggested to be reduced to 2-phosphoglycolaldehyde, which is 
subsequently condensed with dihydroxyacetone phosphate to 
give xylulose bisphosphate. This intermediate is then dephos-
phorylated to xylulose 5-phosphate, a Calvin cycle metabolite. 
The main challenges of this proposed bypass is the reversibility 
of most of its reactions (resulting in a low driving force), the 
low concentration of 2PG, and the inhibitory effect of xylulose 
bisphosphate (Yokota, 1991; Zhu and Jensen, 1991; Parry et al., 
2008).

Recently, a systematic analysis identified multiple synthetic 
routes that can bypass photorespiration without the release 
of CO2. Several of these pathways involve the reduction of 
glycolate (the concentration of which is considerably higher 
than that of 2PG) to glycolaldehyde, which then undergoes 
an aldol condensation with a phosphosugar from the Calvin 
cycle to generate a longer chain phosphosugar that is reinte-
grated into the Calvin cycle (Bar-Even, 2018; Trudeau et al., 
2018). A computational model indicated that these pathways 
can boost photosynthesis under all physiologically relevant ir-
radiation and intracellular CO2 levels.

The operation of these carbon-conserving bypass routes de-
pends on the conversion of glycolate to glycolaldehyde, but 
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this activity is not supported by any known enzyme. To es-
tablish this activity, two enzymes were engineered (Trudeau 
et al., 2018). First, acetyl-CoA synthetase from E. coli was en-
gineered to accept glycolate, thus generating glycolyl-CoA. 
Next, propionyl-CoA reductase from Rhodopseudomonas palus-
tris was engineered to accept glycolyl-CoA, reducing it to 
glycolaldehyde. The cofactor specificity of this latter enzyme 
was switched, such that it could use NADPH—the photosyn-
thetic electron carrier—as an electron donor. The two engin-
eered enzymes were combined, in a test tube, with fructose 
6-phosphate aldolase (condensing glycolaldehyde with glyc-
eraldehyde 3-phosphate to generate arabinose 5-phosphate), 
arabinose 5-phosphate isomerase, and phosphoribulokinase. 
Upon addition of glycolate and glyceraldehyde 3-phosphate, 
NADPH and ATP were consumed and RuBP was found to 
accumulate (Trudeau et  al., 2018), demonstrating the in vitro 
activity of an alternative photorespiration route that does not 
release CO2.

It was further proposed to go beyond carbon conservation, 
and engineer a photorespiration bypass that fixes CO2 and thus 
directly supports the activity of the Calvin cycle. One such 
carbon-positive bypass was inspired by the 3-hydroxypropion-
ate bi-cycle (Shih et al., 2014). Here, glycolate is oxidized to 
glyoxylate, which is then metabolized and further carboxyl-
ated to pyruvate. Towards the implementation of this bypass, six 
non-native genes from C. aurantiacus were expressed in cyano-
bacteria, but no distinct growth phenotype was evident.

In another study, glycolate was not recycled to the Calvin 
cycle but instead was metabolized to acetyl-CoA via the syn-
thetic malyl-CoA–glycerate pathway (Yu et  al., 2018). This 
pathway can further be used to generate acetyl-CoA from 
photosynthetic C3 sugars via an additional CO2-fixing step, 
thereby bypassing CO2 release by pyruvate dehydrogenase. In 
cyanobacteria, the pathway facilitated a 2-fold increase in bi-
carbonate assimilation.

Conclusions

The increasing numbers of studies demonstrating improved 
photosynthesis and growth by engineering different compo-
nents of the light-dependent and independent reactions in-
dicates that we are on the right path. Yet, many challenges are 
ahead of us. Besides the technical difficulties, which we did not 
discuss here and for which we refer the reader to other reviews 
(DePaoli et al., 2014; Liu and Stewart, 2015; Boehm and Bock, 
2018; Piatek et al., 2018; Vazquez-Vilar et al., 2018), there is one 
key barrier that is worth elaborating on, which is system com-
plexity. Complex systems are notoriously difficult to engineer 
as the effect of even small changes can have substantial effects 
that cannot be easily predicted. While mathematical models 
can help deal with such complexity, the lack of knowledge 
regarding many of the involved components commonly hin-
ders accurate prediction. Plant carbon metabolism provides an 
excellent example of a complex system, the response of which 
to changes is hard to foretell. Previous attempts to engineer 
carbon fixation demonstrate this vividly. Perhaps the best ex-
ample is the engineering of photorespiration bypass routes as 

described above. While few bypasses were already shown to 
enhance photosynthesis (most notably in recent field experi-
ments; South et al., 2019), the cause of this effect is probably 
different from that originally suggested. Unraveling this mys-
tery would require deep understanding of the intricate inter-
play between all system components, a task which we have yet 
to fully achieve.

Moreover, while some engineering efforts show only minor 
benefits in isolation, the key for future improvements lies in 
the correct combination of multiple strategies. Indeed, first 
examples of beneficial cumulative effects have been reported 
(Simkin et  al., 2015). It is further clear that not all strategies 
can be implemented with similar ease. Overexpressing a Calvin 
cycle enzyme, for example, is considerably easier than rerout-
ing photorespiration via a synthetic pathway that does not re-
lease CO2. It is therefore important to choose targets carefully 
for the near and medium future and progress in a way that 
ensures intermediate gains. For example, establishing a C3–C4 
intermediate metabolism not only provides a solid basis for 
further engineering of a complete C4 metabolism, but is also 
expected to boost carbon fixation by itself. Once we gain the 
required proficiency in rewiring plant central metabolism, we 
can aim at even bigger targets, for example replacing Rubisco 
with a set of enzymes, each responsible for a different catalytic 
step (Bar-Even, 2018), or replacing the Calvin cycle with a 
synthetic carbon fixation pathway (Schwander et al., 2016).
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