
C2115 Practical introduction to supercomputing Lesson 12 -1-

C2115
Practical introduction to

supercomputing

Petr Kulhanek

kulhanek@chemi.muni.cz

National Center for Biomolecular Research, Faculty of Science,
Masaryk University, Kotlářská 2, CZ-61137 Brno

Lesson 12

Revision 1

C2115 Practical introduction to supercomputing Lesson 12 -2-

Contents

➢ Representation of numbers ​​in digital technology
integers, real numbers

➢ From problem to result
algorithm, source codes, translation, program execution, programming
languages
➢ numerical integration
➢ matrix multiplication

C2115 Practical introduction to supercomputing Lesson 12 -3-

Conclusion

To solve problems, it is always advisable
to use existing software libraries or
programs, that are greatly optimized for
the given problem and hardware.*

* May not always be appropriate in case of design
verification (proof of concept), as the use of
optimized approaches may not be trivial at first.

C2115 Practical introduction to supercomputing Lesson 12 -4-

Representation of

numbers

C2115 Practical introduction to supercomputing Lesson 12 -5-

Typical computer scheme

CPU

north
bridge
north
bridge

south
bridge
south
bridge

USB

mouse, keyboard

real time clock SATA controllers
hard drives

BIOS

graphics
system

memory

memory controller

peripherals with quick access via
PCI Express

network (ethernet)sound

PCI bus

memory controller becomes part
of the latest processors

GPGPU

C2115 Practical introduction to supercomputing Lesson 12 -6-

CPU

Processor also CPU (Central Processing Unit) is an essential part of the computer; it is a
very complex sequential circuit that executes machine code stored in the computer's
operating memory. The machine code consists of individual machine instructions of a
computer programs loaded into the operating memory. www.wikipedia.org

CPU

controller

ALU

ALU (arithmetic and logic unit),
performs arithmetic operations,
evaluates conditions

reads machine instructions and data
and prepares their processing in ALU

sequential processing of machine instructions is
controlled by an internal clock cycle

How does the CPU (ALU) work with numeric values?

C2115 Practical introduction to supercomputing Lesson 12 -7-

Integer numbers
The smallest unit of information in digital technology is one bit. Bits are formed into words.
The smallest word is byte which contains 8 bits.

One byte can describe integers ranging from 0 to 255.

128 64 32 16 8 4 2 1

0 1 0 1 0 1 1 1 = 87

Signed integers can also be expressed. In this case, one bit is reserved for the sign, the
remaining bits for the number. There are several implementation options. Intel
architecture uses two’s complement, which leads to range from -128 to 127.

128 64 32 16 8 4 2 1

0 1 1 1 1 1 1 1 = 127

0 1 0 1 0 1 1 1 = 87

0 0 0 0 0 0 0 1 = 1

0 0 0 0 0 0 0 0 = 0

1 1 1 1 1 1 1 1 = -1

1 0 1 0 1 0 0 1 = -87

1 0 0 0 0 0 0 0 = -128

bit reserved for
sign

C2115 Practical introduction to supercomputing Lesson 12 -8-

Integer numbers, II
Integers with greater dynamic range can be expressed using larger words typically
composed of four bytes (32 bit word) or eight bytes (64 bit word).

When working with integers it is necessary to take into account that you cannot express an
arbitrarily large number and the option of underflow or overflow of values must be
consistently avoided.

32-bit unsigned integer: 0 to 4.294.967.295
32-bit signed integer: −2.147.483.648 to 2.147.483.647
64-bit unsigned integer: 0 to 18.446.744.073.709.551.615
64-bit signed integer: −9.223.372.036.854.775.808 to

9.223.372.036.854.775.807

C2115 Practical introduction to supercomputing Lesson 12 -9-

Real numbers
Real numbers are expressed in the following format (floating point format):

mantisa

exponent

In digital technology, real numbers are most often expressed in a format defined by a
standard IEEE 754.

type width mantisa exponent

single precision 32 23 8

double precision 64 52 11

...
2

1

2

1

2

1

2

1
44332211 mmmmQ +++=

m1, m2, m3 are the bits of the mantissa

C2115 Practical introduction to supercomputing Lesson 12 -10-

Real numbers, II

By a special combination of value of the mantissa and the exponent, following special
values can be expressed:
0 positive zero
-0 negative zero
NaN not a number, e.g., the result of division by zero
+Inf positive infinity (number is too large to express)
-Inf negative infinity (number is too large to express)

When working with real numbers, it is necessary to pay attention to propagation of
rounding errors, in logical comparisons, it is not appropriate to use operators equals and
does not equal, except for the zero comparison situation.

Type Range Accuracy

single precision ±1.18×10−38 to ±3.4 × 1038 approximately 7 decimal
places

double precision ±2.23×10−308 to ±1.80×10308 approximately 15 decimal
places

C2115 Practical introduction to supercomputing Lesson 12 -11-

Exercise 1

1. Variable of type signed char (signed byte) contains the number 127. What value will
the variable have if we increase it by one?

2. Variable of type unsigned char (unsigned byte) contains the number 88. How does the
numeric value change if the bit representation of the number is shifted one position to
the right or left? What is the mathematical meaning of the operation.

3. What will be the result of the sum of real numbers represented in double precision and
having values:

0,1346978.10-12

1,2312657.106

4. What is big-endian and little-endian? Indicate architecture that use given type of
endianity. What effect does the endianity have on transfer binary data?

Joint exercise: conversion of
numerical values ​​from decimal to
binary and hexadecimal

C2115 Practical introduction to supercomputing Lesson 12 -12-

Conclusions

➢ CPUs (or other computing units, e.g., GPGPUs)
operate with some numerical precision.

➢ Errors (numerical errors) can occur in numerical
calculations, which can lead to incorrect results
(predictions).

➢ When designing computer programs, it is therefore
necessary to use such algorithms that are either not
sensitive to rounding errors or significantly reduce
their effect.

C2115 Practical introduction to supercomputing Lesson 12 -13-

From problem
to results

C2115 Practical introduction to supercomputing Lesson 12 -14-

From problem to results ...

Problem Results

C2115 Practical introduction to supercomputing Lesson 12 -15-

From problem to results ...

Problem Results

algorithm

source
code

program

calculation

C2115 Practical introduction to supercomputing Lesson 12 -16-

From problem to results ...

Problem Results

algorithm

source
code

program

calculation

flowcharts

language selection,
manual optimization

compilation
machine optimization

allocation and
efficient use of

resources

C2115 Practical introduction to supercomputing Lesson 12 -17-

From problem to result ...

Problem Results

algorithm

source
code

program

calculation

flowcharts

language selection,
manual optimization

compilation
machine optimization

allocation and
efficient use of

resources

hardware

C2115 Practical introduction to supercomputing Lesson 12 -18-

From problem to result ...

algorithm

source
code

program

calculation

flowcharts

language selection,
manual optimization

compilation
machine optimization

allocation and
efficient use of

resources

hardware

When solving problems using computer technology (supercomputers), it is necessary to
comprehensively evaluate several aspects, including used hardware and its architecture.

C2115 Practical introduction to supercomputing Lesson 12 -19-

Covered topics ...

algorithm

source
code

program

calculation
hardware

basic problems with creating applications
for demanding calculations, parallelization

When solving problems using computer technology (supercomputers), it is necessary to
comprehensively evaluate several aspects, including used hardware and its architecture.

C2115 Practical introduction to supercomputing Lesson 12 -20-

Topics covered ...

algorithm

source
code

program

calculation
hardware

When solving problems using computer technology (supercomputers) it is necessary
comprehensively evaluate a number of aspects, including the hardware used and its
architecture.

efficient running of
computational chemistry
applications
(MetaCentrum, small clusters)

C2115 Practical introduction to supercomputing Lesson 12 -21-

Numeric
integration

C2115 Practical introduction to supercomputing Lesson 12 -22-

Exercise LIII.3

1. Write a program that calculates a certain integral below. Use the trapezoidal method
for integration.

dx
x

I  +
=

1

0

21

4

a certain integral is the area
under the curve in the range of
integration limits

C2115 Practical introduction to supercomputing Lesson 12 -23-

Trapezoidal vs rectangular method

trapezoidal method rectangular method

yi

yi

yi+1

h h

h
yy

I ii
i

2

)(1++
= hyI ii =

numerically more accurate method
numerically less accurate method

easier implementation and parallelization

C2115 Practical introduction to supercomputing Lesson 12 -24-

Sequential implementation
program integral

implicit none

integer(8) :: i

integer(8) :: n

double precision :: rl,rr,h,v,y,x

!---

rl= 0.0d0

rr= 1.0d0

n = 2000000000

h = (rr-rl)/n

v = 0.0d0

do i=1,n

x = (i-0.5d0)*h + rl

y = 4.0d0 / (1.0d0 + x**2)

v = v + y*h

end do

write(*,*) 'integral = ',v

end program integral

rectangular method

dx
x

I  +
=

1

0

21

4

C2115 Practical introduction to supercomputing Lesson 12 -25-

Exercise 2

1. Compile the program integral.f90 with optimization -O3

2. Measure application run time required to integrate the function. Use the program
/usr/bi /time to measure the time.

3. What is the value of the integral equal to?

4. What effect does the value of the variable "n" (i.e., size h) have on the accuracy of the
calculation? Use programs integral-errors_sp.f90 and integral-errors_dp.f90 to assess.
Briefly discuss obtained results.

Source codes:
/home/kulhanek/Documents/C2115/code/integral/single

C2115 Practical introduction to supercomputing Lesson 12 -26-

Matrix multiplication

C2115 Practical introduction to supercomputing Lesson 12 -27-

Content

➢Matrix multiplication
implementation, complexity, computing power, exercises

➢ Explanation of the obtained results
computer architecture and its bottlenecks

➢ Use of optimized libraries
BLAS, LAPACK, LINPACK, comparison of results, exercises

C2115 Practical introduction to supercomputing Lesson 12 -28-

Matrix multiplication

A(n, m) B(m, k) C(n, k)

x =

Use:
• finding eigenvalues ​​and vectors of square matrices (quantum chemistry)
• solution of a system of linear equations (QSAR, QSPR)
• transformations (displacement, rotation, scaling - display and graphics)

C2115 Practical introduction to supercomputing Lesson 12 -29-

Matrix multiplication

A(n, m) B(m, k) C(n, k)

x =


=

=
m

l

ljilij BAC
1

Element of the resulting matrix C is the scalar product of the vectors formed by the line i of
A matrix and column j of B matrix

C2115 Practical introduction to supercomputing Lesson 12 -30-

Matrix mult., implementation
subroutine mult_matrices(A,B,C)

implicit none

double precision :: A(:,:)

double precision :: B(:,:)

double precision :: C(:,:)

!---------------------------------------

integer :: i,j,k

!---

if(size(A,2) .ne. size(B,1)) then

stop 'Error: Illegal shape of A and B matrices!'

end if

do i=1,size(A,1)

do j=1,size(B,2)

C(i,j) = 0.0d0

do k=1,size(A,2)

C(i,j) = C(i,j) + A(i,k)*B(k,j)

end do

end do

end do

end subroutine mult_matrices

C2115 Practical introduction to supercomputing Lesson 12 -31-

Number of operations

do i=1,size(A,1)

do j=1,size(B,2)

C(i,j) = 0.0d0

do k=1,size(A,2)

C(i,j) = C(i,j) + A(i,k)*B(k,j)

end do

end do

end do

N * N * N * (1 + 1) = 2 * N3

Assuming that matrices A and B are square with dimensions NxN:

In computer technology, computing power is assed via FLOPS (FLoating-point Operations
Per Second) value, which expresses how many floating point operations a given device
performs per second.

C2115 Practical introduction to supercomputing Lesson 12 -32-

Results
wolf21: gfortran 4.6.3, optimalizace O3, Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz

N NR NOPs Time MFLOPS

----- ----- ---------------- ---------------- -------

50 50000 12500000000 6.1843858 2021.2

100 500 1000000000 0.5200334 1923.0

150 50 337500000 0.1760106 1917.5

200 50 800000000 0.4280272 1869.0

250 50 1562500000 0.8440533 1851.2

300 50 2700000000 1.4640903 1844.1

350 50 4287500000 2.3441458 1829.0

400 50 6400000000 5.7083569 1121.2

450 50 9112500000 5.9363708 1535.0

500 50 12500000000 10.3366470 1209.3

550 1 332750000 0.6880417 483.6

600 1 432000000 1.1600723 372.4

650 1 549250000 1.8601189 295.3

700 1 686000000 2.5881615 265.1

750 1 843750000 3.2762032 257.5

800 1 1024000000 3.8522377 265.8

850 1 1228250000 4.7883034 256.5

900 1 1458000000 5.6963577 256.0

950 1 1714750000 6.5044060 263.6

1000 1 2000000000 7.9444962 251.7

Key:
N - dimension of the matrix
NR - number of repetitions
NOPs - number of
operations in FP
Time - execution time in s
MFLOPS - computing power

C2115 Practical introduction to supercomputing Lesson 12 -33-

Results
wolf21

N – matrix dimension

C
o

m
p

u
ti

n
g

p
o

w
er

 [
M

FL
O

P
S]

C2115 Practical introduction to supercomputing Lesson 12 -34-

N – matrix dimension

C
o

m
p

u
ti

n
g

p
o

w
er

 [
M

FL
O

P
S]

Results

significant drop in
performance

wolf21 wolf21

C2115 Practical introduction to supercomputing Lesson 12 -35-

Exercise 3

1. Compile the program mult_mat_naive_dp.f90 with gfortran compiler, use -O3
optimization.

2. Run the program and display the obtained dependence of the computational power
depending on the size of the matrix in the form of a graph (interactive mode gnuplot).

3. Compare the results for the optimization levels -O3 and -O0. Display the obtained
dependencies in one graph. Insert the graph into the protocol. Be sure to specify the
CPU type (command lscpu).

4. Discuss obtained results.

Source codes:
/home/kulhanek/Documents/C2115/code/matrix

C2115 Practical introduction to supercomputing Lesson 12 -36-

Matrix multiplication
vs

Architecture of

computers

C2115 Practical introduction to supercomputing Lesson 12 -37-

Architecture, overal view

CPU

north
bridge
north
bridge

south
bridge
south
bridge

USB

mouse, keyboard

real time clock

BIOS

graphics
system

memory

memory controller

peripherals with quick access via
PCI Express

Network (ethernet)sound

PCI bus

memory controller becomes part
of the latest processors

SATA controllers
hard drives

C2115 Practical introduction to supercomputing Lesson 12 -38-

Architecture, bottleneck

CPU

memory

memory controller

Bottleneck: data transfer rate between memory and CPU is slower than the speed at which
the CPU is able to process data

C2115 Practical introduction to supercomputing Lesson 12 -39-

Hierarchical model of memory
memory

L3 L2
L1

L1

CPU

fast cache, different levels with different access speeds

wolf21 - transfer rates (memtest86 +, http: // www.memtest.org/)

Type Size Speed

L1 32kB 89 GB/s

L2 256 kB 35 GB/s

L3 8192 kB 24 GB/s

paměť 8192 MB 12 GB/s

C2115 Practical introduction to supercomputing Lesson 12 -40-

Hierarchical model of memory

When the size of problem exceeds
size of CPU cache, data transfer rate
between physical memory and CPU
becomes the speed limiting step.

N=600
600x600x3x8 = 8437 kB

A, B, C double precision

Type Size Speed

L1 32kB 89 GB/s

L2 256 kB 35 GB/s

L3 8192 kB 24 GB/s

paměť 8192 MB 12 GB/s

memory

L3 L2
L1

L1

CPU

fast cache, different levels with different access speeds

wolf21 - transfer rates (memtest86 +, http: // www.memtest.org/)

C2115 Practical introduction to supercomputing Lesson 12 -41-

N – matrix dimension

C
o

m
p

u
ti

n
g

p
o

w
er

 [
M

FL
O

P
S]

Results

significant drop in
performance

wolf21

C2115 Practical introduction to supercomputing Lesson 12 -42-

Libraries for linear algebra
BLAS
The BLAS (Basic Linear Algebra Subprograms) are routines that provide standard building
blocks for performing basic vector and matrix operations. The Level 1 BLAS perform scalar,
vector and vector-vector operations, the Level 2 BLAS perform matrix-vector operations,
and the Level 3 BLAS perform matrix-matrix operations. Because the BLAS are efficient,
portable, and widely available, they are commonly used in the development of high quality
linear algebra software, LAPACK for example.

LAPACK
LAPACK is written in Fortran 90 and provides routines for solving systems of simultaneous
linear equations, least-squares solutions of linear systems of equations, ownproblems, and
singular value problems. The associated matrix factorizations (LU,Cholesky, QR, SVD, Schur,
generalized Schur) are also provided, as are related computations such as reordering of the
Schurfactorizations and estimating condition numbers. Dense and banded matrices are
handled, but not general sparse matrices. In all areas, similar functionality is provided for
real and complex matrices, in both single and double precision.

http://netlib.org

C2115 Practical introduction to supercomputing Lesson 12 -43-

Optimized libraries
Optimized BLAS and LAPACK libraries

➢ optimized by the hardware vendor
➢ ATLAS http://math-atlas.sourceforge.net/
➢ MKL http://software.intel.com/en-us/intel-mkl
➢ ACML http://developer.amd.com/tools/cpu-development/

amd-core-math-library-acml/
➢ cuBLAS https://developer.nvidia.com/cublas

Optimized FFT libraries (Fast Fourier Transform)

➢ optimized by the hardware vendor
➢ MKL http://software.intel.com/en-us/intel-mkl
➢ ACML http://developer.amd.com/tools/cpu-development/

amd-core-math-library-acml/
➢ FFTW http://www.fftw.org/
➢ cuFFT https://developer.nvidia.com/cufft

C2115 Practical introduction to supercomputing Lesson 12 -44-

Matrix multiplication via BLAS - dp
subroutine mult_matrices_blas(A,B,C)

implicit none

double precision :: A(:,:)

double precision :: B(:,:)

double precision :: C(:,:)

!--

if(size(A,2) .ne. size(B,1)) then

stop 'Error: Illegal shape of A and B matrices!'

end if

call dgemm('N','N',size(A,1),size(B,2),size(A,2),1.0d0, &

A,size(A,1),B,size(B,1),0.0d0,C,size(C,1))

end subroutine mult_matrices_blas

F77 interface of BLAS library does not contain information about argument type.
Programmer must enter all arguments in the correct order and type!!!!

Compilation:

$ gfortran -O3 mult_mat_blas_dp.f90 -O mult_mat_blas_dp -lblas

C2115 Practical introduction to supercomputing Lesson 12 -45-

Matrix multiplication via BLAS - dp
subroutine mult_matrices_blas(A,B,C)

implicit none

real(4) :: A(:,:)

real(4) :: B(:,:)

real(4) :: C(:,:)

!--

if(size(A,2) .ne. size(B,1)) then

stop 'Error: Illegal shape of A and B matrices!'

end if

call sgemm('N','N',size(A,1),size(B,2),size(A,2),1.0, &

A,size(A,1),B,size(B,1),0.0,C,size(C,1))

end subroutine mult_matrices_blas

Compilation:

$ gfortran -O3 mult_mat_blas_sp.f90 -O mult_mat_blas_sp -lblas

C2115 Practical introduction to supercomputing Lesson 12 -46-

Naive vs optimized solution

N – matrix dimension

C
o

m
p

u
ti

n
g

p
o

w
er

 [
M

FL
O

P
S]

Naive implementation
Optimized BLAS

C2115 Practical introduction to supercomputing Lesson 12 -47-

N – matrix dimension

C
o

m
p

u
ti

n
g

p
o

w
er

 [
M

FL
O

P
S]

Naive implementation
Optimized BLAS

Naive vs optimized solution

~ 10x

C2115 Practical introduction to supercomputing Lesson 12 -48-

Exercise 4

1. Compile the program mult_mat_blas_dp.f90 with gfortran compiler, use -O3
optimization.

2. Run the program and display the obtained dependence of computing power depending
on the size of the matrix in the form of a graph (interactive mode gnuplot).

3. Determine the computational power for the optimization levels -O3 and -O0. Display
the obtained dependencies in one graph. Insert the graph into the protocol. Be sure to
specify the CPU type (command lscpu).

4. Compare computing power for native and blas approaches in the optimized version
(option -O3). Display the obtained dependencies in one graph. Insert the graph into the
protocol. Be sure to specify the CPU type (command lscpu).

5. Discuss obtained results.

Source codes:
/home/kulhanek/Documents/C2115/code/matrix

Compilation:

$ gfortran -O3 mult_mat_blas_dp.f90 -o mult_mat_blas_dp -lblas

