Environmentálni rizika biodiverzity Z5151 GEOGRAFICKY USTAV PRÍRODOVEDECKÁ FAKULTA MU Mgr. Karel Brabec, Ph.D, brabec@sci.muni.cz Biodiverzita a ekosystémové procesy SYLABUS 1) Úvod (struktura ekosystémů, biologická diverzita, ekologické procesy) 2) Biodiverzita - teorie, charakteristiky, řídící faktory 3) Biodiverzita - časo-prostorové aspekty 4) Environmentálni rizika (typologie); schéma DPSIR (Řídící faktory, Tlaky, Stavy, Dopady, Odezvy) 5) Ekologie působení stresoru 6) Biodiverzita a ekosystémové procesy 7) Vztahy biodiverzity ke klimatu 8) Scénáře změn využití krajiny 9) Změny biotopů (Nátura 2000, Ochrana stanovišť) 10) Vliv chemického znečištění na biodiverzitu 11) Biologické invaze 12) Ekosystémové služby 13) Analýza rizik pro biodiverzitu BIODIVERZITA - PROCESY - FUNKCE • vliv poklesu biodiverzity na ekosystémové funkce • dopady na zboží a služby, které ekosystémy poskytují • narušení biodiverzity na lokální a regionální škále může také snížit rezilienci v rámci větších prostorových škál jako výsledek degradace ekosystémových funkcí ECOLOGY Biodiversity and Ecosystem Function Guy F. Midgley EKOSYSTÉMOVÉ PROCESY Definice vnitřní vlastnosti ekosystému, kterými ekosystém udržuje jeho integritu. Na ekosystémové procesy bývá také nahlíženo jako na „funkce ekosystému" Millennium Ecosystem Assessment (2005) Ekosystémové procesy fyzikální, chemické a biologické aktivity a projevy, které spojují organismy s prOStředím Precioitation Solar energy Organisms Ekosystémové procesy: • dekompozice • produkce (rostlinná hmota) • koloběh živin (nutrient cycling) • toky živin a energie BIODIVERSITA A EKOSYSTÉMOVÉ FUNKCE Diverse community omomo • o mom o#o«o Community dominated by "blue" species Community o o o o dominated oooo by "green" species o oo o Year 1: Average climateyear OIOOO oooo* o#o«o ooooo o o o o o ooooo Year 2: Warm year Time o o o o o oo o Year 3: Cold year Conceptual diagram showing how increasing diversity can stabilize ecosystem functioning Cleland, E. E. (2011) Biodiversity and Ecosystem Stability. Nature Education Knowledge 3(10):14 © 2011 Nature Education (www.nature.com/scitable/knowledge/library/biodiversity-and-ecosystem-stability-17059965) BIODIVERSITA A EKOSYSTEMOVE FUNKCE increasing species diversity would be positively correlated with increasing stability at the ecosystem-level and negatively correlated with species-level stability due to declining population sizes of individual species ■5- 5 n Q. 40 _ ° , o < i _ o _B -I * ;i • i ■ - 0 -8 1 .......... i ■*................ i i i i i i. i i i i ...... 4 8 12 Species-number ineaimeni 16 A biodiversity experiment at the Cedar Creek Ecosystem Science Reserve (a) demonstrates the relationship between the number of planted species and ecosystem stability (b) or species stability (c). Cleland, E. E. (2011) Biodiversity and Ecosystem Stability. Nature Education Knowledge 3(10):14 BIODIVERSITA A EKOSYSTÉMOVÉ FUNKCE SHARE "view Q Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges M. Loreau S. Naeem% P. Inchausti „ J. Bengtsson3, J. P. Grime4, A. Hector5, □. U Hooper6, M. A. HustonD. Raffaelli... + See all authors and affiliations Science 25 Oct 2001: Vol. 294, Issue 5543, pp. 804-308 □01:10.1126.-,sc"1?nce.1C640SS ECOSYSTEM CONSUMERS t PRODUCERS Inputs 4 ORGANIC INORGANIC outputs NUTRIENTS NUTRIENTS decomposers CONSUMFRS Inputs & 4 t outputs Species pool ■ O O T V • * O Sampling J Assembled community Higher species richness Trait variation Functional groups Higher trait diversity Dominance of species Complementarity among with particular traits particular species or functional groups. Complementarity among species with different traits \ I Ecosyste m processe s Higher productivity BIODIVERSITY AND ECOSYSTEM FUNCTION SHARE review Q Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges ^) M. Loreau 5. Naeem2, P. Inchausti1, J. Bengtsson3, J. P. Grime4, A. Hector5, D. U. Hooper6, M. A. Huston7, D. RaffaellL. + See all authors and affiliations Science 26 Oct 2001: Vol. 294, Issue 5543, pp 804-308 DOI. 10.1126/science.l Q&4088 Fig. 4. Hypothesized relationships between (A) diversity -productivity patterns driven by environmental conditions across sites, and (B) the local effect of species diversity on productivity. (A) Comparative data often indicate a uni-modal relationship between diversity and productivity driven by changes in environmental conditions. (B) Exper- imental variation in species Productivity Diversity richness under a specific set Soil and climate effects of environmental conditions produces a pattern of decreasing between-replicate variance and increasing mean response with increasing diversity, as indicated by the thin, curved regression lines through the scatter of response values (shaded areas). BIODIVERZITA A EKOSYSTÉMOVÉ PROCESY (V DYNAMICKÉ KRAJINĚ) • vztahy mezi biodiverzitou a funkcemi ekosystémů ovlivňují ekosystémové služby • většinou studovány formou experimentů na malé ploše a s krátkou dobou trvání; kontrolované podmínky a stabilní složení společenstev • výzvou je studium reálného prostředí a dynamických společenstev • existují četné důkazy o tom, že pokles biodiverzity v určitých trofických skupinách se projevuje poklesem jejich biomasy a následně poklesem i efektivity využívání zdrojů (i) multi-trofická diverzita (ii) nerovnovážná biodiverzita pod vlivem disturbancí a měnících se podmínek prostředí (iii) velké prostorové a dlouhé časové škály Brose U, Hillebrand H. 2016. Biodiversity and ecosystem functioning in dynamic landscapes. Phil. Trans. R. Soc. B 371: 20150267. http://dx.doi.org/10.1098/rstb.2015.0267 (I) MULTI-TROFICKÁ DIVERZITA (i) multi-trofická diverzita (ii) nerovnovážná biodiverzita pod vlivem disturbancí a měnících se podmínek prostředí (iii) velké prostorové a dlouhé časové škály • multi-trofické vztahy jsou často specifické, zatímco zohlednění autekologických charakteristik druhů umožňuje prediktivní vyhodnocení • další směřování spočívá ve studiu komplexních společenstev opírající se o ekologickou teorii založenou na průměrné biomase jednotlivých druhů, stechiometrii a účinku faktorů prostředí (např. teplota) Brose U, Hillebrand H. 2016. Biodiversity and ecosystem functioning in dynamic landscapes. Phil. Trans. R. Soc. B 371: 20150267. (II) NEROVNOVÁŽNÁ BIODIVERZITA POD VLIVEM DISTURBANCÍ A MĚNÍCÍCH SE PODMÍNEK PROSTŘEDÍ (i) multi-trofická diverzita (ii) nerovnovážná biodiverzita pod vlivem disturbancí a měnících se podmínek prostředí (iii) velké prostorové a dlouhé časové škály • disturbance a variabilní podmínky prostředí mají přímý i nepřímý vliv na vztahy mezi biodiverzitou a ekosystémovými funkcemi (prostřednictvím počtu druhů, složení společenstev a charakteristik druhů) • kolísání biodiverzity může výrazně ovlivnit její vazby na ekosystémové funkce Brose U, Hillebrand H. 2016. Biodiversity and ecosystem functioning in dynamic landscapes. Phil. Trans. R. Soc. B 371: 20150267. (III) VELKÉ PROSTOROVÉ A DLOUHÉ ČASOVÉ ŠKÁLY (i) multi-trofická diverzita (ii) nerovnovážná biodiverzita pod vlivem disturbancí a měnících se podmínek prostředí (iii) velké prostorové a dlouhé časové škály • vazby mezi biodiverzitou a ekosystémovými funkcemi na větších prostorových škálách jsou závislé na různých faktorech • zatímco počet druhů a biomasa společenstva jsou na velkých škálách vysoce důležité, důsledky identity druhů (příslušnost k funkčním gildám/jejich nika v rámci společenstva) a složení společenstva jsou ve velkých škálách méně důležité než na malých • v rámci dlouhých časových škál masové extinkce představují vážné změny biodiverzity s různorodými účinky na ekosystémové funkce Brose U, Hillebrand H. 2016. Biodiversity and ecosystem functioning in dynamic landscapes. Phil. Trans. R. Soc. B 371: 20150267. BIODIVERZITA A EKOSYSTÉMOVÉ PROCESY • funkce ekosystému: produkce biomasy a využívání zdrojů • predace v rámci gildy a kompetiční interference = snížená úroveň využívání zdrojů biodiversity within trophic group biodiversity at consumer level Figure 1. Biodiversity withh a trophic level is predicted to enhance ecosystem functioning (biomass prodjetion and resource capture) by this trophic group [a]. However, changes in the degree of intraguild predation or interference competition with increasing consumer diversity may lead to reduced resource capture at higher diversity [[b)f blue line). Moreover, alterations of biodiversity at the prey level may lead to association I resistance (lower edibility, red line) or prey complementarity [higher edibility, green line). Brose U, Hillebrand H. 2016 Biodiversity and ecosystem functioning in dynamic landscapes. Phil. Trans. R. Soc. B 371: 20150267. STRUKTURA - PROCESY - FUNKCE Příklad mořského pobřeží Sleď obecný (Clupea harengus) vocha mořská (Zostera řnarina) Složení a uspořádání biologických společenstev je určováno procesy (expozice vlnobití, transport sedimentů, přítoky sladké vody) a „strukturami'' (reliéf, sedimenty na pobřeží, salinita). Struktura příbřežních ekosystémů je výsledkem působení ekosystémových procesů a zároveň je zpětně ovlivňuje. Např. reliéf pobřeží je výsledkem působení vlnobití a zároveň ho ovlivňuje. • specifické funkce pobřežních ekosystémů • habitaty příbřežních organismů • habitatové funkce jsou integrované a hierarchické Figure 4.1. Ecosystem processes and structures interact to manifest ecosystem functions such as the provision of habitat (Goetz et al. 2004). Goetz, F., C. Tanner, C.S. Simenstad, K. Fresh, T. Mumford, and M. Logsdon. 2004. Guiding restoration principles. Puget Sound Nearshore Partnership Technical Report No. 2004-03. Published by Washington Sea Grant Program, University of Washington, Seattle, Washington. STRUKTURA - PROCESY - FUNKCE habitat sledu (funkce) < struktura vegetace Sleď obecný (Clupea harengus) Vocha mořská (Zostera marina) funkce habitatů vegetace struktura sedimentů pláží Vocha mořská (Zostera marina) EKOLOGICKÉ PROCESY Základní ekologické procesy v ekosystémech • koloběh vody • biogeochemické cykly (koloběh živin) • toky energie • dynamika společenstev (např. jak reaguje složení a struktura ekosystémů na disturbanci (sukcese) EKOSYSTÉMOVÉ PROCESY Základní ekosystémové procesy • water cycle • mineral cycle • solar energy flow • community dynamics (succession) Joy Livingwell, February 2003 https://managingwholesxom/-ecosystem-processes.htm/ ZONE 3 Runoff Control ZONE 2 Managed Forest ZONE 1 Undisturbed Forest Stream bottom EKOSYSTÉMOVÉ FUNKCE Ekosystémové funkce jsou biologické, geochemické, fyzikální procesy a součásti, které jsou součástí ekosystému nebo se v něm vyskytují • v některých přápadech jsou ekosystémové funkce nazývány ekologickými procesy • ekosystémová funkce „opylení" je klíčová pro rozmnožování většiny divoce rostoucích rostlin • tato ekosystémová funkce poskytuje přímý příspěvek do zemědělství ve formě opylení plodin EKOSYSTÉMOVÉ PROCESY Vfll 44fl 12 July :t>f>?dal:10Ll03a/r*jtiiř»O59« LETTERS Biodiversity and ecosystem multifunctionality Andy Hector1 & Robert Bagchi't □ Germany 0 Greece ol ■li u ol o p Wood dscompositiar Light at grOLna eve Below-ground Unconeumed soil N Above-ground N pool Cotton decomposition Above-ground biomaEB a Ireland x Portugal _i_ v Sheffield ■ Silwood • Sweden * Switzerland A m CD*. AX CD A T" 2 6 —r-J0 Number of species Figure 11 Number of species with desirable effects on the suite of ecosystem processes measured in the different BIODEPTH project experiments. The number of species was identified by the AlC-based multiple regression (and species with effects with undesirable signs were then excluded). EKOSYSTÉMOVÉ PROCESY Vol-US l?July3[)Q7|g Wang ljr Giungdi Li Djcwcd Zhou''' FUNKČNÍ BIODIVERZITA Modified from Kershal and Mallik (2013), theoretical relationships between biomass, species diversity and disturbance according to the Intermediate Disturbance and Mass Ratio Hypotheses. High > .(ľ u cl Low High o Cl c n <-+ Disturbance intensity/frequency/time Low https://www.biodiverseperspectivesxom/2013/08/14/idh-mrh-wtf/ 9 x E o m (a) IDH y Cummulaúve / Speaes / Biomass V Dominant Species / Dominant / ^"Spedes (b)MRH Hic* Disturbance Low FIG. 2. Predicted relationship between community productivity and disturbance in [DH and MRH. (a) Community productivity (biomass) increases with decreasing disturbance frequency/intensity/time since disturbance until it reaches an equilibrium at climax condition when mostly the long-lived species account for the community biomass, commonly observed in mineral rich productive sites as per [DH. (b) Community productivity (biomass) increases with decreasing disturbance frequency/intensity/time since disturbance until it levels when only a few stress tolerating competitive species achieve dominance and contribute most of the community biomass observed in organic rich, nutrient-poor acidic soil as per MRH, MASS RATIO HYPOTHESIS (MRH) The Mass Ratio Hypothesis (MRH), on the other hand, proposes that the biological traits of the dominant species contributing to productivity (defined by biomass) are the critical regulators of ecosystem function (Grime, 1998). MRHis often associated with ecosystems with longer periods between major stand replacing disturbances. It proposes that biodiversity is held lowby the dominance of one or a fewspecies (see right side of the graph, Figure lb) and that this configuration sustains site productivity High Disturbance intensity/frequency/time Low https://www.biodiverseperspectives.com/2013/08/14/idh-mrh-wtf/ INTERMEDIATE DISTURBANCE HYPOTHESIS (IDH) The IDH (Connell, 1978) proposes that species diversity displays a humpshaped response curve to disturbance, peaking at intermediate disturbance levels. IDH is portrayed as a cyclic pattern of disturbances in terms of intensity and frequency, describing communities that become less stable with time (as diversity decreases) and more vulnerable to disturbance. It is commonly associated with fire-driven terrestrial ecosystems (Mackey and Currie, 2001). High https://www.biodiverseperspectivesxom/2013/08/14/idh-mrh-wtf/ BIODIVERZITA A PROCESY CHARAKTERISTIKY DRUHŮ (SPECIES TRAITS) Tabl e 2 Biological traits {11) used in the analysis and their categories {57) Traits No. Categories Maxima] size (cm) 1 <».5 1 ^O.Sto 1 3 >l to 2 4 >2 to 4 5 >4 Lite span (year) <1 7 ..] Number of reproductive l Aquatic stages n ]2 Larva 13 Nymph/pupa 14 Adult Reproduction 15 Ovo viviparity 16 Isolated eggs, free 17 Isolated eggs, cemented IM Quiches, cemented or fixed 19 Gulches, free 20 Gulches, in vegetation ZI Clutches, terrestrial TL Asexual reproduction Dispersal 23 Aquatic, passive 24 Aquatic, active 2Í Aerial, passive 26 Aerial, active Resistance forms 27 Eggs, state blasts 28 Cocoons 29 Diapause or dormancy S) None Respiration Locomotion hood 31 Tegument 32 Gil] 33 Plastron (aerial) 34 Spiracle {aerial) 35 Flier 36 Surface swimmer 37 Pull water swimmer 30 Crawler 39 Burrower (epibenthic) 441 Interstitial (endobenthic) 41 Attached 42 Fine sediment + microorganisms 43 fine detritus I mm) 4^= Microphytes +6 Macro phytes 47 Dead animal (>1 mm) 4M Living micro invertebrates 49 J .i vi ng maci o in vt. i Leb r. a Le s 90 Vertebrates Traits No. Categories Feeding habits 51 Absorber/deposit feeder 52 Shredder 53 Scraper 54 FJlteT-ieeder 55 Piercer 5* Predator 57 Parasite Archaimbault et al., 2010 BIODIVERZITA A PROCESY CHARAKTERISTIKY DRUHŮ (SPECIES TRAITS) Table 1. Functional traits selected for the current study and their functional significance relevant to the current study Functional significance of relevance to Functional Trait Unit current study Refs Leaf Traits Delta 13 C Correlated Id plant water use efficiency and may also segregare plants of different 1 successional status. Consequential for leaf energy and water balance. Interspecific va nation in leaf size has Leaf Area mm2 been connected with climatic variation, where heat stress, cold stress, d mug ht stress and high radiation all tend to select for relatively small leaves. 2 Correlated with potemial rela:ive growJi rate. Leaf mass per area (LMA} g rrr2 Higher values correspond with high inves:men-.5 in s:ructural leaf defences and leaf lifespan, but also slower growth. 3 Leaf Slendemess Bofe Traits Weed density Maximum height M Bark thickness Involved in control Of water and temperature status. Slender leaves have a reduced Jnrtless boundary layer resistance and are can thus regulating their temperature through convective cooling more effectively. Positively correlated with drought tolerance and tolerance of mechanical or fire damage; related to stem water storage capacity, efficiency of xylem water Ua nsport, regu lation of leaf water status and avoidance of turgor loss. FosrJvely correlated with competitive a bil ity of plants. Correlated to fire resistance with thicker bark expected in fire prone areas. g cm" Lnhless PRIMÁRNI PRODUKCE vznik organické hmoty zdrojem energie sluneční záření (fotosyntéza) nebo chemotrofií ecosystém s větší diverzitou může ukládat více uhlíku jako výsledek zvýšených vstupů z fotosyntézy nejen organická hmota vzniklá aktivitou primárních producentů, ale i její rozklad a zapojení do dalších procesů ekosystému PHOTOTROPHS VERSUS CHEMOTROPHS Pholotrophs are the Chemotrophs are the organisms that capture organisms which obtain protons in order to their energy by oxidizing acquire energy electron donor Energy source is Energy source is the mainly sunlight oxidizing energy of chemical compounds Classified as Classified as photoautotrophs and chemoorganotrophs photoheterotrophs and chemolithotrophs Visit Pediaa.com https://en.wikipedia.Org/wiki/chemotroph#/m a/File:Blacksmoker_in_Atlantic_Ocean.jpg PRIMÁRNÍ PRODUKCE Processes □Photosynthesis □Digestion, assimi-J^^^^^^^ lation, and growth Excretion and death Respiration xxxxxxxxxx :...::íxxxxxx:.' ""ikhhhhhhk ■ ■ íkhhhhhhx ............... . :khhhh: ■ ■ ■ ■ ■ ■ ■ jj.£L..:. Secondary carnivores :xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx:-: ■ ■ ■ :xxxx:-' ^^^^^m.. :•: • • I ........ xxxxxxxxxx xxxxxxxkk: Heat unavailable for further energy transfers The flow of energy through an ecosystem. Image from Purves et al., Life: The Science of Biology, 4th Edition, by Sinauer Associates (www.sinauer.com) and WH Freeman (www.whfreeman.com) PRIMÁRNÍ PRODUKCE Xtl fli, -D < co ô 8 CD Q. ľ 6 co o E 4 0) a 2 'co 6 E l5 2 4 2 .i3 f 2 Q. E ( a) 5 10 15 20 25 30 Aboveground biomass [sqrt] [g m~s] (b) 3 4 5 6 Abundance decomposer [In] 8 q 2 4 6 8 #Decomposer species Figure 3. Pairwise correlations visualizing the significant links detected in the path analysis relating plants, decomposers and decomposition. We show the relationships between aboveground plant biomass and decomposer abundances (a), between decomposer abundances and their species richness (b) and decomposer species richness and decomposition (c). For statistics, see Table S2. doi:10.1371/journal.pone.0106529.g003 0Ĺ O > CO 1-3 (D -•—> 5 -4 I- o 3 4 5 6 Abundance herbivores [In] Cc3 3 4 5 6 Abundance herbivores [In] Figure 4. Pairwise correlations visualizing the significant links detected in the path analysis relating plants, herbivores and herbivory. We show the relationships between plant C:N ratio and herbivore abundance (a), herbivore species richness and their abundance (b), and between herbivore abundance and herbivory rate (c). For statistics, see Table S4. doi:10.1371/journal.pone.01 06529.g004 ROZKLAD ORGANICKÉ HMOTY (DECOMPOSITION) (a) (b) r 0.33* 0.24* Decomposition )mpc 0.10 0,17 Herbivory @ --..Decomposer >$jjj/ species # Decomposer—, abundance (Sjjjjß Herbivore species # -0.16 I 0.35** Plant biomass ■0.38* 0.32- 0.06 2v Herbivore ggfr a bunda n ce^*^ Plant diversity 0.36* Figure 2. Path diagram explaining plant community effects on decomposition and herbivory. Models relate plant community variables (diversity, quantity and quality), species richness and abundance of (a) decomposer arthropods to decomposition, and (b) herbivorous insects to herbivory. Standardised path coefficients are given on top of the path arrows with significances indicated by*, P<0.05; **, P< 0.01 P< 0.001. Nonsignificant paths are given in grey. doi:10.1371/journal.pone.0106529.g002 ROZKLAD ORGANICKÉ HMOTY (DECOMPOSITION) (f f ŕ Figure 1 A selection of organisms of the soil food web. a-o, The selection of Alias, courtesy of A. Jones; individual photo credits are; K. Ritz (b, c); H. van organisms includes ectomycorrhizal (a) and decomposer fungi (b), bacteria Wijnen (d); Water bear in moss, Eye of Science/Science Photo Library (e); (c), nematode (d), tardigrade (e), collembolan (1), mite (g), enchylraeid worm P. Henning Krog (i); D. Walter (g); J. Rombke (h); J. Mourek (i, j); (h), millipede (i), centipede (j), earthworm (k), ants (I), woodlice (m), flatworm D. Cluzeau (k); European Soil Biodiversity Atlas, Joint Research Centre (I, n); (n) and mole (o). All photographs are from the European Soil Biodiversity S Taiti (m); and H. Atter (o). ROZKLAD ORGANICKÉ HMOTY (DECOMPOSITION) LETTER Consequences of biodiversity loss for litter decomposition across biomes 1 UrtvjIbtndj' '. *wb Ar-n'.irvik ftmndw', H**i- 1» fiw*'. Antrr* Hru**1-".OM <-jmv-S<-i , lite r.h«v*A*, IJ.,„I I Ml'nl,,. .Mdj.V^.ltaiJjMlW,.^". Itvc: .jnku.:.c.'. Vw*|wC A. Va 1 Vi-/j'i H Jl U-mJr* icl smíchání opadu z různých funkčních typů rostlin se projevilo ve zvýšené dynamice uhlíku a dusíku Biodiversity and ecosystem productivity: implications for carbon storage Sebastian Catotsky, Mark A. Bradford and Andy Hector, NERC Centre for Population Biology, Imperial College at Silwood Park, Ascot, Berks SLS 7PY, VK (m.a.bradford@ic.ae.uk). Gross Primary Productivity Autotrophic Respiration NEP (Carbon Storage) Plant Soil Root Turnover [and Exudation Tissue Senescejicc and Death Decomposition Net Primary Productivity Soil Heterotrophic Respiration J/ Other Heterotrophic Respiration, e.g., Herbivores Fig. 1. Conceptual model showing the main biological components of ecosystem carbon budgets. OIKOS 97:3 (2002) KOLOBĚH ŽIVIN Leo-DAS X "ivtujio^iiij]] Proceedings Linking the bottom to the top In aquatic ecosystems: mechanism* and stressors af benthic-pelagic coupling f(mn C towr. end Coyekyi C Carey* o KOLOBĚH ŽIVIN Leo-15AS X N> tujiMniuj]] froceedlngs Linking the bottom to the top In aquatic ecosystems: meenanisms and stressors of bent hie pelagic coupling KOLOBĚH ŽIVIN PiKi>lJi-on Lil iliMM^Im-ij Slúro PlbPI T ■=- ili i.'ki':-. Unun^MsIlDr IR-M-y nu ■.ŠIIIMI-J-LJI! "i ř '.kt-zliru, http://www.geocities.ws/jacklynn/website/pro.html KOLOBĚH ŽIVIN Figure 55.13 A general model of nutrient cycling. Fossilization -*■ Reservoir B Organic materials unavailable as nutrients ..- _ __III! IIIIII Reservoir D Inorganic materials unavailable as nutrients ^ Minerals in rocks Respiration, decomposition, excretion Assimilation, photosynthesis Burning of fossil fuels Weathering, erosion Formation of sedimentary rock Reservoir C Inorganic materials available as nutrients Atmosphere Wate w Soil ĎJÍŮ1 1 F^ruwn Ěd^lipn. Int;. KOLOBĚH ŽIVIN EKOSYSTÉMY STOJATÝCH VOD Energy Flow: The Microbial Loop - Simplified KOLOBĚH ŽIVIN EKOSYSTÉMY STOJATÝCH VOD KOLOBĚH ŽIVIN EKOSYSTÉMY STOJATÝCH VOD slunetnl energie 55. Schéma zapojení vodního ekosystému do velkého koloběhu látek a biologické o kt i vity v hiosfí': re. Jejich základem je uLilizacc sluncí ní energie pro futosyn tetickou redukci CO; na tvorbu organických sloučenin (CHiO)ri. při současnem uvolňovanf molekulamíhoOi. Uvedeny jsou i některé další prvky (podle různých autorů) TOKY ENERGIE A ŽIVI © 2012 Encyclopaedia Britannica, Inc. EKOSYSTÉMOVÉ SLUŽBY Zásobovací služby potrava sladká voda dřevo a vláknina palivo suroviny (štěrk) Regulační služby • regulace podnebí • regulace záplav • čištění vody • opylování • regulace nemocí Kulturní služby • estetické • duchovní • vzdělávací • rekreační Podpůrné služby • zachování biodiverzity • oběh živin • tvorba půdy • primární produkce EKOSYSTÉMOVÉ FUNKCE Ecosystem Function Category Ecosystem Function Description Regulating Functions Gas Reaulation Relates to the influence of natural and managed systems in relation to biogeochemical processes including greenhouse gasesr photo-chemical smog and volatile organic compounds (VOCs). Climate Reaulation Influence of land cover and biological mediated processes that regulate atmospheric processes and weather patterns which in turn create the microclimate in which different plants and animals (including humans) live and function. Disturbance Reaulation The capacity of the soil, regolith and vegetation to buffer the effects of wind, water and waves through water and energy storage capacity and surface resistance. Water Reaulation The influence of land cover, topography, soils, hydrological conditions in the spatial and temporal distribution of water through atmosphere, soils, aquifers, rivers, lakes and wetlands. Soil Retention Minimising soil loss through having adequate vegetation cover, root biomass, retaining rocks and soil biota. Nutrient Reaulation The role of ecosystems in the transport, storage and recycling of nutrients. Waste Treatment and The extent to which ecosystems are able to transport store and recycle Assimilation certain excesses of organic and inorganic wastes through distribution, assimilationr transport and chemical re composition. Pollination Pollination is the interaction between plants and (1) biotic vectors [e.g. insects, birds and mammals) and (2) abiotoic vectors (e.g. wind and water) in the movement of male gametes for plant production. Pollination and seed dispersal are linked. Bioloaical Control The interactions within biotic communities that act as restraining forces to control populations of potential pests and disease vectors. This function consists of natural and biological control mechanisms. Barrier Effect of Vegetation impedes the movement of airborne substances such as dust Veaetation and aerosols (including agricultural chemicals and industrial and transport emissions), enhances air mixing and mitigates noise. EKOSYSTÉMOVÉ FUNKCE Provisioning Functions Cultural Functions SuDDortina Habitats Preservation of natural and semi natural ecosystems as suitable living space for wild biotic communities and individual species. This function also-includes the provision of suitable breeding, reproduction, nursery, refugia and corridors (connectivity] for species. Soil Formation Soil formation is the facilitation of soil formation processes. Soil formation processes include the chemical weathering of rocks and the transportation and accumulation of inorganic and organic matter. Food Bio mass that sustains living organisms. Material that can be converted to provide energy and nutrition. Mostly initially derived from photosynthesis. Raw Materials Biomass that is used by species for any purpose other than food. Water SuddIv The role of ecosystems in providing water through sediment trapping, infiltration, dissolution, precipitation and diffusion. Genetic Resources Self maintaining diversity of organisms developed over evolutionary time (capable of continuing to change). Measurable at species, molecular and sub molecular levels. Provision of Shade and Shelter Relates to vegetation that ameliorates extremes in weather and climate at a local landscape scale. Shade or shelter is important for plantsr animals and structures. Pharmacological Resources Natural materials that are or can be used by organisms to maintain, restore or improve health (natural patterns can be copied by humans for synthetic products). Landscape Opportunity The extent and variety of natural features and landscapes. BIODIVERZITA A REZILIENCE Trends in Ecology & Evolution Cell Review Biodiversity and Resilience of Ecosystem Functions Tom H. Oliver,1''- Matthew S. Heard,'' N.ck J.B. Isaf Dawid B. Roy,"* Debcfah Procter ,;i Felix Eigenbrod* Rob freckieton,6 Anny Hector,6 C David L- Orme,7 Owen L. Pecctiery,8 Vania Proenca,0 Dawid Raflaali,10 It Blake Sultle.11 Geofgna M. Mace.,a Bsrla Martii-Lopez.13" Ben A. Woodcock.2 and James M, Bullock' vysoká rezistence pomalá obnova nízká rezistence rychlá obnova nízká rezistence pomalá obnova Trends in Ecology & Evolution Figure 1. Schematic Showing Varying Resilience Levels of an Ecosystem Function to Environ mental Pert u rbations (Red Arrows). Renal {A) shows a system with high resistance but slow recovery; pane! {B} shows a system with low resistance but rapid recovery; panel $Z) shows a system with both low resistance and slow recovery. Lack of resilience {vulnerability] could be quantified as the length of tine that ecosystem functions are provided bebw some minimum threshob set by resource managers (this threshold shown with the symbol >P,] or the total deficit of ecosystem function {i.e., the total shaded-red aea]. Mote that, fit he short term, mean function is srriar rial systems but iiihe longer term mean function is lower aid the extent of functional deficit is higher ii the least resient system (Cj. BIODIVERZITA A REZILIENCE Trends in Ecology & Evolution CePress Review Biodiversity and Resilience of Ecosystem Functions Torn H. Oiii^r,13r Matthew S. Heard,3 Nick j.B. Isaac,2 DaM B, Roy,2 Deborah Procter.3 Feli* Bgenbrod,'1 Rob FreekleJon^Andy Hector.6 C, David L Crme,' Owen L Petchey," tfánia Prcencs,a David FfaflaeHi,1" K, Blake Suttle.11 Georgina M_ Mace, Bet A. Wnodcoi*..5 and rychlý nástup/A/ chronický /B/ přechodné narušení/C/ vysoká rezistence /D/ nižší rezistence /E/ management /F/ (B) 0) u c 3 M- O E +■> V) > l/i O OJ Ľ 1 — _ v" ........-^r^v y \ / V-*''....... i ni ■ ia úplná rezistence /H/ omezená rezistence a plná obnova /I/ omezená rezistence bez obnovy/J/ (C) nízká rezistence bez obnovy/K/ Trends in Ecology & Evolution Figure 2. Different Possible Relationships between Environ mental Change (e)> time J), and level of eoosystern function provided Panel ^) shows three types of m^crrnental charge: rapid onset (A), dhronic (B), and transitory perineal ion (G). Panel (B) shows that eoosystern function irioht be relatively resistant to rtreasng levels of envionmental change (□). less resistant (E), or demonstrate hysteresis {F|. Panel (Q s hows the foiFquaftativety different outcomes for how ecosystem fund ion varies over tine whether the system is Uy resistant to 91 envionmental change (H). shows imited resistance but fid recovery(l). or snows limited (J) orlow resistance (K| with no recovery of function. The horizontal Ine at *, inofcates some mivmiiTi threshod for ecosystem function that is set by rescues managers. In both panels ^V) and {Q, short-tenm stochasticrty about trends is omitted far cfarity. BIODIVERZITA A REZILIENCE Trends in Ecology & Evolution Review Biodiversity and Resilience of Ecosystem Functions Tom h. Oliver,'1'- Matthew S- Heard," Nick j.b. Isaac* David B_ Roy,^ Deborah Procter;1 Felix Eigenbrod* Ftob Freckleton.6 Andy Hector,8 C. David L. Orme,7 Owen L. PeCchey*Vania Proenca,0 David Raflaelli.10 K Blake Suitle,11 Georgha M. Mace,12 Berta iuianíi-Lípez,'a" Ben A. Woodcock,2 and James M. Bullock2 Cell ess [A) Effect trait nx Scenario A [B] Effect trait nl Scenario B Effect trait nz Effect trait n2 Effect trait nz Proportion of species lost Trends in Ecology A Evolution Figure 3. Functional Redundancy and Effects on Resilience of Ecosystem Fu net ions. Ckmptementary effect-trait space occupied by aJI species in a comm. urity can be characterized by an n-drnenaonal hypervolume for continuous traits [main panels (A-C)] eras cfscrete iinctio nal groups for categorical -traits fnset panels A-Cj. A high dene rty of species sp read ever*/ across complementary trait space [(A), shown for two of n possible traits] leads to higher resistance of ecosystem L-do"3.T"3 15 s."ow- " oa-c P) :3ira-aAi.v.';r stows t"c "yDot"et "ii awagc Tract y -r>?.yXr-*i.r:fr as species are lost from a community under no-easing environmental perturbation. The same number of species less evenly Dispersed across comptefnenfary effect-trait space i.e., a more 'clumped' Distribution, (B)] toads to less resistant ecosystem tinctjons [P). scenario B], Similarty, fewer species that are evenly but thirty spread across compiernentaiy effect-trait space (C), also lead to less resistant ecosystem fincticns. In both cases, the communities are said to have lower functional redundancy1. The exact rate of loss of ecosystem function wibe context dependent fe.g., dependng on initial number of species, ordering of species extinctions, and degree of species clustering ii trait space). BIODIVERZITA A REZILIENCE Trendsin Ecology* Evolution Csl^fCSS Review Biodiversity and Resilience of Ecosystem Functions Tom H. Q*uer,1Ä-Matthews_ Heard*Nick JB Isaac,1 David B- Roy,y Deborah Procter,"1 Felix Eigenbrod* Rob freckleton,6 Andy Hector,6 C David L. Orme,7 Owen L. Petctiey* Vania Proenca,5 David Raflaelli,10 lt Blake Surrle.11 Georgria M. Mace,'3 Bens Martn-Löpez,'-3-" Ben A. WcodCO*,2 and Jamas M. Bulbck2 e.g., Pollen delivery to crops e.g., Pollination function resilience TrendE in Ecology &. Evolution Figure 4. Hypothetical Exampteof Indicator Values for an Ecosystem Function Flow {e.g. > Estimates of Pollen Delivery to Crops) or Resilience ofthat Function (e.g., Pollination under Environmental Perturbations as Measured by Some Combination of the Mechanisms Highlighted in this Review) as an Ecosystem is Degraded over Time. Ttie thresholds to initiate management act ion (red dotted bias) dfferdepenoiig on which hdicator is used {A for the resienceindicator, B Ibrthe eoosystam lunctjon fbw indicator). Given that remeolal management faires tfrne to put in place and become effective, unacceptable losses of ecosystem function might occur if ecosystem function flow tncicators are solely reied on. These losses can be costly for society and ciffcüt to reverse Indicator of ecosystem function flow orrcsjlicnce Time BIODIVERSITY AND ECOSYSTEM FUNCTION OBECNÉ VZTAHY Ecology Letten, (MOS) 9: 114S-1156 doi: 10.1111/j.14S1-024S.M0S.009S3.y REVIEW AND SYNTHESIS Patakia Habanera,1* Andrea B. Pfisterer,2 Nina Buthmann/3 Jing-Shen He,4 Tohru Makashizuka,5 David Ftaffaelli6 and Bernhard Sthniiü" Quantifying the evidence for biodiversity effects on ecosystem functioning and services Abstract Concern is growing about the consequences of biodiversity loss for ecosystem functioning, for the provision of ecosystem services, and for human well being. Experimental evidence for a relationship between biodiversity and ecosystem process rates is compelling, b ut the iss ue remains contentious. Here, we present the first rigorous quantitative assessment of (his relationship through meta-analvsis of experimental work Figure 3 Magnitude and direction of biodiversity effects (shown ate mean values and SE of normalised effect siaes Z„ weighted by the reciprocal of the variance of the individual Rvalues) and number of measurements available for ecosystem properties organised into ecosystem services. Coloured bans show differential effects of trophic level manipulated: green, primary producers; blue, primary consumers; pink, mycomthiaa; brown, decomposer; grey, niultitrophic (multiple levels simultaneously manipulated). Ecosystem properties shown in parentheses were considered of negative value for human well being, and thus opposite of effect siaes ate shown, Ecosyslem Ecosystem söivlcö property Ii Ii t* i i Responses of ecosystem property to increasing biodiversity -1 o Number of measurements 10 SO ľ Producer abundance ľ Consumer abundance 2" Consumer j D1 n i dúl i (v Plant root Diornass Mycorrniza abundance Decomposer activity Plant nutrient concentration Nutrient supply trom soil 1°Consumei diversity l"Consurnars: (Plant disease severity) Decomposer diversity (Invader fitness) (Invader diversity) Consumption resistance Invasion resistance [in 11 Mhi resistance Resistance vs. Diner dstumances natural variation FUNKCNI DIVERZITA A EKOSYSTEMOVE SLUZBY Tremis in Plant Science CeTress Opinion Plant Functional Traits: Soil and Ecosystem Services Michel-fteire Fauoon.1* David Houben,1 and Hans Lambers*' Ecosystem service: a" ecosystem process which confers either otect cr ndiect benefits to humans. We focus on 1he goods that are drectty used by humans te.g., food, eneigy. and fibre] and the ecological processes affecting the provision of these goods (eg., poination. soil fertility) that are related to human heatth Functional diversity; f-:. v>j™i pone.DDM3TS JEE STRATEGIE DRUHŮ X PROCESY ,_a..„_____TtfPioth Plant Traits Demonstrate That Temperate and Tropical Giant Eucalypt Forests Are Ecologically Convergent with Rainforest Not Savanna David Y. P. Trig', Grog J. Jordan, David H. J. S. Bowman Table 1. Functional traits selected for the current study and their functional significance relevant to the current study Functional significance of relevance to Functional Trait Unit current study Refs Leaf Traits Delta 13 C Correlated Id plant water use efficiency and may also segregate plants of different 1 successional status. Consequential for leaf energy and water balance. Interspecific variation in leaf size has Leaf Area mm2 been connected with climatic variation, where heat stress, cold stress, drought stress and high radiation all tend to select far relatively small leaves. 2 Correlated with potential relative growth rate. Lea* rna es per area(l_MA} g m"2 Higher values correspond with high investments in structural leaf defences and lea' lifespan, but also slower growth. : Leaf Elendemess Boie Trails Wood density g cm" Maximum height M Bark thickness Involved in control of water and temperature status. Slender leaves have a reduced Unitless boundary layer resistance and are can thus regulating their temperature through convectfve cooling more effectively. Positively correlated with drought tolerance and tolerance of mechanical or fire damage; related to stem water storage capacity, efficiency of xylem water transport, regulation of leaf water status a nd avoidance of turgor loss. Positively correlated with competitive ability of plants. Correlated to fire resistance with thicker bark expected in fire prone areas. Lnnless STRATEGIE DRUHŮ X PROCESY Plant Traits Demonstrate That Temperate and Tropical Giant Eucalypt Forests Are Ecologically Convergent with Rainforest Not Savanna David Y. P. Trig', Grog J. Jordan, David M. J. S. Bowman Reference__ Alternative regime regime Alternative Stable States models Model 1 All three vegetation types are stable states Model 2 Giant eucalypt forest is a pseudostable state between rainforest and open vegetation Model 3 Giant eucalypt forest is within the basin of attraction of rainforest Model 4 Giant eucalypt forest is within the basin of attraction of open vegetation > Hypothesized single-trait behavior in univariate analyses (different alphabets denoting significant differences) 3 fM 1/1 Hypothesized trait behavior in multivariate space {circles represent a 95% confidence limit for the mean. Groups that are significantly different tend to have non-intersecting circles) 000 GOD GDO 0 Axis 1 STRATEGIE DRUHŮ X PROCESY Plant Traits Demonstrate That Temperate and Tropical Giant Eucalypt Forests Are Ecologically Convergent with Rainforest Not Savanna David Y. P. Trig', Grog J. Jordan, David H. J. S. Bowman i-1-1-1-1-1-1-■-r -8 6^20 Canonical axis 1 (79.7%) STRATEGIE DRUHŮ X PROCESY ,_a..„_____TtfPioth Plant Traits Demonstrate That Temperate and Tropical Giant Eucalypt Forests Are Ecologically Convergent with Rainforest Not Savanna David Y. P. Trig', Grog J. Jordan, David M. J. S. Bowman Tropics Temperate * T b • '-'-1-1-1 * • 1-1-1-1- Tb b - ě E 3 n.i ■s-eo *a u.n b 0,14 0,17 í 0.04 V .04 a .02 a.oa E Raltiforesl Gianl Savanna aucalypt fore&t Rainforest Giant SavannE STRATEGIE DRUHŮ X PROCESY Oliveras I, Malhi Y. 2016: Many shades of green: the dynamic tropical forest-savannah transition zones. Phil. Trans. R. Soc. B 371: 20150308. Oliveras I, Malhi Y. 2016: Many shades of green: the dynamic tropical forest-savannah transition zones. Phil. Trans. R. Soc. B 371: 20150308. STRATEGIE DRUHŮ X PROCESY Oliveras I, Malhi Y. 2016: Many shades of green: the dynamic tropical forest-savannah transition zones. Phil. Trans. R. Soc. B 371: 20150308. scale ■a E key drivers MAT MAP rainfall seasonality fire regime soil type CO, fire regime soil lenilit} physical properties water availability herb ivory microclimalc moisture light fire recurrence behaviour flarrun ability soil water availability Fertility herb ivory key processes tree canopy cover grass cover fire suppression threshold tree-grass coexistence: demographic processes competitive processes tree canopy cover seed rain fire/herb ivory trap fire recovery strategies growth rate biomass allocation hydraulic strategies fire resistance strategies leaf habit related strategies competition facilitation seed germination seed establishment Figure 3. Different drivers and processes operate at different spatial and temporal scales h determining tropical forest-grassy vegetation transitions. At the global scale, and at large time scales, climate (mean annual temperature [MAT], precipitation MAP, seasonality and dry season length), fire regimes (frequency and intensit1/ of fires) and soil types determine distribution between the forest (dark green), grassy vegetation (dark purple as natural, light purple has human-modified) and grassland biomes (reproduced with permission from GlobCover 2009, hnp:/due.eirin.e5aJnt/page_globcoverphp). At the community scale, fire regimes, soil properties and herbiwy are the main drivers, and ecological processes are mostly reflected in tree-grass coexistence. At the local scale, many drivers and ecological processes affect the given vegetation existing at that precise point in space and time. STRATEGIE DRUHŮ X PROCESY (a) t 'Á 3D 10 grassy vegetation, savannah forest semi-deciduous forest//semi-evergreen Forest (tall) woodland savannah scrub forest dry forest gallery forest seasonally flooded forest cerrado dense cerraddo cerrado sensu stricto/ cerrado /(pico/ wooded grassland/ low woodland acacia savannah/ open woodland/ cerrado rupeslre grasslands. campů limpo, campo sujo scrub formations >U.K >0.S-0.1 1,000 kg), megacarnivores (>100 kg), large herbivores (45-999 kg), and large carnivores (21.5-999 kg). Carnivores prey on the guilds below them, and to some extent on juveniles of herbivores above them. Megacarnivores can also limit the activity and abundance of the next-size class of carnivores (21.5-99 kg) by excluding them from prime habitat or killing them outright In each continent. The first number indicates the number of species remaining (often in greatly reduced abundance and restricted range), and the second number indicates how many would have existed in a Late Pleistocene baseline. Data from ref. 44. Background colors indicate prehistoric diversity and relative loss rate in each guild. Yellow/light green shows areas of high intrinsic megafaunal diversity and low loss (e.g., large herbivores in Africa), dark green indicates low historic diversity and low loss (e.g., large herbivores in high latitude North America), red indicates high diversity and high loss (e.g., Americas), and dark brown indicates low diversity and high loss (e.g., high latitude Eurasia). EKOSYSTÉMOVÉ FUNKCE Megafauna and ecosystem function from the Pleistocene to the Anthropocene Yadvinder Malhi3'1, Christopher E. Doughty3, Mauro Galett^, Felisa A. Smithf, Jens-Christian Svennfngf1, and John W. Terborgh" large herbivores and carnivores (the megafauna) have been in a state of decline and extinction since the Late Pleistocene, both on land and more recently in the oceans consequences of these declines for ecosystem function understanding of how megafauna affect ecosystem physical and trophic structure, species composition, biogeochemistry, and climate understanding of changes in biosphere function since the Late Pleistocene and of the functioning of contemporary ecosystems offering a rationale and frame work for scientifically informed restoration of megafaunal function where possible and appropriate EKOSYSTÉMOVÉ FUNKCE Megafauna and ecosystem function from the Pleistocene to the Anthropocene Yadvinder Malhi3'1, Christopher E. Doughty3, Mauro Galetti^, Felisa A. Smithf, Jens-Christian Svenningf1, and John W. Terborgh" Ecosystem Physical Structure odstraňování stromové vegetace chobotnatci vyvrácení 1500 vzrostlých stomů na 1 sloního jedince a rok (Kruger National Park) 3 potenciální stavy ekosystému: • "green world" of tree cover dominated by a bottom-up resource constraint (water or nutrients), and two consumer-controlled states • "a black world" controlled by fire dynamics • ''brown world" controlled by herbivores loss of megafauna cascades through the trophic structure of terrestrial ecosystems, converting plant communities from topdown to bottom-up-regulation the exact direction of transition depends on the ecological roles of lost megafauna and also on rainfall seasonality and frequency of fire ignition in drier systems, or where human activity has greatly increased fire ignition frequency, the loss of grazers can increase grass fuel loads and lead to a shift to a fire-dominated ecosystem (a brown-to-black transition) in wetter systems, loss of browsing and grazing can lead to closed canopy forests (a brown-to-green transition) EKOSYSTÉMOVÉ FUNKCE Megafauna and ecosystem function from the Pleistocene to the Anthropocene Yadvinder Malhi3'1, Christopher E. Doughty3, IVlauro Galetti*1, Felisa A. Smithf, Jens-Christian Svennfngf1, and John W. Terborghe Ecosystem Physical Structure during Pleistocene glacials, the relationship between megafauna and vegetation cover may have been exacerbated through low atmospheric CQ2 concentrations, which further inhibited woody vegetation growth and made it more susceptible to browsing pressure megafaunal control of ecosystem state may exist in high northern latitudes (northern Eurasia and Beringia), determining the distribution of water-logged vegetation vs. a dry ''mammoth steppe" that once supported a high biomass of megafauna, including mammoths, horses, and bison heavy grazing maintained these steppes by suppressing woody growth, stimulating production by deeprooted, grazing-resistant grasses, and accelerating nutrient cycling in this cold climate through consumption and egestion EKOSYSTÉMOVÉ FUNKCE Megafauna and ecosystem function from the Pleistocene to the Anthropocene Yadvinder Malhi3'1, Christopher E. Doughty3, Mauro Galett^, Felisa A. Smith', Jens-Christian Svenning^, and John W. Terborgh" Ecosystem Trophic Structure large herbivores and carnivores both play an important role in shaping the abundance and composition of the whole animal community large herbivores have effects through habitat as outlined above but can also suppress smaller herbivore species through competition top carnivores play an important role in ecosystem stability by regulating the abundance and behaviors of lesser herbivores (such as deer) and mesopredators much of the effect of top carnivores comes from behavior change in herbivores because they avoid vulnerable parts of the "landscapes of fear" that carnivores create for example: reintroductionof wolves into Yellowstone National Park, which seems to have decreased browsing pressure by American elk (Cervus elaphus) on exposed alluvial floodplains, resulting in regrowth of willow tree cover and reduced erosion and river sediment content the loss of keystone species can induce trophic cascades that lead to habitat change, shifting the abundance of other species, and can lead to further extinction the loss of megafauna can result in an increased abundance of smaller herbivores and predators and can lead to simpler ecosystems with few interspecific interactions, shorter food chains, and less functional redundancy and resilience EKOSYSTÉMOVÉ FUNKCE Megafauna and ecosystem function from the Pleistocene to the Anthropocene Yadvinder Malhi3'1, Christopher E. Doughty3, Mauro Galett^, Felisa A. Srnithf, Jens-Christian Svenningf1, and John W. Terborgh" Vegetation Community Composition and Diversity correlations between seed dispersal syndrome and tree stature and wood density would lead to changes in ecosystem biomass and carbon stocks as a consequence of the loss of megafaunal seed dispersal megafaunal herbivory can affect woody species composition by promoting browsing-tolerant vegetation in African savannas, browsers shift the species composition toward dominance by thorny acacias and chemically defended species several apparent ''fire adaptations'' on plants, such as sclerophyllous leaves and thick bark, could also be used to deter large herbivores EKOSYSTÉMOVÉ FUNKCE Megafauna and ecosystem function from the Pleistocene to the Anthropocene Yadvinder Malhi3'1, Christopher E. Doughty3, Mauro Galett^, Felisa A. Smithf, Jens-Christian Svenningf1, and John W. Terborgh" Ecosystem Biogeochemistry • large animals play a disproportionately important role in accelerating ecosystem biogeochemical cycling • nutrients that would be locked for years in leaves and stems are liberated for use through animal consumption, digestion, defecation, and urination • on nutrientpoor soils and in low-productivity dry or cold climates, where megafaunal guts can act as giant warm and moist incubating vats that accelerate otherwise slow nutrient cycling • because of their high food consumption rates, long gut residence times, and large diurnal movement ranges, megafauna can also play a disproportionate role in the lateral movement of nutrients across landscapes through their feces and urine • in the oceans, a similar megafaunal nutrient transfer occurs, with whales and other marine mammals consuming nutrients in the deep ocean and transferring them to the surface through feces and physical mixing • global megafaunal nutrient pump that works against the abiotic entropic flow of nutrients from weathering continents to oceanic sediments, an interlinked system recycling nutrients, with whales moving nutrients from the deep sea to surface waters, anadromous fish and seabirds moving nutrients from the ocean to land, and terrestrial megafauna moving nutrients away from hotspots, such as river floodplains, into the continental interior EKOSYSTÉMOVÉ FUNKCE Megafauna and ecosystem function from the Pleistocene to the Anthropocene Yadvinder Malhi3'1, Christopher E. Doughty3, Mauro Galett^, Felisa A. Smith11, Jens-Christian Svenning*1, and John W. Terborghe Ecosystem Biogeochemistry • magnitudes of nutrient fluxes and estimate that the vertical ocean pump has declined by 77%, the sea-to-land pump has reduced by 94%, and the terrestrial diffusion of these nutrients has decreased by 92% • in these studies, phosphorus has been used as the metric for nutrient transfer. However, a very similar framework could be applied to many other potentially limiting micronutrients, such as sodium on land (87) and iron in the oceans EKOSYSTÉMOVÉ FUNKCE Megafauna and ecosystem function from the Pleistocene to the Anthropocene Yadvinder Malhi3'1, Christopher E. Doughty3, Mauro Galett^, Felisa A. Smith', Jens-Christian Svenningf1, and John W. Terborgh" Regional and Global Climate through consumption and digestion, megafauna can have impacts on biogeochemical cycling, including the release of greenhouse gases massive size can alter vegetation and soil structures and composition through trampling or browsing which can affect soil biogeochemical processes, alter water tables and soil methane emissions, and also affect land surface albedo and evapotranspiration potent impact on climate after the extinctions may have been through the modification of albedo at high latitudes through effects on tree cover assessment of the net impact of tree cover on climate requires consideration of carbon, evapotranspiration, and albedo impacts in regions with abundant winter snow cover, trees tend to warm the surface (92) because they are dark features that peek above highly reflective snow at lower latitudes and local scales, if increased tree cover increases evapotranspiration, surface evaporative cooling, and the formation of reflective clouds, the loss of megafauna may lead to a net cooling increased reflectivity cools the surface, helping to keep large reserves of soil carbon from decomposing (methane emissions) EKOSYSTÉMOVÉ FUNKCE Megafauna and ecosystem function from the Pleistocene to the Anthropocene Yadvinder Malhi3'1, Christopher E. Doughty3, Mauro Galetti^, Felisa A. Smithf, Jens-Christian Svenningr*, and John W. Terborgh" Practical Insights and Applications for the Anthropocene • ecological role of megafauna, notably via habitat structure and trophic cascades, is increasingly discussed in a conservation context • overhunting of seed dispersers, such as large monkeys and tapirs, will lead to a long-term decline in high biomass tree species, and thereby a decline in the carbon stock even in structurally intact forests • beyond a pure focus on animal loss, however, an opportunity exists to explore how to rebuild the ecosystem functions provided by large animals/megafauna comebacks: e.g., brown bear (Ursus arctos) and wolf (Canis lupus)/ • restoring native top predators helps suppress invasive mesopredators or invasive herbivores to the benefit of native species • exotic top predators may provide similar effects, by replacing lost native species • e.g. dingo (Canis lupus dingo), which, by suppressing invasive mesopredators and herbivores, is reported to have positive effects on a range of native species in Australia EKOSYSTÉMOVÉ FUNKCE X NIKY LETTER Biodiversity improves water quality through niche partitioning lirLi'Jky,', CarriuUk'1 Patch age (days since disturbance) Figure 2 | Niche parti turning by algae. The ovals show the mean (centre of image) ±95% confidence interval (boundary of image) of cell densities along two axes of a species niche (succession al age of habitat and near-bed velocity). Filamentous algae that are susceptible to shear (Melosira and Stigeocloniwn) were abundant in low-velocity habitats. Single-celled diatoms that grow prostrate to a surface [Achrtanthidium and Syuedm) achieved the highest densities in high-velocity habitats. Early successional habitats were dominated by small diatoms with fast rates of growth {Achnanthidium and Nitzschia), whereas late successional habitats were dominated by slow-growing cells, colonies or filaments (Stigeodonium, Spirogyra and Syrtedra). Naviatta is not plottedj because it failed to establish itself in poly culture despite growing in monoculture. EKOSYSTÉMOVÉ FUNKCE X NIKY LETTER Biodiversity improves water quality through niche partitioning Bradley J. Canlinale1 Synecfra Stigeodonium ■ Scefmiesmus a-j Spirugyra CE SE => 0. 0. 0 -ST--------- 2 4 6 9 Algal species richness 2 4 6 3 Algal species richness Figure 11 Algal diversity effects on NO.,-, algal bio mass and final papulation size