
C2110 UNIX and programming Lesson 3 / Module 2 -1-

C2110 UNIX and programming

Petr Kulhanek

kulhanek@chemi.muni.cz

National Center for Biomolecular Research, Faculty of Science
Masaryk University, Kamenice 5, CZ-62500 Brno

Lesson 3 / Module 2

PS / 2020 Distance form of teaching: Rev2

C2110 UNIX and programming Lesson 3 / Module 2 -2-

Streams, Redirects, Pipes

C2110 UNIX and programming Lesson 3 / Module 2 -3-

Process Communication

Process

Process can communicate with the environment in a number of ways:
• GUI (Graphical User Interface = using the appropriate API)
• signals, shared memory, MPI (Message Passing Interface), etc.
• standard currents

One option is to read input data from standard input current, output data into standard
output or error stream.

C2110 UNIX and programming Lesson 3 / Module 2 -4-

Standard Streams

process
(command, program)standard input stream

(keyboard)

standard output stream
(terminal screen)

standard error stream
(terminal screen)

Input-output streams serve the process for communication with its surroundings. Every
process opens up three standard streams:

C2110 UNIX and programming Lesson 3 / Module 2 -5-

Redirection

process
(command, program)standard input stream

(keyboard)

standard output stream
(terminal screen)

standard error stream
(terminal screen)

Input-output streams can be redirected to use files instead of the keyboard or screen.

C2110 UNIX and programming Lesson 3 / Module 2 -6-

Redirection and Ending Input
Standard input redirection of program my_command from file input.txt.

$ my_command < input.txt

Standard input redirection of program my_command from script file.

.......

./my_command << EOF

first line text

second line text

third line text

EOF

......

mark indicating the end of the entry
(selected by user)

end of input, mark can not be
surrounded by spaces

text forming the read input

This method of redirection is especially useful in scripts, but it also works in the command line. The
advantage is the expansion of variables in the read text.

Terminal (useful keyboard shortcuts):

Ctrl + D closes the input stream of the running process

C2110 UNIX and programming Lesson 3 / Module 2 -7-

Output Redirection
Standard output redirection of program my_command to a file output.txt. (File output.txt
is created. If it already exists, its original content is deleted.)

$ my_command > output.txt

Standard output redirection of program my_command to a file output.txt. (File output.txt is
created. If it already exists, output of the program my_command is connected to its end.)

$ my_command >> output.txt

Similar rules apply to standard error output, in this case the following operators are used:

$ my_command 2> errors.txt

$ my_command 2 >> errors.txt

C2110 UNIX and programming Lesson 3 / Module 2 -8-

Joining Output Streams
Standard output and standard program error output of my_command program can be
redirected at the same time to a file output.txt.

$ my_command &> output.txt

$ my_command &>> output.txt

Alternative solutions for &>>: First, it is necessary to redirect standard output and then
join standard error output with standard output.

$ my_command >> output.txt 2>&1

$ my_command 2>&1 >> output.txt does not work

order is important!

works in new versions bash

C2110 UNIX and programming Lesson 3 / Module 2 -9-

Pipes
Pipes serve to combine the standard output of one process with the standard input of
another process.

process 1 process 2

input

output | input

output

error output

error output

$ command_1 | command_2

Usage:

C2110 UNIX and programming Lesson 3 / Module 2 -10-

Pipes and Error Stream
The transmission of the standard error output via the pipe can be performed after its
connection with the standard output.

process 1 process 2

input

output | input

output

error output error output

$ command_1 2>&1 | command_2

Use:

2>&1

C2110 UNIX and programming Lesson 3 / Module 2 -11-

Commands for Exercise

Examples of use:

$ cat file1.txt file2.txt

$ paste file1.txt file2.txt

$ wc file.txt

$ head -15 file.txt

$ tail -6 file.txt

concatenates the content of the files file1.txt and file2.txt and prints the result on the screen

concatenates the contents of file1.txt and file2.txt (side by side) and prints the result on the screen

lists the number of lines, words, and characters in file.txt

prints the first 15 lines of file.txt

prints the last 6 lines of file.txt

cat joins the content of several files into one (one after the other), or lists the contents
of one file

paste joins the content of multiple files into one (side by side)

wc file information (number of lines, words and characters)

head prints the inital part of a file

tail prints the final part of the file

C2110 UNIX and programming Lesson 3 / Module 2 -12-

Commands for Exercise...
Command tr is used for transformation or deletion of characters from standard input. The
result is sent to standard output.

Examples:

$ cat file.txt | tr --delete "qwe"

$ cat file.txt | tr --part "[:space:]"

$ echo $PATH | tr ":" "\n"

from the contents of file.txt, removes the characters "q", "w" and "e"

from the contents of the file file.txt removes all whitespace

in the text sent by the echo command, the characters ":"
will be replaced by a newline character "\n "

C2110 UNIX and programming Lesson 3 / Module 2 -13-

Exercise 1

1. Find all files with the extension .f90 which are in the directory
/home/kulhanek/Documents/C2110/Lesson03. Save list of files to a file
~/Procesy/list.txt

2. How many lines does the file list.txt contain?

3. Write the first two lines from the file list.txt, first onto the screen and then to the file
two_lines.txt

4. Write only the third line of the file list.txt

5. In the directory /proc, find all files that begin with letters cpu. Remove the
unauthorized access information from the listing by redirecting of the error current to
/dev/null

6. List the directory names contained in the variable PATH, each on one line.

