Synthetic biology: basic concepts

Synthetic biology is in many aspects similar to electric engineering: cellular decision-making processes share basic operations
with electronic control circuits. Intra- and extracellular information is collected by sensors that communicate the input signal
states into a network, which processes the data according to logic and arithmetic operations. These operations result in
decisions that are finally executed by output signals.

* Synthetic biology follows a hierarchicla structure, building up systems from smaller components.

* Animportant aspect of synthetic biology is the application of systemic design. This approach is based on
the engineering principles of modularity, characterization and standartization.



Synthetic biology: abstraction hierarchy and modularity
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Tools (parts) for regulating gene expression

Fig. 3 Expanded toolbox for
engineering complex gene
regulation programs. These
include using proteins that
affect DNA transcription and
RNA translation through
protein-DNA and protein-RNA
base pair binding. Also shown is
the ability to use RNA
secondary structure and base
pair binding to control mRNA
translation initiation. Protein
activity can also be controlled
by other proteins, through
protein—protein interactions or
enzymatic reactions that
modulate activity. The activity
of many regulators can be
controlled by small molecule
ligands/cofactors. (¢ = sigma
factors, STARs = small
transcriptional activating RNAs,
siRNA = small interfering
RNA,

TALE(N)s = transcription
activator-like effector
(nuclease)
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Promoters: recruits RNA polymerase and other accessory proteins to prime the transcription of mRNA.
Promoters have different strength and can be constitutive or regulated (inducible, repressible).

Teminators: signal termination of transcription, polyA signals.

Ribosome binding sites: recruit ribosome for initiation of translation (Shine-Delgarno nad Kozak sequences).
These sequences affect efficiency of transaltion and hence protein production.

Translational riboswitches: a regulatory segment within a mRNA that can bind a small molecule, which in
turn affects translation (eg lysisn riboswitch).

Protein coding sequences: encode transcriptional activators and repressors, transcription factors, sensors
(e.g. cryptochromes for light perception, receptors for chemical ligands), signaling molecules (kinases,
proteases), protein scaffolds and ,,output” proteins (antibiotic resistance, GFP, LUX, suicidal proteins).

Factors affecting RNA stability: bacterial mRNA has very short half life (average 2 min in E.coli). In contrast,
stability of eukaryotic mRNA can range form minutes to days. Cis-elements affecting RNA stability: length of
3°UTR, hairpins, RNA binding motives, introns.

siRNAs, miRNAs: affect gene expression on postrancriptional or translational level.
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Orthogonality in synthetic biology

Synthetic biology approaches commonly introduce heterologous gene networks into a host to predictably program
cells, with the expectation of the synthetic network being orthogonal (non-interferig) to the host background and
to other synthetic networks. It also implies context independent performance of a synthetic network.
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Synthetic transcription regulators based on TALE and CRISPR/Cas9
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Figure 1. Ligand-inducible TALE transcription factors. (a) TALE-TF proteins fused to ligand-binding domains (LBDs) from the estrogen receptor
(ER) or progesterone receptor (PR) undergo intermolecular dimerization in response to 4-hydroxytamoxifen (4-OHT) or RU486, respectively, and
up-regulate gene activation from DNA sequences that contain two direct or inverted repeat TALE binding sites. (b) TALE-TF proteins fused to the
chimeric single-chain retinoid X-a/ecdysone (RXE) LBD undergo intramolecular rearrangement in response to ponasterone A (PonA) and up-
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Devices

* Combination of parts performing a human defined function.
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Synthetic logic gates and cellular computation

A logic gate in electronics, is a physical device which is implemented with a Boolean function based on input and output signals (0 and 1). It executes a
logical function on one or more inputs that produce a single output. Logic gates are used for storing the data that can be constructed by connecting several
gates in a Flip-flops circuit which is a central building block of digital electronics systems in computers and communications.

In biological systems, logic gates are synthetic gene circuits programmed to permit the expression of an output protein only when a strictly defined
signature of input signals is matched. Genetic elements interact with regulatory proteins to switch a gene ON or OFF while RNA or protein concentration
can serve as input or output. One of the key approaches of synthetic biology is to reprogram the decision-making gene networks in order to implement

them as logic gates in living systems.
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Fig. 1 Programmable cellular computation with scalable signal
processing capacity. To achieve large-scale control of cellular
behaviour, an expanded library of versatile orthogonal genetic
regulatory blocks and associated wiring principles are needed. For
example, a genetic 1-bit full adder program adds binary numbers, it
has 3 inputs and 2 outputs, and can be constructed from 5 modular

logic gates that are wired in 3 layers and selected from well-
characterized orthogonal gate libraries. The genetic circuits can be
coupled to modular input genetic sensors and output actuators to
achieve complex decision making for a variety of human desired

applications Xiang et al., Natural Comp 2018



Logic gates: the AND gate

Imput A InputB  Output  The AND gate gives a high output (1) only if both the inputs are high.
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Fig. 2 Design of AND gate based on two promoters. The first
promoter was linked with transcription of amber suppressor tRNA
supD and second T7 RNA polymerase. Polymerase was modified to
contain two amber stop codons and translated as serine when supD
was transcribed and T7 pol was expressed when both SupD and

T7ptag mRNA are present. Figure reproduced with permission from

Anderson et al. (2007)
Singh, Syst Synth Biol 2014



The NOT gate module

a
* A NOT gate takes a single input and inverts it, so 0 becomes 1;
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The modular NOT gate was designed on the basis of the
cl/Plam repressor module consisting of lambda gene cl and
its regulatory PR promoter.

Wang et al., Nat Comm 2011



The NAND gate

Input A InputB  Output The output of NAND gate is high if any of inputs are low.
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This NAND gate results from the combination of AND and NOT
gates. The AND gate is derived from hetero-regulation module
from Pseudomonas syringae. The device comprises two co-
activating genes hrpR and hrpS controlled by separate promoter
inputs, and a 054-dependent hrpL promoter driving the output.
The hrpL promoter is activated only when both genes are 10~
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The OR gate

Input A Input B Output An OR gate outputs 1 as long as either (or both) of the inputs is 1.
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The NOR gate

A NOR gate is equivalent to OR gate followed by a NOT gate. The
outputs of NOR gates are low, if any of the inputs are high.
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Fig. 4 NOR gate was engineered based on two tandem promoters (P
and P2) express repressor and turn off downstream promoter (Pout)
(a). b Different inducer concentrations were used for tandem
promoter and NOR gate characterizations. Figure reproduced with
permission from Nature (Tamsir et al. 2011) © 2011 Macmillan
Publishers Ltd
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The XOR gate

An exclusive-OR (XOR) gate gives a high output only if either input is present.
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Fig. 5 Design and characterisation of biological XOR gates. a The logic output of XOR gate. b Genetic blueprint of four biological XOR gate
designs. The XOR gate comprises serially layered AND, NOT and OR qgates. HrpRS transcription factors are carried in a low copy plasmid, while
pHrpL-ACl and distinct modules of OR gates with lambda repressor binding sites expressing RFP reporter are carried in high copy plasmids
Design | comprises tandem promoters with repressor binding sites downstream of pRHAB promoter and an RFP reporter engineered with the
ASV protein degradation tag. Designs Il and Il comprise tandem promoters with repressor binding sites downstream of each promoter and RFP
with and without the ASV degradation tag, respectively. Design IV is modified from design Il with RFP expressed in two disparate transcripts

¢ Digital performance of various designs of biological XOR gates at steady state. d The steady state profile of XOR gate IV for various concentrations of
arabinose (input A) and rhamnose (input B). Error bars represent the standard deviation of four independent experiments

Wong et al., BMC Biology 2015



Assembly of logic gates allows building circuits with complex behaviour
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A multilayer AND gate
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Toggle switch and repressilator
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Relaxation oscillator uses autoregulatory feedback

Negative feedback loop rescues the noice and results in a narrow expression distribution
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Registry of parts for synthetic biology

The basic concept in engineering is using a combination of standart parts to produce standard devices, which are then combined to produce standard systems.

MIT registry for the International Genetically Engineered Machine (iGEM)

http://parts.igem.org/Main_Page

€ | @ partsigem.org/Main_Page

wiki tools search

PRODUC

CTION 2017

Reg1stry of Standard B1olog1c Parts

@- tools catalog repository assembly protocols help search

VY VY VY \é VY
A4 AAV VYV 4 AAV AAV AAV
A LA \ A A A A A A\ A

Yy

ITY

Add and Document Parts

Start adding and documenting your pars
now! Your parts should be well
characterized and measured, and follow the
Registry's requirements.

Sample Submissions

iGEM teams do not need to send samples of
their parts this year.  We want teams to
focus on the documentation of their parts!
Teams must follow 2019 requirements for parts,
including BioBrick RFC10 or Type 1IS
compatibility

Registry Updates

The Registry will be undergoing updates
(some major, some minor) aver the next few
months. If you notice any issues with
functionality, please let us know at hq (at)
igem (dot) org.

Featured Part

Metal Binding and Sensing Parts
Every year, a number of iSEM teams complete a
variety of biosensars and bioremediation prajects
that involve metal-binding and metal-sensing.
Their focus may be on several pollutants or just
one. iGEM teams have worked with metals like
nickel, mercury, lead, arsenic, copper, amongst
others.

We've put together a collection of projects and
DNA parts that are responsible for both metal
binding and metal sensing.

Collections

Weve updated the Registry part collections. Users
«can discover new parts and collections and build
upon what previous iGEM teams and labs have
achieved.

= Well Documented Parts

= Frequently Used Parts

= Plant Chassis

u Bagillus subfilis

= Reporter Proteins

= Anderson Promaters

(\

Registry Help
Before starting your projects, be sure ta read
through our help pages. If you can't find an answer to
'your question, contact hq (at) igem . org.
Useful help topics:

= BioBrick Prefix and Suffix

= Assembly Standards

« Assembly Compatibility

= 3A Assembly Overiew

» Requesting Parts

= Add a Part

DNA Synthesis Offer: IDT

IDT is once again generously offering 20 kb of DNA
as gBlocks® Gene Fragments free of charge to
each iGEM 2019 team! Click here to go to IDT's
partner offers page for more info.

2019 DNA Distribution

The iGEM 2019 DNA Distribution has started
shipping to registered and approved iGEM teams! Be
sure to read through the 2019 Distribution Handbook
for storage instructions and how ta use your kit

Catalog

The iGEM Registry has over 20,000 documented
parts_ The Catalog organizes many of these parts by
part type, chassis, function. and more. Browse for
parts through the Registry Catalog or use the search
menu.

Protocols

Be sure to read through the Registry recommended
prntncn\s Theyve been tested using the DNA
i Kit and BioBrick oart eathe Ragistng

Standart parts must be thoroughly characterized and their performance well described
Data on standartized parts are organized in registries of parts for synthetic biology

iGEM Registry provides a resource of available biological parts that have been user-tested and
characterized for users developing synthetic biology projects.

iGEM Registry is an open community that runs on the "Get & Give & Share" philosophy. Users get
parts, samples, data, and tools to work on their synthetic biology projects. They'll give back to the
Registry the new parts they've made, as well as data and experience on new and existing parts.

iGEM Registry contains about 20,000 parts

The parts on the iGEM Registry adhere to the BioBrick standard allowing them to be assembled
together creating new longer and more complex parts, while still maintaining the structural
elements of the standard. This allows the engineer to focus on design instead of assembly.

BioBrick Assembly Standart 10 is based on restriction cloning

Prefix Suffix
5' - GAATTC GCGGCCGC T TCTAGA G ...part... T ACTAGT A GCGGCCG CTGCAG - 3°'
EcoRI Notl Xbal Spel HotI Patl

Other registries: SYNBis Database http://synbis.bg.ic.ac.uk/synbis2/Welcome_Page.html



Standartization: The Synthetic Biology Open Language (SBOL)
https://sbolstandard.org/

 SBOL is an open standard for the representation of in silico biological designs.

* SBOL also provides schematic glyphs to graphically depict genetic designs called SBOL Visual.
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The synthetic biology design cycle

Specification: formal definition of the desired function and design of a target genetic system.

Design: the set of decisions needed to determine the constructs and hosts, to be
used and/or modifications to the host to be made. Involves also creating a plan for
composing the DNA constructs from their elements.

Build: Implementing DNA assembly plan and construction of the
biological system.

Test: design and implementaiton of experiments for
characterizing engineered systems and accompanying
analysis and data interpretation.

Learn: include approaches to allow for revision of
designs based on experimental outcomes.

Front Bioeng Biotechnol. 2015, 3. 135.doi1. 10.3389/fbipe. 2015.00135
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Biological Computer Aided Design (BioCAD)

(Specifications: bistable switch
- Toggle thresholds

- Noise margins
- Response time

* BioCAD assists the de novo design and selection of
existing genetic components to achieve a desired
biological activity, as part of an integrated design-
build-test cycle.
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* BioCAD tools facilitate the design of larger systems

from smaller genetic parts by providing users with du SBML
interfaces, or automatically generating designs $= 13«7"”
from intended function. . X )
* As the field moves towards real-world applications, T : i i
¥ Databases (Analyze smulatmns)

tools that can adequately predict functionality from
design will be indispensable.

experimental data,
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Figure 1. GDA design flow. Synthetic biology projects typically rely on iterative workflows composed of different tasks. Emerging GDA tool chains rely on numerous
software applications that support different phases of the project workflow. The development of a genetic switch [72] will first involve expression of the design objective as
a list of guantitative requirements: input toggle thresholds, noise margins, switching response time, etc. Once the objective is specified, it is possible to develop a list of
genetic parts useable for the project. The choice of biological parts will involve factors such as use of the parts in prior projects, quality of the data characterizing the parts
function, or intellectual property considerations. Formalization of design rules often takes place in parallel with parts library development. Design rules may cover issues
such as whether it is acceptable to have polycistronic expression cassettes or if the design should be split between different plasmids. Only after parts have been selected
and a strategy has been agreed on is it possible to start designing constructs. In the fabrication phase, the construct is assembled, usually by combining de novo gene
synthesis and cloning of existing DNA sequences. Operators use molecular biclogy software suites to facilitate assembly or to order the sequence from a gene synthesis
company. Experimentalists insert the synthetic DNA molecule into the host of choice and collect phenotypic data. Experimental data are then processed, for example by
reducing microscopy images to time series of quantitative data. Performance is evaluated by considering simulations, experimental data and the original specifications. At
nearly every stage, software interacts with databases to reuse past work or to store current work for future use. The shaded area delimited by dashes denotes stages
LUX et al.’ TIBIOtECh 2012 Zasrzillttaatr:a;t:r' s:;r::t:ziiacgt;iology CAD software, whereas other stages are handled by more general purpose software. Text in blue indicates examples of software that provide
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Cello design specification

Sensors Predictions vs. experiment
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Genetic programming using Cello. A user specifies the desired circuit function in Verilog code, and this is transformed into a DNA sequence.
An example circuit is shown (OxF6); red and blue curves are predicted output states for populations of cells, and solid black distributions are
experimental flow cytometry data. The outputs are shown for all combinations of sensor states; plus and minus signs indicate the presence or
absence of input signal. RBS, ribosome binding site; RPU, relative promoter unit; YFP, yellow fluorescent protein.

Nielsen et al., Science 2016
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