

Central European Institute of Technology BRNO | CZECH REPUBLIC

DNA re-sequencing - Analysis

Vojtěch Bystrý

18. November 2019

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

OP Research and Development for Innovation

Goals of the presentation

- Overview of NGS bioinformatics
 - NGS bioinformatics < Sequence analysis < Bioinformatics
- What to think about when you
 - plan experiment
 - discuss data analyses
 - check results
- Not to teach you how to do bioinformatics

NGS Bioinformatics

Illumina 1

Your raw sequence data

NGS experiments

NGS experiments

NGS experiments

NGS data analysis

Data pre-processing

- Primer (adaptor) trimming
 - To cut adapter usually not necessary but good practice
 - Primer removal is necessary
- UMI extraction

UMI – unique molecular identifiers

- Each molecular fragment gets unique n-base sequence (n ~ 8-12)
- Usage:
 - Mark duplicates
 - Consensus sequence
 - sequencing (PCR) error removal

Raw data - QC

• Fastq - q stands for quality – coded phred score

$$Quality = \frac{Quality}{5} = -10 \cdot \log_{10} P + \frac{10}{20} = \frac{10\%}{10\%} = \frac{10\%}{10\%}$$

- Very good for early problem detection
- Reasonable for trimming and read filtering
 - RNA seq above phred score 5
- Not good for individual variant analysis

NGS data analysis

Alignment

- Computationally most demanding
- More or less standardized
- Align to genome then select region of interest (ROI) <- .bed file
 - Don't force alignment
 - Keep the information about wrongly aligned for QC
 - Exception targeted structural variant detection

Alignment - QC

- Mean coverage and variance
- Percentage of covered with at least
 - In WES we define good quality if at lest 90% of positions are covered at least 20x
- Insert size
- BAM cross-contamination
- Cross-sample snp allele frequency correlation

- Type of comparison
 - Germline
 - Somatic
 - Tumor normal
 - Somatic variant calling without normal needs high coverage
 - Expected variant heterogeneity
 - Indirectly corelates to the necessary coverage

• Scope

Scope	genes	~bp	~% of WG	~ Germ vars
WGS	~22000	3 200 mil	100%	700 000
WES	22000	30 mil	1%	60 000
PanCancer	1049	1.2 mil	0.04%	3000
CZECANCA	219	250 000	0.0083%	400
TP53	1	25772	0.000859%	30

Variant Calling - planning

- Sample design
 - Germline
 - Somatic (Tumor Normal \0

- Any relationship between samples for comparison improve specificity dramatically
 - Not sensitivity
- Somatic variant calling without normal needs high coverage
- RNA
 - Depends on gene expression levels
 - Variant might not be there! gtex, previous runs QC

- Specificity vs. Sensitivity
- Tools
 - varscan no statististics = no assumptions
 - vardict
 - gatk haplotype caller
 - mutect only snp
 - pindel only indels
 - freebayes
- Callers combining usual strategy
- Variant Annotation
 - Annovar good database
 - snpEff
 - vep variant effect predictor

- Variant annotation can help variant calling significantly
- Variant occurrence in normal population
 - 1000 genome project above 5%
- Variant consequences cut off

* SO term	SO description	SO accession	Display term	IMPACT
transcript_ablation	A feature ablation whereby the deleted region includes a transcript feature	<u>SO:0001893</u> &	Transcript ablation	HIGH
splice_acceptor_variant	A splice variant that changes the 2 base region at the 3' end of an intron	<u>SO:0001574</u> &	Splice acceptor variant	HIGH
splice_donor_variant	A splice variant that changes the 2 base region at the 5' end of an intron	<u>SO:0001575</u> &	Splice donor variant	HIGH
stop_gained	A sequence variant whereby at least one base of a codon is changed, resulting in a premature stop codon, leading to a shortened transcript	<u>SO:0001587</u> 🖗	Stop gained	HIGH
frameshift_variant	A sequence variant which causes a disruption of the translational reading frame, because the number of nucleotides inserted or deleted is not a multiple of three	<u>SO:0001589</u> @	Frameshift variant	HIGH
stop_lost	A sequence variant where at least one base of the terminator codon (stop) is changed, resulting in an elongated transcript	<u>SO:0001578</u> 교	Stop lost	HIGH
start_lost	A codon variant that changes at least one base of the canonical start codo	<u>SO:0002012</u> &	Start lost	HIGH
transcript_amplification	A feature amplification of a region containing a transcript	<u>SO:0001889</u> &	Transcript amplification	HIGH
inframe_insertion	An inframe non synonymous variant that inserts bases into in the coding sequenc	<u>SO:0001821</u> &	Inframe insertion	MODERATE
inframe_deletion	An inframe non synonymous variant that deletes bases from the coding sequenc	<u>SO:0001822</u> &	Inframe deletion	MODERATE
missense_variant	A sequence variant, that changes one or more bases, resulting in a different amino acid sequence but where the length is preserved	<u>SO:0001583</u> &	Missense variant	MODERATE
protein_altering_variant	A sequence_variant which is predicted to change the protein encoded in the coding sequence	<u>SO:0001818</u> &	Protein altering variant	MODERATE
splice_region_variant	A sequence variant in which a change has occurred within the region of the splice site, either within 1-3 bases of the exon or 3-8 bases of the intron	<u>SO:0001630</u> &	Splice region variant	LOW
incomplete_terminal_codon_variant	A sequence variant where at least one base of the final codon of an incompletely annotated transcript is changed	<u>SO:0001626</u> 교	Incomplete terminal codon variant	LOW
stop_retained_variant	A sequence variant where at least one base in the terminator codon is changed, but the terminator remains	<u>SO:0001567</u> 🗗	Stop retained variant	LOW
synonymous_variant	A sequence variant where there is no resulting change to the encoded amino acid	<u>SO:0001819</u>	Synonymous variant	LOW

Database can help significantly – Sophia Genetics

NGS data analysis

Structural variants

- discordant read(-pairs) mapping
- copy number variants (CNV)

Structural variants

- CNV
- long variants in WGS ControlFreec
- Smaller variants for WES / target panel
 - Somatic tumor, normal
 - Germline lot of references
 - XHMM
- Read-pairs very noisy expect a lot of FP
- BreakPoint
 - Target panel with short reads
- Delly
 - everything else

Structural variants

• Manual check with IGV

Thank you for your attention

Central European Institute of Technology Masaryk University Kamenice 753/5 625 00 Brno, Czech Republic

www.ceitec.muni.cz | info@ceitec.muni.cz

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

