
C2110 UNIX and programming Lesson 7 / Module 2 -1-

C2110 UNIX and programming

Petr Kulhanek

kulhanek@chemi.muni.cz

National Center for Biomolecular Research, Faculty of Science
Masaryk University, Kamenice 5, CZ-62500 Brno

PS / 2020 Distance form of teaching: Rev2

Lesson 7 / Module 2

C2110 UNIX and programming Lesson 7 / Module 2 -2-

Loops

state
? Yes

No

block 1

change

initialization

Loop block execution

counter (variable)

C2110 UNIX and programming Lesson 7 / Module 2 -3-

Loop Using while/until ...

state
? Yes

No

block 1

change

initialization

state
?

Yes

No

block 1

change

initialization

evaluates conditions
at the end loop

evaluates conditions in the
beginning of the loop

C2110 UNIX and programming Lesson 7 / Module 2 -4-

Loop using while/until ...

This algorithm has no direct support in
the control structures of bash, its
implementation is possible, but at cost
of poorer readability of resulting code.

complicated
implementation in bash

state
? Yes

No

block 1

change

initialization

state
?

Yes

No

block 1

change

initialization

evaluates conditions
at the end loop

evaluates conditions in the
beginning of the loop

C2110 UNIX and programming Lesson 7 / Module 2 -5-

Loop using while/until ...

easy implementation in bash

state
? Yes

No

block 1

change

initialization

state
?

Yes

No

block 1

change

initialization

evaluates conditions
at the end loop

evaluates conditions in the
beginning of the loop

This algorithm has no direct support in
the control structures of bash, its
implementation is possible, but at cost
of poorer readability of resulting code.

C2110 UNIX and programming Lesson 7 / Module 2 -6-

Loop Using while/until

while command1

do

command2

...

done

while command1; do

command2

...

done

Compact notation:

the loop is in progress while command1 returns
return value 0 (no error)

A loop is a control structure that repeatedly executes a sequence of commands. Repetition
and end of the loop is controlled by a condition.

until command1; do

command2

...

done

the loop is in progress until command1 will not
return a return value of 0

C2110 UNIX and programming Lesson 7 / Module 2 -7-

Practical Example - Loop

I < N
Yes

No

I = I + 1

N = 10
I= 0

writestr
"X"

counter (variable)

N=10

I=0

while [[I -lt N]]; do

echo "X"

((I = I + 1))

done

C2110 UNIX and programming Lesson 7 / Module 2 -8-

Practical Example - Loop

N=10

I=0

while test "$I" -lt "$N"; do

echo "X"

((I = I + 1))

done

N=10

I=0

while [[I -lt N]]; do

echo "X"

((I = I + 1))

done

$ must be used

$ optional, if [[]] or (()) block is used

I < N
Yes

No

I = I + 1

N = 10
I= 0

writestr
"X"

counter (variable)

N=10

I=0

while [["$I" –lt "$N"]]; do

echo "X"

((I = I + 1))

done

C2110 UNIX and programming Lesson 7 / Module 2 -9-

Exercise I

1. Write a bash script, which prints N "X" characters to the terminal. The number of
characters will be entered by the user as the first argument of the script. The script
prints an error message if the specified number of characters does not exceed two.

C2110 UNIX and programming Lesson 7 / Module 2 -10-

Complex Constructions - Nesting
Bash language does not have a labels and command goto, or their equivalents. Thus, more
complex constructions can be implemented only by immersing loops and conditions into
each other. The level of immersion is not limited.

condition

loop

However, when designing an algorithm/script, we try to avoid unnecessary nesting (mostly
for easier orientation in the script).

! condition

loop

exit

More suitable arrangement,
e.g., for testing input data
from users.

loop

condition

loop I

loop II

C2110 UNIX and programming Lesson 7 / Module 2 -11-

Nesting Loops - Example

outer loop counter can affect
behavior of the inner loop

N=10

I=0

while [[I –lt N]]; do

J=0

while [[J –lt I]]; do

echo –n "X"

((J = J + 1))

done

echo ""

((I = I + 1))

done

For nested structures, we pay attention to indentation of text blocks which increases
clarity and readability of the code. Text editors have built-in support that makes
indentation easier, such as in gedit editor, the indentation of the selected text block can be
achieved with the TAB or Shift + TAB key.

C2110 UNIX and programming Lesson 7 / Module 2 -12-

Exercise II

1. Write bash scripts for the following tasks. Make user enter the dimension of the
rendered shape after running the script. While working on the script, employe the
algorithm created from the homework.

C2110 UNIX and programming Lesson 7 / Module 2 -13-

Task 1
Print a square of X characters into the terminal. The length of the side of the square is
entered by the user.

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

Ignore the fact that it is not visually a square.
However, number of X characters on the line and
the number of lines must be the same.

C2110 UNIX and programming Lesson 7 / Module 2 -14-

Task 2

Print a right triangle with X characters into the terminal, so that one perpendicular is
located at the top and the other on the left. The length of the perpendicular is entered by
the user.

X X X X X X X X X X

X X X X X X X X X

X X X X X X X X

X X X X X X X

X X X X X X

X X X X X

X X X X

X X X

X X

X

C2110 UNIX and programming Lesson 7 / Module 2 -15-

Task 3

Print a right triangle with X characters into the terminal, so that one perpendicular is
located at the bottom and the other on the left. The length of the perpendicular is entered
by the user.

X

X X

X X X

X X X X

X X X X X

X X X X X X

X X X X X X X

X X X X X X X X

X X X X X X X X X

X X X X X X X X X X

