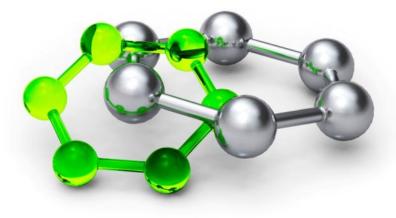
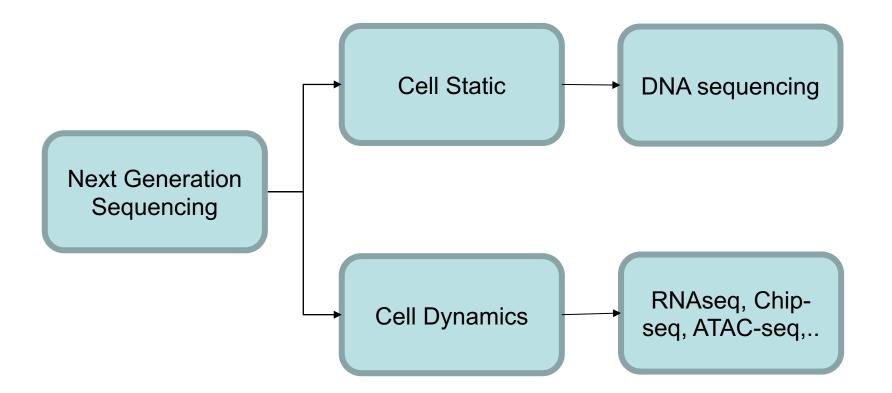


Central European Institute of Technology BRNO | CZECH REPUBLIC

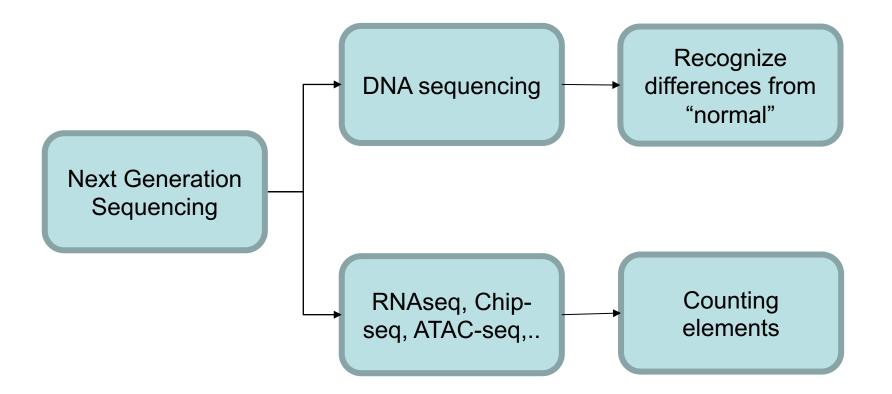
RNA-seq+ - Analysis

Vojtěch Bystrý

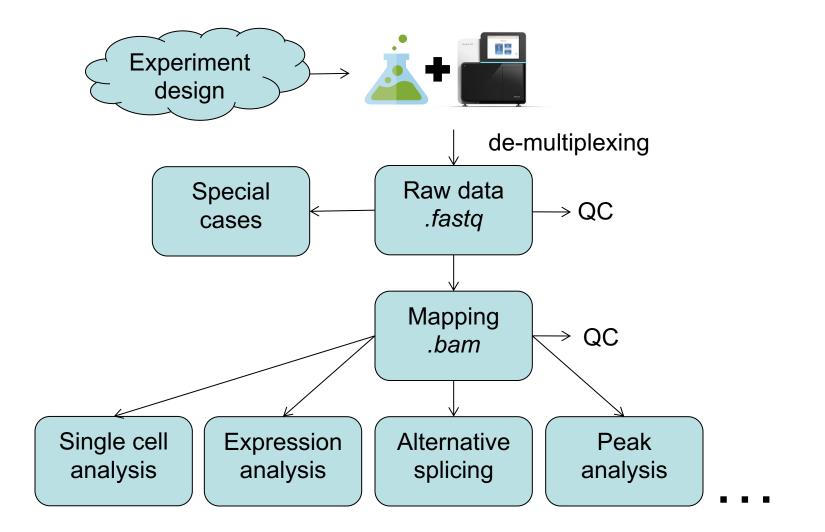

16. December 2019


EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

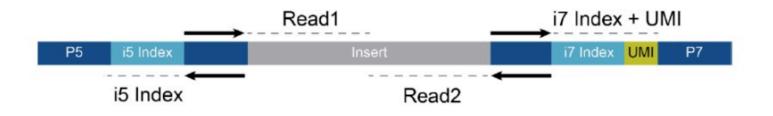
OP Research and Development for Innovation



NGS experiments



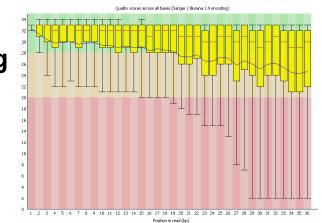
NGS experiments



NGS data analysis workflow

UMI – unique molecular identifiers

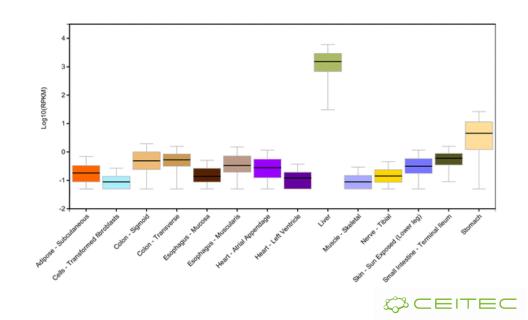
- Each molecular fragment gets unique n-base sequence (n ~ 8-12)
- Usage:
 - Mark duplicates


Raw data - QC

• Fastq - q stands for quality – coded phred score

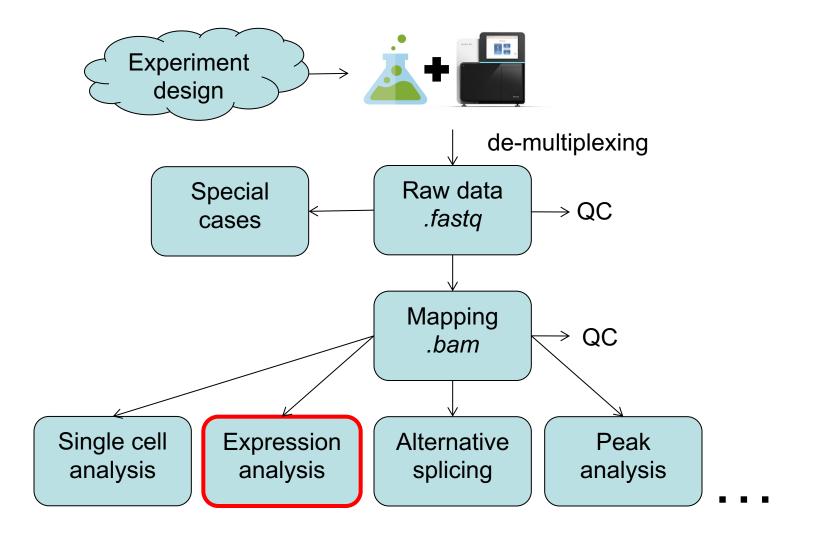
$$Q = -10 \cdot \log_{10} P$$

$$Q = -10$$


- Very good for early problem detection
- Reasonable for trimming and read filtering
 - RNA seq above phred score 5

Alignment - QC

- Per gene coverage
- Variability of per gene mapping
- Gene counts distribution
- rRNA content estimate
- Tissue expression check gtex


Alignment - QC

• QC example – multiQC html

M IN'OC													
AultiQC													
	ics analyses across many samples into a single r	report.											
um to start page													
		Mrazlab/sequencing_results/primary_	data/191202_Deno101										
icome! Not sure where to start?	h a tutorial video (5.08)												
ral Statistics													
ny table 🖽 Configure Columns 🏼 👍 Pic	st Showing 8/g rows and ¹³ /15 columns.												
Name	5'-3' blas 0.16	K Aligned 6014.3	% Alignable 31.3%	% Assigned 54.0%	K Assigned 4443.2	% rRNA	% mRNA 40.9%	% Aligned 50.8%	K Aligned 7.348.1	% Dropped	% Dups	% GC	K Seqs
SE										4.5%	21.0%	37%	15 131.7
	0.16	5 589.3	13.5%	40.3%	3450.2	16	20.1%	45.8%	15 706.6				
SE	1.65	4386.7	20.2%	30.4%	2292.7	%	15.0%	56.8%	19456.4	3.4%	29.0%	35%	35324.6
		1911.5	13.3%	25.0%	882.3	%	13.6%	45.9%	9700.6				
se I										6.6%	39.6%	38%	22:607.6 35:750.9
ap is a platform-independent application	to facilitate the quality control of alignment a	equencing data and its derivatives like feature of	counts.										
origin of reads													0 Hs
	exonic, intronic or intergenic regions. These o	can be displayed as either the number or percer	ntage of mapped reads.										
Percentages						Qualimap RMseq Cenamic Drip							
						Quantity Monte Control of	pri						A team
									6 N C N 0 7 D				
						Barrier al-reals							
werage Profile													0 H Y-Linite
							0 0 0 0 0 0						
1						-							
	nion) is a softense pariane freetimation oe	ne and isoform expression levels from RNA-Se	o data										
ed Reads			4.000										
down of how all reads were aligned for e	sach sample.												
er of Reads Percentages													
						RSEM: Mapped reach							di tuni
-										_			
										_			
			100 000 000 100 100 100 100 100										
200 KB 00 808 200 10	a pen ina ina ina ina ina pen	2008 (400 2008 (200 200 200 200	100 COL 100 100 LOS 100 100	1008 1800 8000 0008 8000 8000 0008 7000 D		nein 2000. 1000 mein 2000. 1000 Januar Alauni		Lana Lana Linna Linna Linna Linna	Lana 2008 Lines 1908 2008 1008 1008 1008	. Leon pers para lines tors pers lines para	a more later prov more later two you	1740. 1803 1808 1808 1608	pero into into pero into pero
						-							
pping rates ncy histogram showing how many read													O I Y-Limits
uency histogram showing how many read	s were argned to in reference regions.												Y-Limits:
ai .						ISEN: Multimapping Rate	0						di tuar
1													
- \													
						in i			N N 10 11 14 10	104 104 100 104 104 104	10 10 10 10 10	100 100 100 100	10 10 10 10 10
0													

NGS data analysis workflow

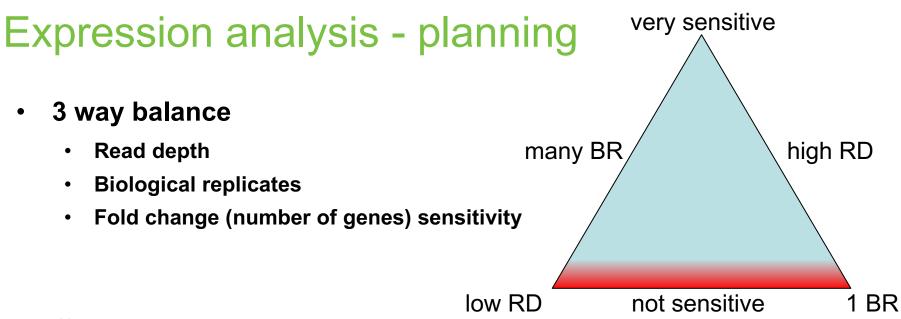


Table 1

Statistical power to detect differential expression varies with effect size, sequencing depth and number of replicates

	Replicates per group								
	3	5	10						
Effect size (fold change)									
1.25	17 %	25 %	44 %						
1.5	43 %	64 %	91 %						
2	87 %	98 %	100 %						
Sequencing depth (millions of re	ads)								
3	19 %	29 %	52 %						
10	33 %	51 %	80 %						
15	38 %	57 %	85 %						

Expression analysis - planning

- Depth
- Human ~ 22 000 genes = minimum 20 mil mapped reads
- Good 25 mil mapped reads
- Mapped reads!
 - rRNA removal
 - Size selection for sRNA
- Technical vs. biological
 - Technical only for technique testing
- Batch effect
 - Sample randomized sequencing
- Highly suggested minimum = 4 rep

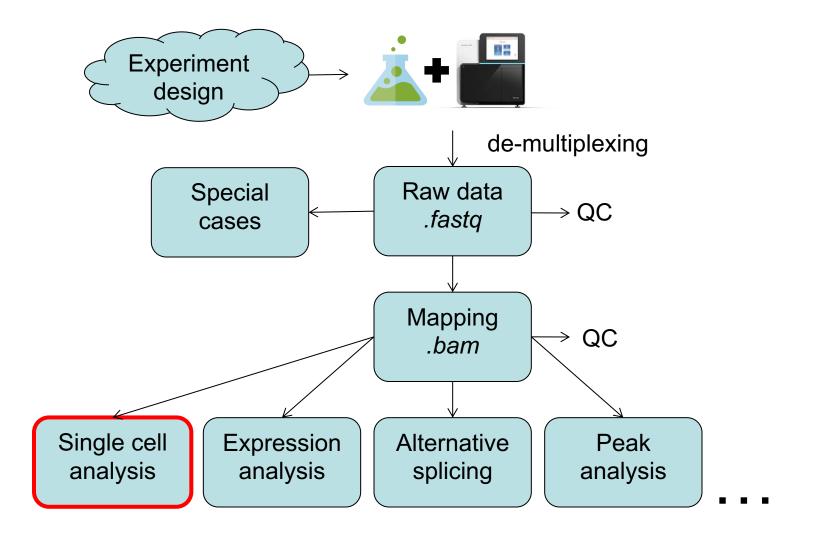
Raw counts

	AutoSave	OFF 🏠	<u>ہ</u> ج	_ ت					🗋 comp	olete.feature	Counts					
lome Ins	sert Dr	aw Page	e Layout	Formulas	a Data	Review	View									
~ V														233		$\sum \dots A$
Ê```		ori (Body)	× 12	✓ A [^]	A =	ΞΞ	» *	ab c♥ ♥	General		·	🖬 🖌 📑	i - 🗾 -	🚰 Ins		Z × A Z V
Paste 🎸		I <u>U</u> ~	⊞ • •	<u>∿ ~ A</u> ~	≡	≡ ≡	<u>←</u> = →=	↔ ↔	<u>19</u> × %	9 €0		ditional Form		For		× × Sor
1	XV	fx Gene									101	natting us it	ibic Otyles			~
• 1				-	-	-										-
A	В	С	D	E	F	G	Н	1	J	К	L	Μ	N	0	Р	Q
	Chr	Start		Strand	Length			KO1_rep3	KO2_rep1		KO2_rep3			NC_rep3		
ENSG00002	1;1;1;1;1;1;1;	1; 11869;12010	12227;12057	+;+;+;+;+;+;+;+	1735	0	0		0 0	0 0	0	0	0	0		
ENSG00002	1;1;1;1;1;1;1;	1; 14404;15005	14501;15038	-;-;-;-;-;-;-;-;-;-;-;-		155	144	13	1 140	130	150	260	160	186		
ENSG00002		1 17369	17436	-	68	8	10		9 7	9	12	21	20	18		
ENSG00002	1;1;1;1;1	29554;30267	30039;30667	+;+;+;+;+	1021	0	0) C	0 0	0	0	0	0		
ENSG00002		1 30366	30503	+	138	0	0) (0 0	0	0	0	0		
ENSG00002	1;1;1;1;1	34554;35245	35174;35481	-;-;-;-;-	1219	0	0		o c	0 0	0	0	0	0		
ENSG00002		1 52473	53312	+	840	0	0) (0 0	0	0	0	0		
ENSG000002	1;1;1;1	57598;58700	57653;58856	+;+;+;+	1414	0	0) C	0 0	0	0	0	0		
ENSG000001			65433;65573		2618	0	0		0 0	0 0	0	0	0	0		
		1; 89295;92091			3726	0	0		0 0	0 0	0	5	0	0		
ENSG000002			90050;91105		1319	0				-	0		0	0		
ENSG000002		1 131025			3812	0	-		-	-	0	-	0	0		
ENSG000002		1 135141	135895		755	0					0	•	1	1		
ENSG000002		1 137682			284	0	-		0 1	-	0	-	1	1		
ENSG000002		139790;1400			323	0	-			-	0	-	0	0		
		1; 141474;1428				1	-		-	-	3	-	1	5		
ENSG000002		1; 141474;1428			104	0			2 4		0		0	5		
						0	-				0	-	0	0		
ENSG000002	,		160690;1615		457	-	-		-	-	-	-		•		
ENSG00002		182696;1831			570	0) (0	-	0	0		
ENSG00002		· · ·				91					90		117	127		
ENSG000002		10/051	187958		68	0	•		0 0		0	•	0	0		
		1; 257864;2579				6					8		18	18		
ENSG00002		1 347982	348366		385	0			0 0		0		0	1		
ENSG00002					1095	0	-		0 0		0		0	0		
		1; 365389;3653				4					5		1	5		
ENSG00002		1 439870	440232	+	363	0	0		0 0	0 0	0	0	0	0		
ENSG00002		450703	451697	-	995	0	0) (0 0	0	0	0	0		
ENSG00002	1;1	487101;4897	489387;4899	+;+	2477	0	0		o c	0 0	0	0	0	0		
ENSG00002	1;1	491225;4927	491989;4932	-;-	1239	0	0		0 0	0 0	0	0	0	0		
ENSG00002		1 516376	516479	-	104	0	0) (0 0	0	0	0	0		
ENSG00002	1;1;1;1;1;1;1;	1; 586071;5862	586358;5863		5495	0	1		1 1	3	2	6	2	1		
ENSG000002			587701;5877		635	0	0		0 0	0 0	0	0	0	0		
ENSG000002		1 629062	629433		372	4	6		5 5	3	9	5	1	6		
ENSG000002		1 629640	630683		1044	2024					2414		1545	1820		
ENSG000002		1 631074	632616		1543	538		44			453		494	644		
ENSG000002		1 632325			89	3					455		454	0		
ENSG000002		1 632757	633438		682	18					17		17	15		
		032737	033438		082	10	15	1	- 21	. 20	1/	51	17	15		

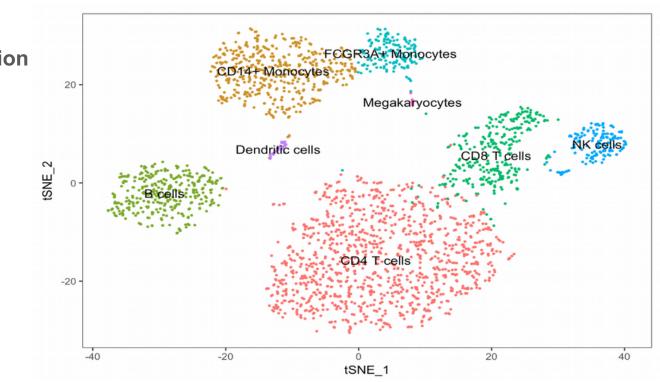
Result •

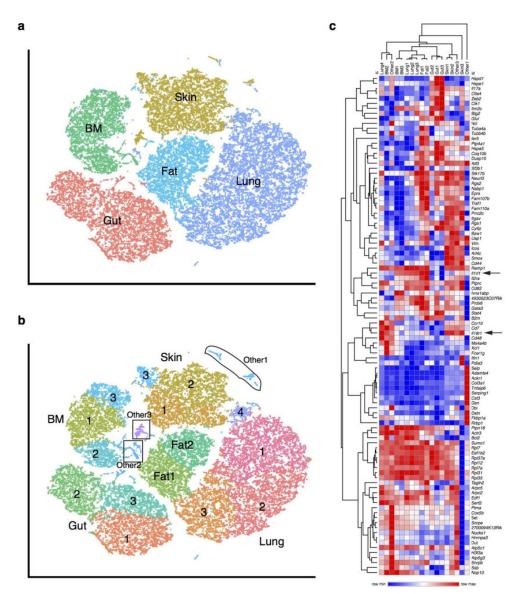
	libri (Body) 🗸 12	✓ A [*] A [*] =	≡ ≡ ≫	' → ^{ab} _C → Ge	neral ~	•	* -	Insert ∨ ﷺ Delete ∨	∑ č A Ţ Č	•	
Paste 🧳 B	I <u>U</u> • <u>—</u> •	<u>◇</u> · <u>A</u> · ≡	= = =	≝ ₫ • @		Conditional Formatting		Format 🗸	× v Sort 8 Filter	& Find & Select	
* × v	f_x KO1_rep1_norm	nCounts									
С	D	E	F	G	H	1	J K	L	MN	0	
log2FoldChange	pvalue	padj	gene_name	KO1_rep1_normCounts	KO1_rep2_normCounts	KO1_rep3_n KO2	_rep1_n KO2_rep2	_n(KO2_rep3_n(NC	_rep1_noi NC_rep2	_noi NC_rep	03_no
-2.13814843577763) (RASSF3	69.2462658512546	69.8847837776367	75.31983231 16.1	0750934 16.195797	35 17.01093187 39.	31190292 37.94880)318 39.3150	0960
1.55863508011381	3.15044331526357e-309	2.19381120258379e-305	PLAU	83.1780779077663	83.5038967608087	82.09580228 237	.8156269 255.71661	74 248.0778164 117	.5961299 109.336	5659 113.154	4793
-1.62683585832331	2.67845548579999e-298	1.24342831835788e-294	SLC36A1	88.3586480206321	89.2083474848266	88.67070489 29.4	3962332 29.160666	89 28.57256401 46.	87319032 48.72098	3551 48.1857	7710
1.30139182511156	1.76418769716443e-270	6.14246051460225e-267	RCN1	133.621557413121	128.297517206234			36 332.8423990 193			
1.2630850795779	1.02089445414276e-249	2.84359941256924e-246	IGFBP3	2486.81813222656	2480.06783875938			19 5792.253383 383			
1.51267681217244	2.45760497122124e-212	5.70451073903304e-209	MEX3C	21.6717076434627	20.6286409946036	21.83591508 60.2	27545782 62.828169	40 62.15931257 50.	61987615 52.3445	3495 48.9621	161
1.45013017412421	6.53192478167081e-211	1.29957309191899e-207	LIPA	120.20573839574	112.804986826613			90 340.2393572 300			
-1.30650792865875	1.30934153213199e-192	2.27939993975028e-189	TMEM245	116.862103502177	111.752505143215	119.2731567 46.0	4091467 46.838163	62 49.49953258 90.	92787681 90.8053	5143 94.1084	446
1.09960201635484	2.17678313377643e-176	3.3684509671227e-173	SETD7	94.0345714510628	90.8291692772598	95.78848936 202	.8762937 203.54845	18 202.1006449 129	.4813871 136.158	3091 133.588	873
1.27833505522101	2.86957786645544e-168	3.99646109461249e-165	RCN1P2	23.0752087098965	23.0493488664193			311 57.62168275 34.			
1.06309728758472	3.66004260013096e-168	4.63394666291126e-165	ARPC5	129.493613100081	127.181886621832	134.8156635 281	.1152001 275.49318	82 270.9110039 239	.5162297 237.3424	1888 231.06	704
1.34234143977455	4.21847608866044e-166	4.89589304056449e-163	NRBF2	16.9658511265965	16.7765580333664	18.03574201 44.0	1470578 44.656772	87 44.21599101 39.	22134858 39.8393	5072 41.0495	585
1.37893895771298	4.59426664975081e-166	4.92187320239074e-163	TRIB2	24.6231878272866	26.3751909859575	25.09320628 65.8	86030250 70.463037	02 63.89977332 34.	37669138 32.94672	2949 33.3187	717
1.41514290463119	4.28394899861381e-164	4.26161126454961e-161	COMMD8	12.8998259782516	13.050772874137	14.05460832 35.9	9500503 35.992947	35 35.99024198 42.	14172605 40.6861	5847 42.420f	658
1.2038640396391	6.1921617091496e-162	5.74921574155509e-159	SSX2IP	39.0503532013632	36.5842633149195	39.59016279 86.4	2887680 89.210649	96 93.07321069 63.	95400274 63.5696	5096 65.0185	578
1.13805745295508	2.10942495605565e-156	1.83612258518669e-153	TNC	411.20517274353	391.902079630133	372.8794154 911	.4534624 860.59980	87 846.4440791 151	1.567003 1468.30	5561 1554.25	512
1.21100372780037	1.43597859663817e-152	1.17640434796351e-149	RAB12	30.8563837399778	30.4167206502063	31.88928298 72.1	2622579 74.229022	93 71.89760488 62.	81075419 66.2479	3664 63.003?	267
1.58668299514642	3.58088420001444e-139	2.77060968075562e-136	STC1	8.97827888086311	8.52510163552496	9.068137847 26.0	6828415 26.588272	14 28.17888836 26.	43054803 28.9293	1597 25.6869	963
1.03153278282341	1.73185526160641e-136	1.2694499067575e-133	SLIT2	243.54871446939	224.53644233616	226.3214181 468	.0031733 476.59272	03 491.8459206 450	.5531194 423.010	0116 449.001	152
1.12237005015307	4.03327349281685e-133	2.80856999672302e-130	AAGAB	25.9441300074596	26.2278435502817	27.02345291 59.1	8573202 57.127742	63 58.07751771 61.	04494456 58.70543	3969 60.8067	247
1.13483447420888	3.87033602143435e-132	2.5667699890722e-129	COL8A1	130.112804747037	121.056443224454	120.9621225 272	.1930702 274.23785	96 280.4628183 247	.4284152 228.854	7181 255.96	109
0.76861333414839	4.98427559255326e-128	3.15527300806769e-125	LAMB1	347.077557840446	335.320664330648	346.4792713 589	.2181406 592.57685	48 591.6944964 601	.9373376 607.3974	1761 606.70	791
1.10360750428471	6.96602473945468e-125	4.21807941506023e-122	CRABP2	165.613125839185	176.564327206873	165.4784356 383	.4642897 362.58418	349 357.4160473 297	.8898212 286.4770)316 269.247	233
-1.06633428046114	3.25703843213295e-122	1.89003226017982e-119	PURA	70.6704066392535	69.190145866594	72.80649034 35.3	86500731 33.564606	571 33.73178695 48.	20886684 47.79540)494 49.4577	730
-0.975583321313511	8.4072307615726e-120	4.68350011265686e-117	NORAD	566.539717243245	564.256480103413	606.9821404 297	.5291949 285.26828	883 311.2316780 430	.1444350 447.1538	3791 455.295	524
-1.14400632988284	2.60007128477474e-113	1.39273818396376e-110	LBR	52.5280913834405	49.6771354563924	52.80028821 23.0	3748430 22.616494	65 25.36099953 48.	40129481 48.3468	1464 47.8388	873
1.5627724122809	3.95934828245093e-112	2.04229050109978e-109	MMP1	16.9039319619009	15.5135800132886	14.43663630 43.4	3578895 44.595035	40 52.11022371 59.	78850309 61.1473	9693 62.2599	914
0.92906087783015	6.814564670465e-110	3.38951579162736e-107	BAG2	63.9418574089975	66.0116511827316	68.34279499 128	.8941287 127.09687	98 125.9554870 140	.4497815 145.7493	3992 136.975	511
2.15548627650218	5.92161998592462e-109	2.84380694979215e-106	PODXL	2.84828157599795	3.53633845621776	2.613875654 12.9	0643983 13.849773	34 13.79936739 4.3	80566205 4.31281	1571 3.73328	822
0.707296411581976	2.57566499539123e-108	1.19570954636045e-105	ATP2B4	503.051933708682	481.573519055654	492.0319318 809	.9216672 819.31801	78 810.2259196 663	.3105417 674.807	3118 676.450	091
-0.714859731286293	2.74218583659034e-106	1.23194910149012e-103	HEG1	608.33515341278	593.725967238561	602.5988720 369	.5362319 370.71295	23 372.2099637 654	.5380900 635.952	5213 667.761	195
1.03324954224488	6.63741332358964e-103	2.88872672992603e-100	ETV1	24.9947028154603	23.7018875101262	24.14818969 49.4	2928080 51.715424	07 49.74816983 31.	26388594 30.40630)623 29.4698	803
1.14880944369458	1.50032203076728e-102	6.33181361287754e-100	SLC17A5	28.0906610502407	30.5219688185462	26.82238556 66.2	8597663 61.120099	28 64.10697103 77.	78617820 80.5058:	1599 76.3670	096
-1.09315016648007	1.98504091126693e-102	8.13107787388662e-100	МАРЗКЗ	57.9356984335236	62.4753127265138	57.06291620 29.3	37151546 27.678967	52 26.99786142 42.	41338907 43.8764	5744 42.817	112
1.12619224808891	2.10079261022215e-102	8.35935390930398e-100	CPED1	19.2981396634644	18.3763301921316	18.86011818 41.4	0958006 41.055420	22 42.41337094 47.	55234787 45.47160)692 43.246f	605
1.42012206861522	1.6056868181501e-101	6.21177786566014e-99	NCEH1	10.2785813394709	10.0617248932863	0 651222195 24 7	0612692 27.061592	79 20 56711201 25	70160205 22 0004	2027 26 002	221

- Result
 - normCounts
 - rpkm Reads Per Kilobase of transcript per Million mapped reads
 - fpkm Fragments Per Kilobase of transcript per Million mapped reads
 - tpm Transcripts Per Million (TPM)
 - for every 1,000,000 RNA molecules in the RNA-seq sample, x came from this gene/transcript
 - log2FoldChange
 - pvalue
 - padj pvalue adjusted for multiple testing

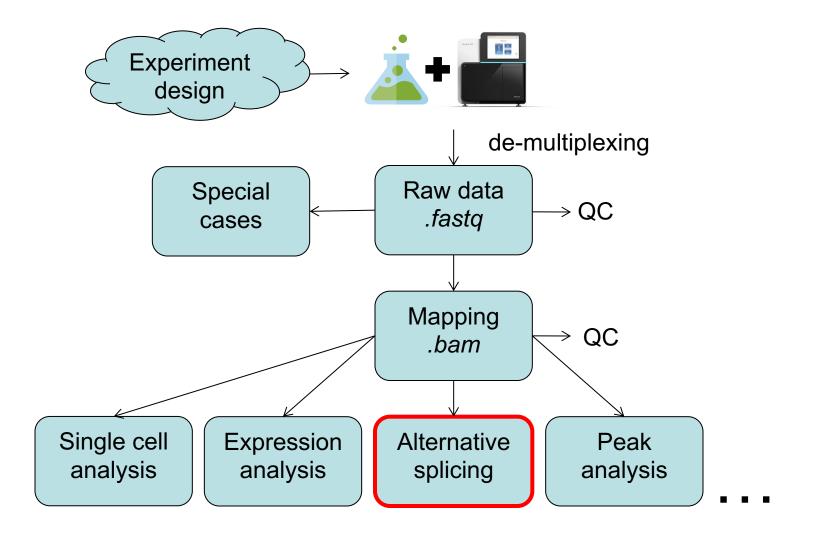

	Paste S B	I <u>U</u> • <u>H</u> • •	<u>◇</u> • <u>A</u> • ≡ ·	≡≡∣€	→= 🖶 v 🛅	~ % 9 ← 0 .00 →0					
G1 $f_x \lor f_x \lor f_x$ KO1_rep1_normCounts											
	С	D	E	F	G	н					
1	log2FoldChange	pvalue	padj	gene_name	KO1_rep1_normCounts	KO1_rep2_normCounts	к				
2	-2.13814843577763	0	0	RASSF3	69.2462658512546	69.8847837776367	7				
3	1.55863508011381	3.15044331526357e-309	2.19381120258379e-305	PLAU	83.1780779077663	83.5038967608087	8				

• Report example

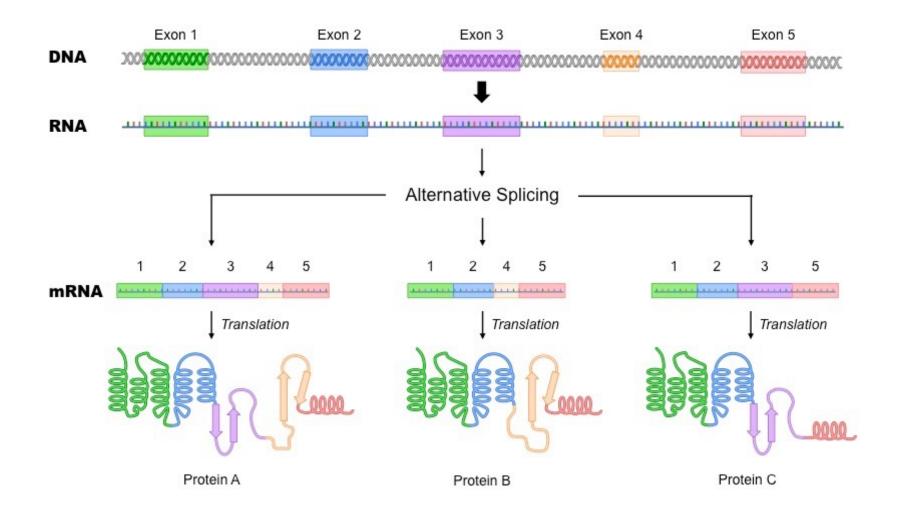

NGS data analysis workflow


Single cell analysis

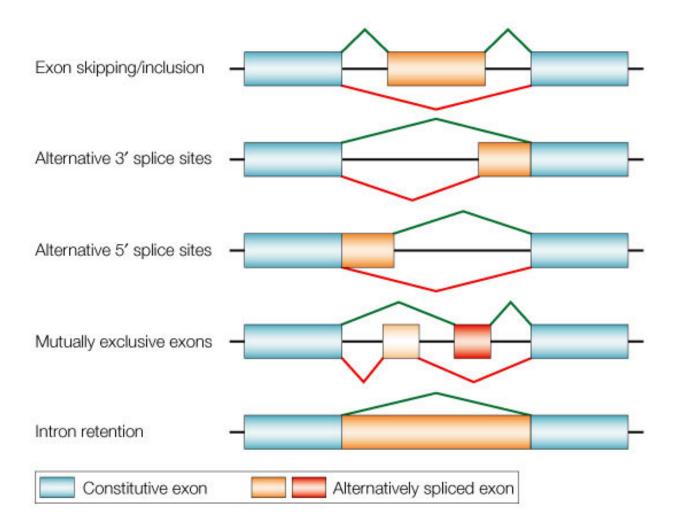
- Cluster cells based on expression
 - Cleaning/Filtering step
 - Clustering
 - Dimension reduction
 - PCA
 - tSNE
 - Visualization



Single cell analysis

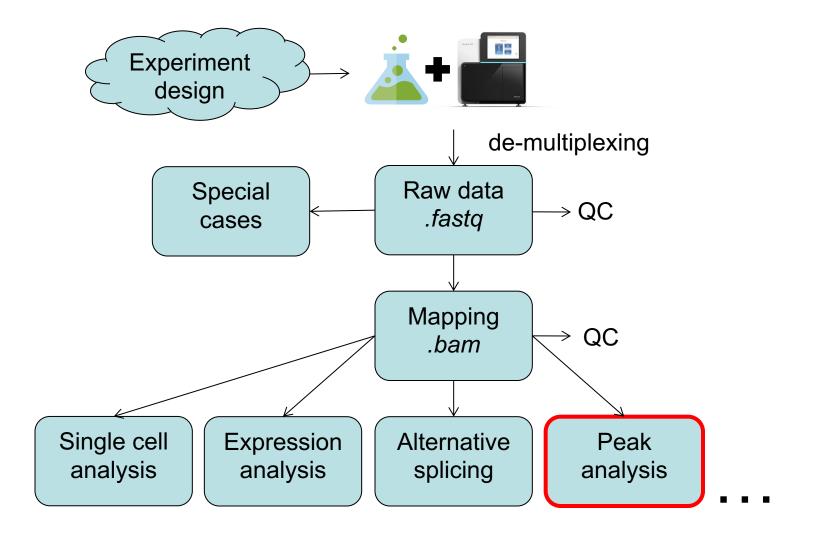


NGS data analysis workflow

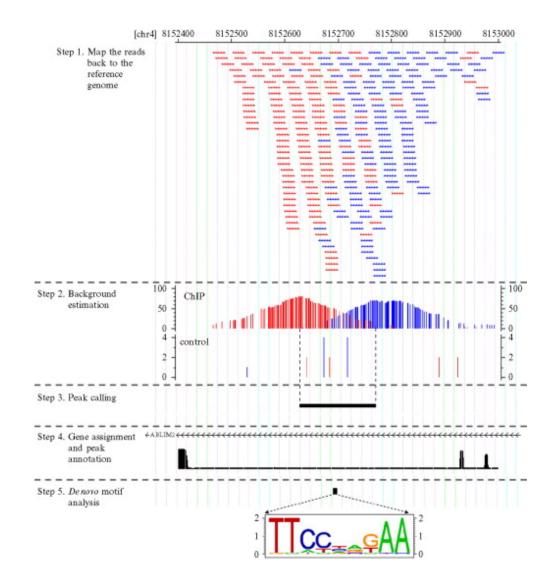


Alternative splicing

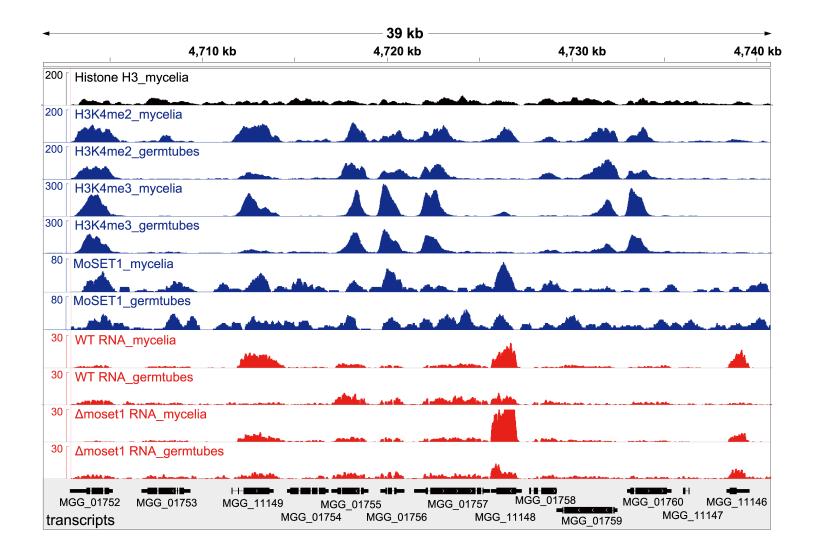
Alternative splicing



Alternative splicing



NGS data analysis workflow



Peak analysis

Peak analysis

Thank you for your attention

Central European Institute of Technology Masaryk University Kamenice 753/5 625 00 Brno, Czech Republic

www.ceitec.muni.cz | info@ceitec.muni.cz

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

